How viable is Software Defined Radio as a wireless
sniffing platform?

Rory Bolton
June 5, 2017

Covent
Univers

A/

In memory of the late
Mr. Aidan Oakley and Mrs. Betty Medhurst
Friend and family, lost while writing.

Contents

1 Introduction|

213 Review]

3 Method

[3.1 Software Design Methodology|

[3.2 Implementation|

[3.2.1 Systems Design|

[3.2.2 SDR Design Factors|

[3.3 Data Collection Algorithm|.

[3.3.1 Signal Processing|,

[3.3.2 Data Display],

{4 Evaluation/Results|

[6_Discussion|

6 Reflection on Project Management|

7 Social, Legal and Ethical Issues|

I8 Feedback From Presentationl

9 Conclusion|

[10 References|
11 Appendix]

(11.1 Email from Lime Microsystems|

(11.2 Emails to and from Supervisorf

11.2.1 30/11/16|
11.2.2 23/01/17]
11.2.3 02/02/17]
11.2.4 09/03/17|
11.2.5 18/04/17
11.2.6 25/04/17|

|12 Certificate of Ethical Approvall

17

18

19

24

24

25

25

27
27
28
28
28
29
29
29
30
31
32

38

Abstract

This paper shows the design and testing of a mobile protocol iden-
tification system using off the shelf Software Defined Radio hardware.
SDR is a capable technology that has the capacity to be extremely
useful to a security professional thanks to its universal nature. SDR
could be used to not only identify protocols in use, but with further
work could also be used to collect any data being transmitted on those
protocols simultaneously.

1 Introduction

Software Defined Radio (SDR) is an amazingly versatile technology that
could have potentially huge ramifications for security due to its rapidly low-
ering barrier to entry for members of the general public. The security of
systems may be at stake thanks to the very reason why SDRs are so ver-
satile. They have an inherent reconfigurability and their wide bandwidth
allows them to effectively emulate any other device that broadcasts within
SDRs capabilities. An SDR can receive and transmit using any protocol pro-
vided its software is instructed how and the hardware is capable thus opening
the metaphorical floodgates to broadcasting on restricted frequencies and /or
emulating public infrastructure such as GSM and LTE base-stations|13| and
video broadcasting. Hardware Defined Radio (HDR) devices are locked to
a specific protocol and also have a very limited range of frequencies that
can receive or transmit on. SDRs however do not have this same limitation.
They have no preference over any protocols or frequency. Anything is pos-
sible assuming of course that what is being attempted is within the devices
receive and transmit power and bandwidth range. Whereas some HDRs of-
ten de-encapsulate the data packets before they exit the silicon, an SDR does
no de-encapsulation and communicates every piece of raw data back to the
host computer for storage or decoding thus allowing every intricacy of the
protocol to be viewed and analysed.

SDRs are extremely flexible in the range of signals that they can re-
ceive and interpret. This flexibility allows the same device to simultaneously
receive transmissions from devices on multiple channels and (with capable
hardware) devices that normally would be completely separate from one-
another and transmit on entirely different RF bands.

2 Literature Review

The ability for SDRs to emulate any hardware and transmit using any proto-
col allows a user to exploit flaws in areas that were not previously accessible
by the average non state funded attacker. Thanks to this new technology,
attacks are being found in areas that few would ever consider as being at
risk, such as the Digital Video Broadcasting - Terrestrial (DVB-T') standard
and more specifically, the substandard of Hybrid Broadcast TV (HBTV)
that allows a broadcaster to request content from a web page as part of a
transmission. This has already been exploited using SDR technology|7] to
transmit a signal that makes use of a vulnerability in the televisions in-built
web browser to run unsigned code. This is believed to be merely the be-
ginning of what is to come. A surprising many of the currently available
IoT devices are vulnerable to simple attacks, with 70% of devices that went
under test being found as having no encryption at all|[l1]. Most IoT ex-
ploits are only possible because the manufacturer took a security through
obscurity approach to their protection and believed that it was not worth
implementing, because nobody would test for it, or nobody would be able
to do anything if access was gained. This method of "securing" a product is
only functional in the extreme short term and is widely recognised as being
ineffective as a method of securing a system "the security of a system should
depend on its key, not its design remaining obscure"[1].

SDR has a strong background of military use, first beginning with the
DARPA SPEAKeasy project being the first non-prototype design to be
widely deployed that has its physical layer components implemented in soft-
ware|4| for the purposes of ensuring compatibility and integrating existing
systems. SDR is currently being used by United States the military to create
a range of communications devices known as the Joint Tactical Radio System
that was cancelled in 2011 due to being over-ambitious. A small part of the
program survived however in the hand-held, manpack and small form radios
that are scheduled for full rate production in 2017[17] with the primary goal
being to create radios that can have operating frequencies and modes added
or updated through a distributed upload while in the field. This such a tool
is only possible using software defined radio and functions as an ideal exam-
ple of using SDR not to exploit security flaws but as a technology that can
be used to increase security of a design too.

The first commercial SDR|10| was approved by the American Federal
Communications Commission (FCC) in 2004, marking the first time SDR
technology became available to anyone without a research fund in the hun-
dreds of millions of dollars and a large development team. The first widely

commercially available single chip RF front end was released in 2009|12| by
Lime Microsystems. Since then many more vendors have began offering sim-
ilar products and as such the price has plummeted while availability has
increased. The RF front-end being used for testing in this project is the
major successor to that original chip that was released in 2014[5].

The internet consists of billions of connected devices, with that number
rapidly expanding as time progresses to the point where 50 billion connected
devices are expected by 2020|3| with a rapidly increasing percentage of those
devices being a part if the Internet of Things. On many systems; any inter-
nal [oT traffic before it reaches the gateway will be un-encrypted|11]. This is
often done to conserve power as the gateway is often the most computation-
ally powerful device in the system and therefore more capable of encrypting
large quantities of data without any problematic delays. The gateway is
usually also the point wherein the internal and external networks meet, ex-
ternal networks may be filtered by the gateway, but as with most routers,
the internal traffic is un-monitored and is trusted to not be accessible by an
outside attacker. This is not an ideal practice to use, especially for a primar-
ily wireless system where an attacker may not have to be on the premises
but can simply place an antenna nearby to receive any signals within range.

SDR technology requires a significantly larger amount of electrical and
processing power when compared to a more common hardware defined ra-
dio|14] because of its less efficient software defied nature being reliant on
a general purpose processor instead of a more optimised Application Spe-
cific Integrated Circuit (ASIC) that is designed for the task with efficiency
and speed in mind. Although this may affect the hardware’s long term
portability, it is still possible to perform short term attacks from a nearby
dropbox location or laptop for several hours before a battery would need
replacing. And although the power consumption may be a limitation, the
physical dimensions of SDR hardware is reducing as the technology becomes
more integrated meaning that finding a location to hide the device within
the premises under attack may not be all to difficult to achieve.

The wireless spectrum is full of different protocols and many of them
operate in the 2.4-2.4835GHz band of the EM spectrum. These include
Wi-Fi|8], Bluetooth, ZigBee|9] and many proprietary protocols. HDR’s are
locked to a specific protocol or at most are able to communicate using a
select few that reside in the same band because they are constrained by their
hardware and are effectively a protocol and frequency locked ASIC. SDRs
do not have this limitation of being locked to using a particular protocol or
frequency and all that is required to completely switch protocol is a software
change which can often be performed in seconds.

When designing a protocol it is common practice to model the system
using a number of SDRs to simulate a range of working devices|15]. This
enables rapid prototyping of a system before any hardware is obtained and
even allows entirely new concepts to be tested if the ASIC hardware does

not yet exist.

