
Mustache templates in Clojure
Description Implementing Mustache templates algorithm in Clojure.
Period Summer 2016

Languages & Libs Clojure
Tags Blog, GitHub, JVM
GitHub nikonyrh/mustache-clj

Mustache is a well-known template system with implementations in most popular languages. At its core
it is logicless same templates can be directly used on other projects. For example I am planning to port
this blgo engine from PHP to Clojure but I only need to replace LaTeX parsing and HTML generation
parts, I should be able to use existing Mustache templates without any modifications. To learn Clojure
programming I decided not to use the recommended library but instead implement my own.

I started by looking at existing implementations, most notably Clostache’s parser.clj. It is about 380

lines of code, whereas my reference implementation is 115 lines of code. Notably Clostache is heavily
type-annotated, uses regular expressions and also implements lambdas. I opted for not having type
annotations, not implementing much logic in regexes and not implementing lambdas :)

It was a very exciting moment to finally bring all the pieces together, as the render function is imple-
mented as a single pipeline through lexer and parser steps: (-� template lexer (resolve-partials

partials) parser (merge-ast-and-data data) flatten (map escaper) (apply str)). lexer takes
an input string as its argument, uses str-replace regexes to normalize a few alternative syntaxes, splits it
into tokens and adds metadata to them. resolve-partials first lexes partials (as they are normal strings)
and then iteratively replaces partial references by the referenced values. As partials can refer to other
partials this process needs to be repeated until everything has been resolved.

parser takes in a sequence of tokens and first adds “path” information to them as Mustache supports
nested structures called “Sections”. Path is described as a list of names of section-starting nodes between
the node and the root. On a second pass tokens are split into partitions based on their path at the current
level, essentially building a local view of the abstract syntax tree (AST). Once all that recursion has been
done we are left with the complete AST.

The final interesting piece to the puzzle is merge-ast-and-data which, as the name suggests, merges AST
with the input data. If it encounters a “reference” type token then it is replaced by the corresponding value
in input data, on other cases we are dealing with an AST node. If it has a path defined then corresponding
data-sequence is loaded from the input and iterated over, recursively calling itself with subsequent AST
nodes. If the node doesn’t have a path then simply AST nodes are recursively processed. This generates a
new AST which is similar to the original but new nodes have been created based on elements of the data.

At this point the tree structure is not needed anymore, thus it is flattened via flatten. The only remaining
task is to walk over them once more, and checking if they represent a “raw” textual value or if it should be
escaped. Escaping is based on walking over string’s characters one at a time and checking if their escaped
counterpart is found from a hash-map. The final step is to concatenate these strings by (apply str).

This implementation passes all relevat unit tests of Clostache, only lambdas and file-based functions are
not implemented at this point. Next steps is to make this “importable” as a library (still thinking whether
to put it on Clojars or not). Then I can proceed to implement a LATEXparser and integrate it with this
and my hyphenator-clj projects and I’m one step closer to ditching my PHP-based blog engine. But it is
going to be quite a lot of effort as the PHP project has cumulated quite many features and hacks, such as
determining file’s representative modified date from git blame’s output.

https://github.com/nikonyrh/mustache-clj
https://mustache.github.io/
https://github.com/fhd/clostache
https://github.com/fhd/clostache/blob/master/src/clostache/parser.clj
https://github.com/nikonyrh/mustache-clj/blob/master/src/mustache_clj/core.clj
https://github.com/fhd/clostache/blob/master/test/clostache/test_parser.clj
https://clojars.org/
https://nikonyrh.github.io/cljhyphenation.html