The choice of SDR hardware is difficult as there are many different prod-
ucts available and they all have their intended use case situated in different
areas. This means that no SDR is the same as any other and one may be
many times more effective than another.

| HackRF One LimeSDR RTL-SDR (R820T2 tuner)
Frequency Range 1MHz - 6GHz|6| 100kHz - 3.8GHz|5| 24MHZ - 1.766GHz
ADC Resolution 8 Bit 12 Bit 8 Bit
RF Bandwidth 20 MHz 61.44MHz 3.2MHz
Duplex Half Full Full
FPGA Elements 64 macrocell CPLD 40K 0
Interface USB 2.0 USB 3.0 or PCI-E USB 2.0
Price $299 $289 $20

The project was planned with the hope that the LimeSDR would arrive
on time to fully develop the proposed solution. The LimeSDR shows to
be the better solution in almost every aspect when compared to the other
two products I had available. It has a higer resolution ADC granting a 16x
increase in resolution over the other products thanks to its 12 Bit Analogue to
Digital Converter (ADC), this also makes it more sensitive to signals meaning
that weaker signals can be detected, thus improving the effectiveness of the
projects end product.

The only place where the LimeSDR falls short is in its operating range,
which is beaten by the HackRF. Although in my intended use-case it is still
ideal is I planned to be sniffing protocols that operate within the 2.4GHz
spectrum, which is well within the LimeSDR’s range.

The LimeSDRs exceptional bandwidth is mainly due to its interface being
USB 3.0 which enables much higher data rates than the USB 2.0 interfaces
used by the other two solutions. Although the bandwidth used in the prod-
uct I created is only 2MHz, during further research I would like to replace
Soapy Power with my own solution that directly uses the SoapySDR client
API to greatly increase the bandwidth.

The LimeSDR has a 40,000 logic cell FPGA, although this is not used in
my project, with further developments this could be used to greatly increase
processing speed by utilising it as an ASIC that does a large amount of data
processing before it even reaches the host PC.

All these points, combined with the lower cost to initially purchase the
equipment means that the LimeSDR is clearly the best option from what
I had available. The fact the the LimeSDR has all this functionality while
maintaining the same or better price as the HackRF (a product it is designed

to directly compete with) is ideal and is an ideal of competition being better
for the consumer. And while the support for the device is comparatively low
at the time of writing, it is being supported by the manufacturer, who has
vast knowlege of SDR technology as they are a leading manufacturer of highly
integrated RF Front end ICs for use in SDR. equipment, and their current
flagship IC is included within the LimeSDR. This means they should be more
than capable of ensuring their own product works to its full potential.

3 Method

3.1 Software Design Methodology

The software was designed in an iterative fashion. The required functionality
is determined and each necessary function is researched, implemented, tested
and then fixed in an iterative cycle before moving on to the next piece of
functionality. When an issue cannot be fixed or it may improve the overall
outcomes; the code was experimented upon to solve problems I could not
overcome with the existing methods.

lterative Loop

) > > (impemen

[Fix/Experiment]4—

(Compieie)4

3.2 Implementation

The primary hardware used for the project is the LimeSDR from Lime Mi-
crosystems, a Software Defined Radio that makes use of the LMS7002M fully
programmable MIMO transceiver and can reliably cover the entire spectrum
of 30MHz to 3GHz. The equipment also has very little clock drift as it
contains a Temperature Compensated Crystal Oscillator (TCXO) that helps

ensure a stable and accurate clock signal for more accurate tuning.

The LimeSDR is cotrolled ad read thouugh the open-source SoapySDR
API. SoapySDR is was chosen for its relative simplicity, support for many
other radios and pre-existing support within many programs used later in the
project. The support for other radios should allow the software produced
during the project to function not only with the LimeSDR, but also the
HackRF, RTL-SDR, all Ettus Research radios and more.

I used python as my language of choice during the development of the
project as it is extremely simple and, while it may be slower than compiled
languages, it is highly versatile and ideal for a proof of concept implementa-
tion where performance may not be a serious concern.

Python also has a few SDR libraries, although my initial plan was to
use these libraries, the output they provided proved to be beyond my un-
derstanding at the time. With future work these libraries should be used di-
rectly instead of the current Soapy Power implementation which uses these
libraries itself but serves as something akin to an abstraction layer.

3.2.1 Systems Design

Data Acquisition

HH]

Data Display and Processing

—p soapy_power_graph_max.py

matplotlib numpy

The system I designed has two functional stages, the data acquisition
stage and the data display and processing stage.

The data acquisition stages task is to receive and store the data in a
format that can then be easily interpreted by the data display and process-
ing stage. It does this by reading the SDR through the SoapySDR client

python library, which serves as the abstraction layer and interfaces with the
soapy LMS7 module that serves as the device specific driver. Soapy Power
itself handles converting the received values provided by the library into a
list of linear power values that are easily understood and thus can easily be
programmed for.

The data display and processing stage stores the 2MHz wide sample
received from the loops of the data acquisition stage and performs analysis on
the entire specified bandwidth once all the necessary data as been received.
The data is displayed in two forms, a plot that shows the peaks detected in
the RF spectrum and a statistical readout using the python curses library to
provide a clean Ul showing the protocol, channel and percentage certainty
that the reading is accurate.

3.2.2 SDR Design Factors

The LimeSDR has a choice of 3 different antenna connections for each of
the 2 RX channels. Currently the SoapySDR driver only has support for
receiving on channel 0. The antenna connections are as follows:

Input Use Noise Figure
LNAL Low Frequency, tuned for use between 0.1MHz and 2GHz <2dB
LNAH High Frequency, tuned for 1.5GHz to 3.8GHz <3dB
LNAW Wide-band, non-specific tuning 0.1MHz to 3.8GHz 5-7dB

During testing I have been scanning the range between 2.4GHz and
2.5GHz, so to reduce noise as much as possible I have set the Soapy Power
to use the "LNAH" antenna. I could use "LNAW" instead, however the
noise figure on this input is noticeably higher, especially since dBm is a log-
arithmic scale. There is one major use case where the LNAW input may
be useful, that is when scanning a wide range of frequencies that overruns
the range of a single one of the other inputs in one continuous sweep. This
technique would not be able to detect signals as weak as using the other
antennas since any weak signals are likely to be buried in the noise floor but
would provide a rough outline of what is present in the immediate area.

The physical antennas connected to the ports on the SDR are shown and
described below

10

4

Figure 1: Image of the actual hardware used for the final implementation.

Input Antenna Frequency of antenna

LNAL 820mm Telescopic Low frequency, variable length, <1GHz
LNAH ALFA Network Directional 2.4-2.5GHz and 5GHz

LNAW Generic GSM 800-900MHz

All these antennas were chosen for their sensitivity to commonly used fre-
quencies. Many protocols function at the 433MHz, 800-900MHz and 2.4GHz
areas of the spectrum and it is only appropriate to use antennas suited to
receiving these signals.

3.3 Data Collection Algorithm

Soapy Power is an existing program that reads the data from the SDR
hardware and prints the power values found at a specific frequency to stdout
in the format:

[Start frequency (Hz)] [End frequency (Hz)] [Step size (Hz)] [Samples] [PowerVaIues x512

Soapy Power can automatically sweep over a specified frequency range
and continue to output data. This is done by adding the "-c¢" flag
that instructs Soapy Power to continue running after completing its task
whereas without this flag it will exit upon completion. Soapy Power can
sweep a range by supplying the frequency range in the format "startfre-
quency:endfrequency". The program will then proceed to sweep over this
rage in 2MHz blocks until it reaches the end, at which point it will either

11

cleanly exit, or if the "-¢" argument is given it will loop back to the starting
frequency and begin the loop again.

This is a limitation of the current implementation, the bandwidth is
permanently set at 2MHz, there is an option that can be supplied to
Soapy Power to increase the bandwidth, however it does absolutely noth-
ing and even supplying the "—force-bandwith" flag has no effect. This is a
bug with Soapy Power and it shows no signs of being fixed any time soon.
This bug would not exist in any further work as one of the first tasks that
needs to be carried out is the replacement of Soapy Power with a custom
implementation that directly interfaces with the SoapySDR libraries.

The data on stdout is piped into the python program. The python pro-
gram then confirms that the string starts with todays date, indicating that
the string is a data message and not a debug message. If that check passes,
the comma separated string is split into an array, the current frequency is
stored in one array while the 512 power values are retrieved and stored in
another. At this point if a debug or error message was printed at the same
time as data was, then it may have passed the date test and would cause
issues later during processing. In an attempt to remedy this I check every
power value to ensure that they are a float, if a single value is not a floating
point number, all 512 points of data are discarded. Past this point the data
should be valid. The data is added into a larger array while Soapy Power
tunes to the next frequency. Once the new data is received and verified it is
added on to the end of the larger array. This array will continue to store all
data until the end frequency of any new data is smaller than the previous
value. This indicates that Soapy Power has fully looped and the large array
now contains a full sweep of the specified frequencies. To try and differen-
tiate actual signals from noise the overall average power value is found, any
power values that sit above that average are flagged for analysis.

The full array of all power values is analysed at the end of every loop of
Soapy Power. The technique I chose to use to identify protocols is to find
the number of above-average values that sit within the expected frequency
and bandwidth of a list of protocols. The protocols I have included in this
proof of concept are 2.4GHz WiFi and ZigBee although more could be added
simply by adding them to the 2 dimensional array I have used to store
them. The program will return a probability of detection by comparing the
number of above-average values found against the number of values that
were expected. Calculating the probability was not included in the initial
idea, however after writing the code to handle detection I realised it could
be an extremely valuable addition and I already had the values stored from
earlier in the programs execution.

12

3.3.1 Signal Processing

When the data is received, it is piped into the python program in the format
of 512 power values. The raw signal data these power values show is not
directly usable in its received state.

A€ Q=¥ B

Figure 2: The raw data shown with no signal processing operations, every
peak is the IQ peak of each 2MHz wide sample

Thanks to the way SDRs collect and process signals, most SDRs will
have a sharp peak perfectly in the centre of their tuned frequency. This
is caused by the hardware down-converting the signal received so that the
center of the tuned band is located at 0Hz before before it is passed into the
SDRs ADC. Because the frequency is OHz, it is not oscillating and as such,
any DC bias voltage on the input will result in a noticeable and constant

13

peak. This peak is present in every SDR I have ever seen or tested and if it
needs to be removed, it can only be done in software. To remove this peak
in my program I remove the middle 20 data points and set their value as the
average of their neighbouring real values. While this does remove some data,
the bandwidth affected is a mere 78 KHz, which is a fraction of the smallest
bandwidth protocol being tested for, which is ZigBee at 600KHz wide.

A €> Q=¥ B

le-11

0.50

0.25

Figure 3: The raw data with the IQ peaks removed

The second issue with the received data is the rapid drop in signal power
at the start and end of the scanned area thanks to signal attenuation from
the internal band pass filter which is designed to allow through any signals
received within the configured range and not allow anything outside that
range to pass through. Band-pass filters are not perfect however, as instead
of completely removing anything out of their range they attenuate the signal

14

more the further outside the frequency range it is. These drops would lower
the average and increase the chance of having noise being above the average
value and being tested as though it were a valid signal. To attempt to remedy
or at least reduce the effect this has on the data, I change the value of the
first and last 60 data points to the value of the 61st and 451st data points.
While, again, this does remove data, the value of the data being lost is far
less than any data towards the centre of the spectrum as its power cannot be
accurately recorded due to hardware limitations. The affected bandwidth is
234KHz per side, resulting in 469KHz of "lost" data, while that may seem
like a large amount of data being lost, the data is effectively useless to begin
with.

A€ Q=¥ B

le-11

1751

1.00 4

0.00

Figure 4: The raw data shown with the IQ peak removed and the edge
signals altered

15

3.3.2 Data Display

Curses is used to provide a list of results to the user in a nicely organised
manner. The output is in the form of an ordered list, from highest probability
to lowest. Each protocol detected shows the protocol, the channel that was
detected and the percentage certainty that the reading is accurate.

rory@rory-EliteBook: ~/dissertation/python

P
£
i
-
£
i

Figure 5: The console output of the final system

The data received and collected by the signal processing stage is collected,
then graphically plotted using matplotlib with the x axis being the frequency
and the y axis being the received signal power on an arbitrary scale. This
plot is most useful to confirm that the antenna is connected, working well
and that data is being received. It has proven to be extremely useful for
debugging.

16

A€ED> Q=¥

le—-11

f f T T 7 T
2.40 2.42 2.44 2.46 2.48 2.50
1le9

Figure 6: The spectrum plot from matplotlib

4 Evaluation/Results

The system that was created detects power peaks in the RF spectrum and
compares the bandwidth of the peaks to a list of known bandwidths and
frequencies for a collection of protocols. If the bandwidth and frequency
are a close match to the items in the list then it can be assumed that that
protocol may be in use on the frequency mentioned. The system outputs
a list of protocols it may have detected along with a percentage certainty
based on the percentage of the spectrum it has detected.

The system was found to be capable of detecting the protocols currently
in use in the area to an accuracy of one channel, showing that the signal
fingerprinting requirement has been met. For example, if WiFi channel 11 is
in use, it may detect channel 12 or 10 at a slightly higher probability than
the actual channel in use. This is a flaw with the system that I simply did
not have enough time to attempt to correct without a major rewrite that
would take more time to perform than I have available.

Protocols that exist in the same RF band are difficult to differentiate

17

in the current implementation. The current implementation will detect the
traffic in that band and attempt to identify it, however when two protocols
overlap the detection will show results for both potentially being present.
When a protocol with lower bandwidth operates at the same frequency as
one with a higher bandwidth, if a device using the higher bandwidth proto-
col is transmitting it will result in a false detection of the lower bandwidth
protocol because the RF peak will cover the entire range of that lower band-
width protocol and only most of bandwidth used by actual system that is
transmitting. The only possible case included in the current system is ZigBee
and WiFi, which results in ZigBee being falsely detected every time a WiFi
signal is present. This could be fixed with further research as the peaks
would overlap, creating an interference pattern where simultaneous trans-
missions are occurring that could be used to identify signals inside larger
signals. However such a solution is far outside my current knowledge and
although the hardware is capable of this, I am not capable of implementing
it at time of writing.

5 Discussion

Existing SDR software is fraught with problems for a large percentage of
devices that exist under the £700 price bracket. The manufacturer of the
hardware does not make enough of a profit to dedicate a development team
towards working on support and integration with existing systems. That
combined with the recent surge in availability and lack of universal driver
support means that a manufacturer often produces their own drivers, many
of which function completely differently to similar products from other man-
ufacturers. Host computer software support is often lacking as it is the
responsibility of the community to integrate support for the SDR hardware
and its drivers into their projects, most of which are open-source and the
developers are unpaid. As a result the number of programs that support
the hardware is proportional to the number of individuals that purchased it
and for newly launched products the support will be extremely limited be-
cause potential users realise that little software supports it, often resulting
in a feedback loop that ensures the hardware goes unsupported and has a
very low adoption rate. A large number of projects are still in their infancy
thanks to the recent and sudden increase in SDR availability that has caused
people to find uses where software does not already exist and create their
own solutions. All these factors combine to create a rapidly evolving envi-
ronment of inter-operating programs that often gain and lose compatibility

18

on a daily basis through updates and lack of universal systems that ensure
reliable inter-operability. SDR technology cannot reliably be used for chan-
nel hopping protocols. The time required to wait until the SDR has tuned to
its specified frequency and any noise introduced during tuning has settled is
simply too long. I believe that within a few more years an ASIC that is ca-
pable of rapid tuning will be created. However, if a channel hopping protocol
must be used then the RF bandwidth of the SDR has to cover the entire pos-
sible range used by the protocol from start to finish with every sample. This
is the only appropriate method for handling channel hopping systems and
ensuring no data is missed. The technique often requires SDRs with enour-
mous bandwidths by todays standards, high bandwidths mean that a large
amount of data is collected and needs to be transferred over a high speed
interface to a well equipped host computer. These and many more factors
all contribute to a rapid price increase, far beyond the reach of a consumer
or independent professional. The use of SDR at high bandwidths requires
an enormous amount of processing power to handle in a useful time-span.
Luckily the data can be processed in parallel using general purpose compute
in graphics cards like NVIDIAs CUDA. Massively parallel systems are re-
quired to process the high throughput of the system, for example the system
has a throughput of 320MB /s when receiving at a bandwidth of 60MHz. For
any heavy processing other than tasks such as recording the data for storage
to a hard disk, a general purpose CPU is not simply not sufficient.

6 Reflection on Project Management

The system initially planed for creation was an automatically decoding sniffer
that should be capable of decoding ZigBee and one more to be determined
protocol. However there were many setbacks during the planning stages
meaning that there was not much purpose behind formulating a detailed
plan as the conditions changed week on week. The initial plan quickly fell
flat when the hardware I received did not meet the necessary standards of
sensitivity required to create the project. The signal the HackRF received
was simply too weak and had too little resolution to be of any reasonable use
while the HackRF’s bandwidth was sufficient for the end product I produced,
it was not enough for the design I had hoped to create at the time. These
made me realise that it was better to drop the use of the HackRF from
the project and search for another solution. The situation was compounded
when it was suggested that I use the departments Ettus Research E100
SDR. However upon inspection of the hardware it was quickly discovered

19

that it was a software defined radio, that was missing its radio components.
That path lead nowhere rather quickly. Eventually after a couple of weeks
attempting to find an SDR that can operate at 2.4GHz I realised that the
802.15.4 standard, which ZigBee uses as its Layer 2 protocol, allows for some
devices to operate at 900MHz as shown in the table below.

IEEE 802.15.4 allows for:

Number of Channels Frequency Band

16 2.4GHz
10 915MHz
1 868MHz

This would have made it ideal to use a low-cost RTL-SDR. dongle if I
could source some 915 or 868MHz transceivers. However that proved to be
more difficult than expected as very few manufacturers produce transceivers
operating on those channels and none that I found offer a breakout board
version of their modules, meaning that it would require additional monetary
investment and time to design and manufacture circuit boards for testing
the modules. In the UK the use of the 900MHz spectrum is partially allowed
under European standard EN 300 220-2[16|

Band Frequency Limits (MHz) Applications Relevant Standard
915MHZ 915-921MHz RFID EN 302 208
Non-specific SRDs EN 300 220

Assistive listening devices EN 300 422

However most UK devices operate at 433 MHz instead and I was not able
to determine if the devices I would be creating would qualify as an SRD or
"Short Range Device". As a result of these it became difficult to source and
either illegal or extremely expensive as the hardware had to be shipped from
the United States.

The LimeSDR was delivered on 18/03/2017 giving approximately one
month to create any sort of useful product after the previous setbacks. Ad-
mittedly this was hardly ideal and the HackRF could possibly have been used
to build a suitable testing platform as the API I chose to use (SoapySDR)
can also be modified to support the HackRF. Doing that may have added a
week or so to the development time by using it to ensure that data can be
collected correctly, even if it is not sensitive enough to determine what is a
valid signal and what is noise. No testing can be carried out without a radio.

Once I had the SDR hardware I had some serious issues getting any use-
ful data from them and various forms of this issue persisted for weeks. The

20

first attempts at acquiring data from the SDR hardware involved using the
Python SoapySDR library to directly pull raw data from the hardware. This
began to cause problems almost immediately as the data is presented as an
array of complex numbers represented as two 32 bit floating point numbers.
I had no previous knowledge of complex numbers or how to use them and
after nearly a week of trying to understand it and consulting others I be-
lieved to be more knowledgeable on the matter than myself, I was still no
closer. My initial starting plan was to plot the spectrums power values on a
bar graph to show that I was receiving useful data and have the radio tuned
correctly. If the radio was tuned to a frequency where I knew a broadcast
is occurring it should show as a peak in the graph, if there is no peak then
there is a problem. However graphing these complex numbers proved to be
a problem in itself that I could not resolve. Instead of looking to receive
my data directly from the radio I had a search for alternate libraries that
may already be able to provide the functionality I needed. This was found
as another python program called "Soapy Power" which when run prints
a list of 512 power values covering a total of 2MHz of the RF spectrum at
a time. To interpret this data I pipe it into a python program that carries
out the analysis. Getting this program to work was not the easiest task as it
had dependency issues and the program I was writing relied upon python 2.7
whereas Soapy Power made use of python 3.4 and below. The current ver-
sion I had installed on my machine was python 3.5. To get this working I had
to downgrade the version of python I had installed and also set the default
python executable to that version. Just as I finished getting Soapy Power
working my install of Ubuntu 16.04 began failing with approximately a 1/6
chance of successfully booting without becoming completely unresponsive 30
seconds after login. To fix this problem and at the same time make the re-
installation of all the dependencies easier, I retrieved my data and code from
16.04 and installed Ubuntu 14.04 instead. Because this is an older version,
a lot of the dependency problems were resolved easily as the packages were
originally written to support 14.04 from the beginning. Re-installation of
the software and drivers only took roughly 6 hours of work. It is also worth
noting that the software ran much faster on this version too. I would con-
sider this a positive outcome since it made me realise issued I didn’t know I
had in the first place, solved those issues and increased my systems overall
speed and stability. By the time the radio arrived, and after encountering
the problems mentioned previously, I only had roughly 3 weeks to produce
a workable proof of concept, which is very little time. I had to settle for a
relatively simple design that scans between two frequencies in 2MHz sections
and attempts to identify protocols by searching the detected power values

21

for a peak that correlates with the bandwidth of a protocol.

The project was ambitious from the start, so to keep myself on track I
set myself three targets. I hit two of those targets, the ability to fingerprint
a protocol or device, and the ability to target more than one platform or
protocol at a time. However there are areas that could have been improved.
This project required an enormous amount of reading and research before I
could even begin to understand how to achieve my goal. I believe that with
hindsight, perhaps a project better fitting closely with my existing knowledge
would have been a sensible choice since it should have allowed me more time
to create a design instead of simply studying how the components should
work. I understand however that the success of the project is not the end
goal of the module, I understand that the purpose of the module is to create
new knowledge and effectively document it. I am happy that I have pushed
myself, believe I have met the requirements of the module and do not regret
my choice. Python was my language of choice, I mainly chose this because
of its wide range of existing libraries and dynamic typing. The dynamic
typing is particularly helpful as the data I handle consists of several differ-
ent data-types and I regularly have to convert between them. These traits
make python ideal for creating proof of concept implementations, however
one of pythons largest shortcomings is its speed. Python is a rather slow
language because it is interpreted, thus adding additional steps to the codes
execution and decreasing the number of operations that can be performed
per unit of time. This caused problems during the coding process as the
analysis performed after every successful cycle has hundreds of thousands
of tests and operations to perform while new data is already being piped
in. The enormous number of operations performed causes the program to
appear to freeze for a few seconds while is processes the information. I had
to write the program in a manner which tries to perform as little operations
as possible but the unresponsiveness still cannot be completely prevented.
It should go without saying that this is hardly ideal. In the future I would
like to port the project to a compiled language, enabling the use of "bare
metal" hardware instructions directly and as such can perform operations
significantly faster. The SoapySDR API has hooks available for python, C
and C++ languages|2]. C+-+ would have been a strong language choice be-
cause its fairly simple to use, has hooks available for the API I had to use
and is a compiled language which should provide the needed speed-boost. It
took months to acquire suitable hardware for testing. The initial HackRF
was not sensitive enough to reliably differentiate signal and noise and the
only other 2.4GHz capable piece of hardware was the Ettus Research E100
which was missing its radio module, after searching it could not be found.

22

The only other option at the time was to investigate using an RTL-SDR
dongle which could reach a maximum frequency of 1.7GHz and meant that
alternative protocols had to be investigated because ZigBee, Bluetooth and
WiFi all operate at 2.4GHz. Luckily after close to a week of searching for
a solution and having difficulties implementing that solution, the hardware
I had originally planed to use in the project arrived and hardware was no
longer an issue. With hindsight, I really should have ensured suitable hard-
ware was available before carrying out a project that is heavily reliant on
said hardware. The LimeSDR arrived so late because of worldwide compo-
nent shortages and excessive shipping times during production. These were
out of my control but meant that the product, originally due for shipping
in early November, was shipped on the 9th of March and received on the
18th. Over three months behind schedule. In the time before it was finally
shipped, I did contact the manufacturer to enquire if there was any chance
of getting a unit early as I knew they had already shipped some earlier units
(see Appendix 11.1). I clearly stated my position, mentioning that I was an
undergraduate student and wished to use their product for my dissertation,
I even made sure to send the E-mail from my university email address to
give it some credibility. A couple of weeks later I received a reply from a
Lime Microsystems employee stating that they had noted my order number
and would attempt to ship the product in January but that it may not be
possible. January soon came and went without the product being shipped.

The project time-line was planned out, however the plan quickly fell apart
as the issues began to appear. The initial plan was as follows:

Task Date Start Date End | Done
Determine the project idea | 20/01/17 03/02/17 | X
Initial research 04/02/17 03/03/17 | X
Radio selection 04/03/17 11/03/17 | X
Implementation and testing | 12/03/17 13/04/17 | X
Writeup 14/04/17 02/05/17 | X

As mentioned previously, this was not the plan that was eventually fol-
lowed. A revised plan is shown below:

Task Date Start Date End | Done
Determine the project idea | 20/01/17 03/02/17 | X
Initial research 04/02/17 11/03/17 | X
Radio selection 04/02/17 11/03/17 | X
Implementation and testing | 12/03/17 14/04/17 | X
Writeup 15/04/17 02/05/17 | X

23

This project requires an enormous amount of research and understanding
before anything remotely useful can be created, most of my time was spent
attempting to find solutions to problems that require in depth knowledge
at both the hardware and software level which considering the end product
does not show in this report. The documentation for many of the techniques
used exists, but is often hidden as much of it falls under the RF engineering
umbrella which requires many years of training to understand well.

7 Social, Legal and Ethical Issues

Sniffing by nature means that anything that operates on the frequencies be-
ing scanned is technically collected and much of it could be without permis-
sion. In my use case none of it is stored and no data transfers are recorded,
just the RF power of those transmissions. Technically this classifies as RF
meta-data and could be used to potentially locate a user or broadcasting
device, but not determine the content of the transmission itself. It is illegal
to sniff any communications, including GSM, LTE or WiFi networks without
clear authorisation|18|. Although my product does not store the data it may
technically be classified as a sniffer and as with any sniffing hardware there
is a potential for misuse. In my implementations current implementation the
risk of misuse is low as it would need to be heavily modified to collect actual
packets the current functionality can be achieved on a protocol-by-protocol
basis using far more inexpensive hardware such as a USB WiFi adaptor.
The hardware necessary is still fairly large and carrying around a block
coated in antennas in public is perhaps not going to without some disapprov-
ing or curious looks from members of the public. However I suspect that in
a couple of years this will be largely solved as radios continue to shrink in
size. However I can say through experience it is hard to avoid being noticed
when using an SDR in a position where it will receive a strong signal.

8 Feedback From Presentation

e cvaluation mention further research

e mention further work (hard work, took a lot of understanding, not
shown in end product)

e problems like identifying zigbee where it isnt present (wifi)

e explain algorithm and reasoning behind it

24

like covering whole bandwidth in 2MHz blocks

e antenna choice

in an ideal world type solution.

block diagram of implementation

Also see appendix 11.2.7 for direct feedback and other email conversations
for proof of working through recommendations.

9 Conclusion

SDR has its limitations, mainly that it can not carry out frequency hopping
at the speed required by most protocols. This is often overcome by simply
increasing the overall RF bandwidth being received and ensuring that it
covers the full spectrum in use by the protocol being targeted. Even with
these limitations SDR is still extremely under utilised and has enormous
potential for not just security analysis, but the wireless ecosystem as a whole.
I have outlined an easily expandable system that is capable of detecting and
identifying non-channel hopping wireless protocols using a simple method
that shows how easy making use of such hardware can be once the underlying
concepts are understood.

10 References

References

[1] Ross Anderson. Security engineering: a guide to building dependable
distributed systems. 1st ed. John Wiley and sons, 2001, p. 240.

[2] Josh Blum. SoapySDR Wiki. June 23, 2016. URL: https://github.
com/pothosware/SoapySDR/wikil

[3] Dave Evans. Cisco Internet business solutions group (IBSG) the Inter-
net of things how the next evolution of the Internet is changing every-
thing. Apr. 2011. URL: http://www.cisco.com/c/dam/en_us/about/
ac79/docs/innov/IoT_IBSG_0411FINAL.pdf| (visited on 02/02/2017).

[4] Bruce Alan. Fette. Cognitive radio technology. Elsevier ; Academic
press, 2009, p. 3.

25

https://github.com/pothosware/SoapySDR/wiki
https://github.com/pothosware/SoapySDR/wiki
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

[5] FPRF MIMO Transciever IC With Integrated Microcontroller. LMST002M.
Rev. 2.2.0. Lime Microsystems. Aug. 2014.

[6] great scott gadgets. HackRF One. 2009. URL: https://greatscottgadgets.
com/hackrf/ (visited on 02/28/2017).

[7] Dan Goodin. Smart TV hack embeds attack code into broadcast sig-
nal—no access required. Mar. 2017. URL: https://arstechnica.com/
security/2017/03/smart - tv-hack- embeds - attack- code-into-
broadcast-signal-no-access-required/.

[8] “IEEE Standard for Information technology—Telecommunications and
information exchange between systems Local and metropolitan area
networks”. In: IEEE Std. 802.11-2012 (2012).

[9] “IEEE Standard for Low-Rate Wireless Networks”. In: IEEE Std.
802.15.4-2015 (2015).

[10] VANU Inc. Vanu, Inc. One Cambridge Center Cambridge MA 02142
www.vanu.com Copyright ©) 2006 Vanu, Inc. The Vanu Anywave™
Base Station Subsystem. Apr. 2006. URL: http://www.vanu.com/wp-
content/uploads/vanu-anywave-2006-05.pdfl

[11] Internet of Things Research Study. Sept. 2014. URL: http://go.saas.
hpe.com/1/28912/2015-07-21/32bhy3/28912/69168/I0T_Report.
pdfl

[12] Multi-band multi-standard transceiver. LMS6002. Lime Microsystems.
2009.

[13] Nuand. Setting up Yate and YateBTS with the bladeRF. May 2016.
URL: https://github. com/Nuand/bladeRF /wiki/Setting - up -
Yate-and-YateBTS-with-the-bladeRF.

[14] Yongtae Park et al. “Enabling Sensor Network to Smartphone Inter-
action Using Software Radios”. In: ACM Transactions on Sensor Net-
works (TOSN) 13.1 (2016), p. 2.

[15] Sam Shearman and James Kimery. “Software Defined Radio Proto-
typing Platforms Enable a Flexible Approach to Design [Application
Notes|”. In: IEEE Microwave Magazine 13.5 (July 12, 2012), pp. 76-80.

[16] Short Range Devices (SRD) operating in the frequency range 25 MHz
to 1 000 MHz. EN 300 220-2. European Telecommunicatios Standards
Institute. 2016.

26

https://greatscottgadgets.com/hackrf/
https://greatscottgadgets.com/hackrf/
https://arstechnica.com/security/2017/03/smart-tv-hack-embeds-attack-code-into-broadcast-signal-no-access-required/
https://arstechnica.com/security/2017/03/smart-tv-hack-embeds-attack-code-into-broadcast-signal-no-access-required/
https://arstechnica.com/security/2017/03/smart-tv-hack-embeds-attack-code-into-broadcast-signal-no-access-required/
http://www.vanu.com/wp-content/uploads/vanu-anywave-2006-05.pdf
http://www.vanu.com/wp-content/uploads/vanu-anywave-2006-05.pdf
http://go.saas.hpe.com/l/28912/2015-07-21/32bhy3/28912/69168/IoT_Report.pdf
http://go.saas.hpe.com/l/28912/2015-07-21/32bhy3/28912/69168/IoT_Report.pdf
http://go.saas.hpe.com/l/28912/2015-07-21/32bhy3/28912/69168/IoT_Report.pdf
https://github.com/Nuand/bladeRF/wiki/Setting-up-Yate-and-YateBTS-with-the-bladeRF
https://github.com/Nuand/bladeRF/wiki/Setting-up-Yate-and-YateBTS-with-the-bladeRF

[17] Defense Industry Daily staff. Soldier Battle JTRS: The HMS Radio Set
SANR. June 2015. URL: http://www.defenseindustrydaily. com/
soldier-battle-jtrs-the-hms-radio-set-07536/

[18] The Privacy and Electronic Communications (EC Directive) Regula-
tions 2003. 2003 No.2426. http://www.legislation.gov.uk/uksi/2003/2426 /introduction/made.
United Kingdom Parliament. Sept. 2003.

11 Appendix

11.1 Email from Lime Microsystems

Hello Rory,

Thank you for your support on LimeSDR, appreciated.
Your order ID is noted, we will try our best to ship LimeSDR to you in January,
please bear with us though.

Have a peaceful Christmas.

Cheers,
Jimmy

Hello,

I am an undergraduate student at Coventry University studying Ethical Hacking in
my third year. I am also a backer of your limeSDR project and backed in the hope
i can use it for my dissertation project to create a universal wireless sniffing
platform.

I am writing to ask if there is any possibility that i may receive my parts before
or soon after the 30th of January since that is the point at which the project must
be started.

I believe I was a second flock backer. Order number 30465.

If there is anything that can be done that would be great.

Thank you so much for your time,
Rory Bolton

27

http://www.defenseindustrydaily.com/soldier-battle-jtrs-the-hms-radio-set-07536/
http://www.defenseindustrydaily.com/soldier-battle-jtrs-the-hms-radio-set-07536/

11.2 Emails to and from Supervisor

11.2.1 30/11/16

Project Supervisor

Daniel Goldsmith <aa9863@coventry.ac.uk>

) 6 15:34

Daniel Goldsmith; Sabina Begum <begums&3@coventryac.uk: Rory Bolton <bolionr3@ecoventryac.uk>: Toby Marshall <marsha88@coventry.ac.uk; +4 more ¥
Action [tems

Hiall,
I know | have spoken to some of you individually, but lets try to get one (or two) group meeting in so | can talk about the project.
Need some Idea of your availablity.

Can you let me know your:

Availably Fri 1-4

Will herd some cats and gettime set aside.

11.2.2 23/01/17

Project meeting

Daniel Goldsmith
14:03

Mo

Rory Bolton %

Required: Daniel Goldsmith; Rory Bolton ¥

U When: Fri 27/01/2017 10:00 - 11:00
Where:

+/ Accept ? Tentative X Dedline (© Propose new time

This invitation was updated after this message was sent. Open the update or open the item on the calendar.

28

11.2.3 02/02/17
@fﬁryfonﬁn .- 5y

Thanks for the feedback, making changes now

@ Daniel Goldsmith DRI

Itlooks fine to me,
Major points are SPAG

L1lsitpossible to detect 24GHz (What)
ettc.

1,4 Home users may also benefit.
15
Dont forget the Review / Recommend stages.

- Based on results of study, review detection on common 2.4Ghz Radios

Quite like the it review, hits the points.

Rory Bolton ® D Repyall v
hu 021020436
Dariel Goldsnith ¥

303COM Detailed Proje...
278

Download ~ Save to OneDrive - Coveniry University
This is by no means finished, and I'm no where near done but f you get the chance between when you read this and Friday to give some pointers i'd appreciate it.
Alsoifit could be done would you be available for meeting like we did last week (10-11 on friday) if necessary?

Thanks

11.2.4 09/03/17

SDR Hardware

@ Daniel Goldsmith DA™
Tha 50 2224

Teaching most of tomorrow, drop in to_eh from 10-12 and | will find time,

Get Outlook for Android

Rory Bolton 5 Replyall |v
The 2

Daniel Goldsmith ¥

I'm having problems with the HackRF again. To the point where i can geta 9 stronger signal out of a RTL-SDR dongle. Does the ni have any other SDR equipment? or will
have to try and source a down-converter for an RTL-SDR. | can meet up tomorrow at 10-11AM or any time past 1PM if you want to talk about it.

11.2.5 18/04/17

Presentation dates?

Daniel Goldsmith * 9 Repyall |v

Rory Botton ¥

Cool, see you then.

@ Rory Bolton <boltonr3@uni.coventryac.uk> SEOY
Wed 57041628

Cando

@Dame\ Goldsmith . B

Thursday, about 1?7

@Roryﬂol(on .- 5y
ToeTo/o4 14:44

I'm in uni today if you have the time/want to catch up on progress and sort a date for the presentation. | should be coming in every day this week

29

11.2.6 25/04/17

Problems 01w
Rory Bolton <boltonr3@uni.coventryac.uk> & 9 Replyal |v
Dariel Goldsmith ¥
Just on my way now, might be roughly 10 mins late

@ Rory Bolton <boltonr3@uni coventry.ac.uk> [

Just on my way now, migt e roughly 10

@Dameleo\dsmnn e 5y

[wensoms .
5

Download Save to OneDrive - Coventry Uriversity

Feedback (we can talk about this)

@ Rory Bolton <boltonr3@uni.coventry.ac.uk> SHe v
25704

13:00 sounds good. I see you there then. Il either be in the cisco lab or on the sofas I'm usually at if you're not already around.

@ Daniel Goldsmith .5
-

Yes Rory,

Shall we pencil in 13:00. Ifyou prefer another time let me know.
Regards.

Dan.

Rory Bolton <boltonr3@uni.coventryac.uk>)
5704, 1450

1l be going in tomorrow. Is there any chance i can have a chat with you in person about ths? Preferably some time after 12.

@ Daniel Goldsmith .5

Iheard about that myself today. Its so sad.

There are a few things that you can do:

1) Speak to Registry, if something s extenuating circumstances this is. You may be able to get an extension which will give you a couple of weeks to think about things,
before you have to hand in.

2)The University has a counselling service in the SU / Hub. If you want someone to talk to about t, then they can help.

Ifthere is anything else | can do let me know.

@ Rory Bolton)

1still want to finish my dissertation work but ive just been told of someones death earlier today so i might not be coming in to uni tomorrow or the day after. That s unless i
need to come in. Il come in for any comments on my dissertation work because i need them, butim still in that odd state of mind where i can't think quite straight.

If you could reply when you read this then thatd be great. really want to know anything you have to say.

30

11

.2.7 Presentation feedback

Presentation Feedback

Daniel Goldsmith

Rory Bolton ¥

*Overview
- Project scans for raffic on various frequencies

- Feeds into python script with arrary of frequencies and channels
- Curses CUI

- Deals with the input format and works ourd issues with the pipes.

*In Report

- Be sure to talk about the signal processing that you have done. And describe what this means for the project. How it affects the output.

Filtering the peaks
- Getting rid of out band data
- How do you deal with false positives. (Mention the Zigbee / Wifi issues, also channel for wif))

- Looking at the multiple blocks / repeated scanning and why you implemented this. As it should inclure accurary.
- How that signal processing worked, look for average values, and compare peak signal to this
- Looks like a great opportunity o get some Maths in the report.
- Talk about antenna choice and the difference it makes
- Wide band being too noisy, but does it have other advantages.

Sowe geta percentage certainty that the signals we are looking at are the ones identified.

Given issues with the SDR ou still have a very strong project. While you didnt
getthe fingerprint tasks complete, you are able to idenfy that devices are

within given wireless spectrum’s and channels. This means that the hard part of
the project has been done, and its the tweaks to the signal procsssing that are
required. Given that signal processing is an extremely specialised area, this
future work could be achieved, by collaborating with a signal processing expert,
to drive this forward.

31

5 Repiyal

11.3 Detailed Project Proposal Form

300/303COM Detailed project proposal

The objective of the detail project proposal is to help you refine your general
research question down to a well-focused and achievable piece of practical
research work.

The first section: “Defining your research project” focuses on your research
question and the plan for conducting your primary method. The second section:
“Abstract and Literature Review” is to help you identify current academic sources
of literature that are highly relevant to your project and to help you get a head-
start in producing your literature review.

Your detailed project proposal will be graded in the second semester - however,
it is highly recommended that you submit it by the end of the first semester
(04/01/2016) in order to obtain detailed supervisor feedback on your project.

There is no suggested word length for the detailed proposal - although 2000-
2500 words would be in order.

The Detailed Project Proposal is worth 20% of the project mark.

32

300/303COM Detailed Project Proposal

First Name:
Rory
Last Name:
Bolton
Student Number:
5497032
Supervisor:
Dr. Daniel Goldsmith

SECTION ONE: DEFINING YOUR RESEARCH PROJECT

1.1 Detailed research question

Help: Your detailed research question is the statement of a problem within the computing domain
which you will address in your project. Refining the research question involves narrowing down an
initial question until it is answerable using a primary research method(s) that you will conduct
during the time of your project. The refined research question must not be so general that it is
answerable with a yes or no answer. It must not be so broad that you would be unable to achieve a
solution during your project. The key to this is BEING SPECIFIC: Narrow down the method or
technology you will use, narrow down the group that the question refers to (localize a general
question) If the project is still ‘too big’, can you think of a way to work on a part of the problem?
Avoid using words that cannot be measured, by you, without a huge research budget e.g. 'effects
on society', 'effects on business'. Example: The initial question "Does cloud computing effect
business" needs narrowing down (for a start the answer is yes) What is meant by cloud computing?
Or 'effect'? Or 'business', in this question? Refining this first question will involve narrowing it down
to something you, personally, can measure. A refined version of this question might be: "Does
implementing a cloud based voting system improve the speed of decision making in a small
company in Coventry?" This refined question is implementable: You can now identify a small
company to work with, document their current decision making processes, implement a cloud
based voting system, compare decision making speeds over a limited time period (say 1 month)
and evaluate your findings. A small piece of genuinely new knowledge is produced.

SDN has a benefit over a hardware locked device in that it is massively more configurable and can
be tailoured to interact an enormous number of different systems in a way that might not be easily
achievable with a conventional system. This is far better when compared to a traditional solution in
which the hardware is usually limited to one or a few specific protocols across a very small
frequency range.

This project aims to examine “How viable is Software Defied Radio as a wireless sniffing platform?”
This can be answered using the following.
- Isit possible to detect a device operating at 2.4 Ghz using SDR hardware?

- Can devices / protocols be “fingerprinted” by their using either a protocol specific method or
through inconsistencies during transmission.

- Can the reconfigurable nature of SDN be used to target multiple wireless platforms / protocols
using a single hardware unit.

1.2 Keywords

Help: Include up to 6 keywords separated by a semi-colon; what keywords are appropriate to
describe your project in an online database like Google Scholar? Keywords should include the
general research area and the specific technologies you will be working with. Example. A project
that proposes a novel way of visualizing large amounts of twitter feed data may have the

33

keywords: Data visualization; twitter; hashtags; database design; graphics libraries. For further
help, take a look at the ACM keywords list
http://www.computer.org/portal/web/publications/acmtaxonomy

Software Defined Rad

ng, Security, Penetration Testing,

1.3 Project title

Help: The project title is a statement based on your detailed research question. For example, the
research question 'to what extent does a mobile application reduce the number of errors made in
class registers at Coventry University in comparison to current paper based registers' may be
stated in the project title: "A Wi-Fi driven mobile application for large group registers using
iBeacons".

Viability of Software Defined Radio as a multi-protocol wireless sniffing platform.

1.4 Client, Audience and Motivation:

Help: Why is this project important? To whom is this project important? A research project must
address a research question that generates a small piece of new knowledge. This new knowledge
must be important to a named group or to a specific client (such as a company, an academic
audience, policy makers, people with disabilities) to make it worthwhile carrying out. This is the
motivation for your project. In this section you should address who will benefit from your findings
and how they will benefit. Example: If you intend to demonstrate that a mobile application that
automates class registers at Coventry University will be more efficient than paper based registers -
the group who would be interested in knowing/applying these findings would be both academic and
administrative staff at Coventry University and they would benefit by time saved and a reduction in
their administrative workload. If you are making a business case for an organization explain how
the organization will benefit from your findings.

The project would benefit the security professional community by providing a framework that can
be used to build a universal sniffing platform. The solution could be far less costly than any other
existing solution while being open to modifications and adding additional functionality. The
reduction of cost could also eventually make the solution viable as a device monitoring platform
within organizations that have a BYOD policy and also for use within consumers’ homes inside
smart home hubs where multiple wireless protocols are being utilized at once and security may
have been a side objective by the designers.

1.5 Primary Research Plan

Help: This is the plan as to how you will go about answering your detailed research question - It
must include a primary research method (an extended literature review is not an acceptable
primary method). Think and plan logically. Primary methods may include experiments, applications
or software demonstrators, process models, surveys, analysis of generated data ...

Example: In the class register example above "to what extent does a mobile application reduce the
number of errors made in class registers at Coventry University in comparison to current paper
based registers" - the research plan may involve: 1) Collecting and analyzing paper based registers
in a given class on five occasions. 2) Identifying the error rate average on these occasions 3)
Designing and implementing a mobile application that automatically records attendance in class.
4) Deploying the application in the class on five occasions. 5) Identifying the error rate average of
the mobile application on these occasions. 6) Comparison of data and summary of findings.

The primary research method is iterative design of a proof of concept SDR sniffing platform that is

34

capable of sniffing traffic from a small, purpose built, network of several ZigBee radios using the
ZigBee protocol and comparing it against a solution using a hardware defined ZigBee radio.

The initial research would be a literature review to establish any research that has already been
done in the field followed by paper based design of a generic sniffing system.

The next step is an iterative design process where an implementation is created based on the loT
devices available at the time, a testbed of devices is built using available equipment. The test
devices are then analyzed using a hardware defined radio alongside a software defined radio to
help provide a baseline for effective comparison. This process will loop until an effective solution is
created and good data is obtained.
Items compared would be:

* Sensitivity

e Cost

¢ Packets lost

e Error rate

s Ease of use

The final step is reviewing and analyzing the data obtained and drawing appropriate conclusions
from it. Then making recommendations for use and also further research.

This is the end of section one.

35

SECTION TWO: ABSTRACT AND LITERATURE REVIEW (1500 WORDS
SUGGESTED)

2.1 Abstract

Help: An abstract is a short summary of a research project that enables other researchers to know
if your report or research paper is relevant to them without reading the whole report. It is usually
written retrospectively so that it can include findings and results. It is fully expected that you will
rewrite your abstract when you come to write your final paper. For now, you should write an
abstract of about 250 words that define the project described in section one. Before writing your
abstract you MUST read some abstracts from conference or journal papers on Google Scholar or
from portal.acm.org (to understand their style) and then provide your own abstract that outlines
what your question is and what you 'did' to answer it.

Software defined radio implements the demodulation and decoding methods in software instead of
hardware as is usually used. This reprogrammable design could prove immensely valuable to the
community as it adds support for any protocol within its frequency range. With no hardware
maodifications required to add more protocols; the use of software defined radio could enable rapid
security analysis at a lower price point and in a less complex package than using a different device
and different software for each available technology.

To achieve this goal a modular software design was created that enables future addition of
protocols and other functionality. This paper presents a cost effective solution to multi-protocol
wireless reconnaissance for use during a penetration test or general company digital security
assessment. The main purpose of the tool is to condense the many devices required to carry out a
deep wireless penetration test in the loT age into a single tool.

2.2 Initial/Mini Literature Review (500 words - 750 words)

Help: A literature review is a select analysis of current existing research which is relevant to your
topic, showing how it relates to your investigation. It explains and justifies how your investigation
may help answer some of the questions or gaps in this area of research. A literature review is not a
straightforward summary of everything you have read on the topic and it is not a chronological
description of what was discovered in your field. Use your literature review to:

« compare and contrast different authors' views on an issue

« criticize aspects of methodology, note areas in which authors are in disagreement
« highlight exemplary studies

« highlight gaps in research

« show how your study relates to previous studies

The world is filling with new Internet of Things devices at an alarming rate, there
is predicted to be approximately 50 Billion Devices by 2020 (Evans, 2011) and
many of these devices will be using various different wireless protocols on many
different frequency bands. This makes wireless security analysis increasingly
difficult and costly to carry out as the number of devices increases. It also means
that any tools that are created will require constant revisions to support the
latest revision of a protocol. SDR however is perfectly suited for use in this
situation. SDR technology uses a “radio in which some or all of the physical layer
functions are software defined” (Shearman and Kimery, 2012) meaning that
much of the parts can simply be re-written in software instead of replacing
hardware and dynamically reconfigured in real time if necessary.

Researchers have already used SDR to intercept Bluetooth hop synchronization
packets, this was shown to be extremely easy thanks in part to the low level
access to the hardware that SDR technology requires to function. They state that

36

it is not only possible to synchronize with the channel hopping carried out
between two Bluetooth devices with a >95% probability of success (Tabassam
and Heiss, 2008) but that SDR hardware is ideal for the task. However, another
paper disagrees and states that an SDR based approach is not ideal when a
system uses channel hopping to secure its communications as it requires low
response times, which current SDR hardware simply doesn’t possess (Picod,
Lebrun, and Demay, 2014).

SDR has been used in a penetration testing context to intercept and inject
packets between devices operating on the Z-Wave protocol using a slightly
modified version of the Scapy framework and two USRP B210 SDR boards (Picod,
Lebrun, and Demay, 2014).

2.3 Bibliography (key texts for your literature review)

Help: Please provide references, in correct Harvard style, for at least three key texts that have
informed your literature review. If you are implementing an application, select texts which
demonstrate how other researchers have tackled similar implementations? The references should
be recent and sufficiently technical or academic. Your markers will be looking for you to identify
technical reports, conference papers, journal papers, and recent text books. Avoid Wikipedia
entries, newspaper reports that do not cite sources, and general or introductory texts.

Evans, D. (2011) ‘Cisco Internet business solutions group (IBSG) the Internet of things how the next
evolution of the Internet is changing everything’, Available at:
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/loT_IBSG_0411FINAL.pdf (Accessed: 2
February 2017).

Picod, J.-M., Lebrun, A. and Demay, J.-C. (2014) ‘Bringing software defined radio to the penetration
testing community’, Black Hat 2014. Available at: https://www.blackhat.com/docs/us-
14/materials/us-14-Picod-Bringing-Software-Defined-Radio-To-The-Penetration-Testing-
Community.pdf (Accessed: 2 February 2017).

Shearman, S. and Kimery, J. (2012) ‘Software Defined Radio Prototyping Platforms Enable a Flexible
Approach to Design [Application Notes]’, IEEE Microwave Magazine, 13(5), pp. 76-80.

Tabassam, A.A. and Heiss, S. (2008) ‘Bluetooth Clock Recovery and Hop Sequence Synchronization
Using Software Defined Radios’, Region 5 Conference, 2008 IEEE. |EEE. Available at:
http://ieeexplore.ieee.org/document/4562737/ (Accessed: 2 February 2017).

This is the end of section two.

37

12 Certificate of Ethical Approval

2,

\J)g;

Gaventry

Certificate of Ethical Approval
Applicant:

Rory Bolton

Project Title:

Viability of Software Defined Radio as a multi-protocol wireless sniffing platform.

This is to cerlify that the above named applicant has completed the Coventry
University Ethical Approval process and their project has been confirmed and
approved as Low Risk

Date of approval
27 February 2017

Project Reference Number:

P49201

38

	Introduction
	Literature Review
	Method
	Software Design Methodology
	Implementation
	Systems Design
	SDR Design Factors

	Data Collection Algorithm
	Signal Processing
	Data Display

	Evaluation/Results
	Discussion
	Reflection on Project Management
	Social, Legal and Ethical Issues
	Feedback From Presentation
	Conclusion
	References
	Appendix
	Email from Lime Microsystems
	Emails to and from Supervisor
	30/11/16
	23/01/17
	02/02/17
	09/03/17
	18/04/17
	25/04/17
	Presentation feedback

	Detailed Project Proposal Form

	Certificate of Ethical Approval

