
Content Overview Assessment Overview

• The characteristics of
contemporary processors,
input, output and storage
devices

• Software and software
development

• Exchanging data

•

•

Data types, data structures and
algorithms
Legal, moral, cultural and ethical
issues

• Elements of computational
thinking

• Problem solving and programming
• Algorithms to solve problems and

standard algorithms

The learner will choose a computing
problem to work through according to

the guidance in the specification.

• Analysis of the problem
• Design of the solution
• Developing the solution
• Evaluation

Computer
systems

(01)

140 marks
2 hours and
30 minutes

written paper
(no calculators
allowed)

40%

of total

A level

Algorithms and
programming

(02*)
140 marks

2 hours and
30 minutes

written paper
(no calculators
allowed)

40%

of total

A level

Programming project
03* – Repository

or
04* – Postal

or
80 – Carry forward
(2018 onwards)*

70 marks
Non-exam
assessment

20%

of total

A level

* Indicates synoptic assessment

A Level Computer Science OCR

This component will introduce learners to the
internal workings of the Central Processing Unit
(CPU), the exchange of data and will also look at
software development, data types and legal
and ethical issues. It is expected that learners will
draw on this underpinning content when studying
computational thinking, developing
programming techniques and

devising their own programming approach in the
Programming project component (03 or 04).

Learners will be expected to apply the criteria
below in different contexts including current and
future uses of the technologies.

1.1 The characteristics of contemporary processors, input, output and storage devices

Components of a computer and their uses

1.1.1 Structure and function of the processor (a) The Arithmetic and Logic Unit; ALU, Control Unit
and Registers (Program Counter; PC,
Accumulator; ACC, Memory Address Register;
MAR, Memory Data Register; MDR, Current
Instruction Register; CIR). Buses: data, address
and control: how this relates to assembly
language programs.

(b) The Fetch-Decode-Execute Cycle; including its
effects on registers.

(c) The factors affecting the performance of the
CPU: clock speed, number of cores, cache.

(d) The use of pipelining in a processor to improve
efficiency.

(e) Von Neumann, Harvard and contemporary
processor architecture.

1.1.2 Types of processor (a) The differences between and uses of CISC and
RISC processors.

(b) GPUs and their uses (including those not
related to graphics).

(c) Multicore and Parallel systems.

1.1.3 Input, output and storage (a) How different input, output and storage devices
can be applied to the solution of different
problems.

(b) The uses of magnetic, flash and optical storage
devices.

(c) RAM and ROM.
(d) Virtual storage.

1.2 Software and software development

Types of software and the different methodologies used to develop software

1.2.1 Systems Software (a) The need for, function and purpose of
operating systems.

(b) Memory Management (paging, segmentation
and virtual memory).

(c) Interrupts, the role of interrupts and Interrupt
Service Routines (ISR), role within the Fetch-
Decode-Execute Cycle.

(d) Scheduling: round robin, first come first served,
multi-level feedback queues, shortest job first
and shortest remaining time.

(e) Distributed, embedded, multi-tasking, multi-
user and Real Time operating systems.

(f) BIOS.
(g) Device drivers.
(h) Virtual machines, any instance where software

is used to take on the function of a machine,
including executing intermediate code or
running an operating system within another.

1.2.2 Applications Generation (a) The nature of applications, justifying suitable
applications for a specific purpose.

(b) Utilities.
(c) Open source vs closed source.
(d) Translators:Interpreters, compilers and

assemblers.
(e) Stages of compilation (lexical analysis, syntax

analysis, code generation and optimisation).
(f) Linkers and loaders and use of libraries.

1.2.3 Software Development (a) Understand the waterfall lifecycle, agile
methodologies, extreme programming, the
spiral model and rapid application
development.

(b) The relative merits and drawbacks of different
methodologies and when they might be used.

(c) Writing and following algorithms.
1.2.4 Types of Programming Language (a) Need for and characteristics of a variety of

programming paradigms.
(b) Procedural languages.
(c) Assembly language (including following and

writing simple programs with the Little Man
Computer instruction set). See appendix 5d.

(d) Modes of addressing memory (immediate,
direct, indirect and indexed).

(e) Object-oriented languages (see appendix 5d
for pseudocode style) with an understanding of
classes, objects, methods, attributes,
inheritance, encapsulation and polymorphism.

1.3 Exchanging data

How data is exchanged between different systems

1.3.1 Compression, Encryption and
Hashing

(a) Lossy vs Lossless compression.
(b) Run length encoding and dictionary coding

for lossless compression.
(c) Symmetric and asymmetric encryption.
(d) Different uses of hashing.

1.3.2
Databases

(a) Relational database, flat file, primary key,
foreign key, secondary key, entity relationship
modelling, normalisation and indexing. See
appendix 5f.

(b) Methods of capturing, selecting, managing
and exchanging data.

(c) Normalisation to 3NF.
(d) SQL – Interpret and modify. See appendix 5d.
(e) Referential integrity.
(f) Transaction processing, ACID (Atomicity,

Consistency, Isolation, Durability), record
locking and redundancy.

1.3.3 Networks (a) Characteristics of networks and the importance
of protocols and standards.

(b) The internet structure:
• The TCP/IP Stack.
• DNS
• Protocol layering.
• LANs and WANs.
• Packet and circuit switching.

(c) Network security and threats, use of firewalls,
proxies and encryption.

(d) Network hardware.
(e) Client-server and peer to peer.

1.3.4 Web
Technologies

(a) HTML, CSS and JavaScript. See appendix 5d.
(b) Search engine indexing.
(c) PageRank algorithm.
(d) Server and client side processing.

1.4 Data types, data structures and algorithms

How data is represented and stored within different structures. Different algorithms that can be
applied to these structures

1.4.1 Data Types (a)Primitive data types, integer, real/floating point,
character, string and Boolean.

(b)Represent positive integers in binary.
(c) Use of sign and magnitude and two’s

complement to represent negative numbers in
binary.

(d)Addition and subtraction of binary integers.
(e) Represent positive integers in hexadecimal.
(f) Convert positive integers between binary

hexadecimal and denary.
(g)Representation and normalisation of floating

point numbers in binary.
(h) Floating point arithmetic, positive and negative

numbers, addition and subtraction.
(i) Bitwise manipulation and masks: shifts,

combining with AND, OR, and XOR.
(j) How character sets (ASCII and UNICODE) are

used to represent text.

1.4.2 Data Structures (a) Arrays (of up to 3 dimensions), records, lists, tuples.
(b) The following structures to store data: linked-list, graph

(directed and undirected), stack, queue, tree, binary search
tree, hash table.

(c) How to create, traverse, add data to and remove data from
the data structures mentioned above.
(NB this can be either using arrays and procedural
programming or an object-oriented approach).

1.4.3 Boolean Algebra (a) Define problems using Boolean logic. See
appendix 5d.

(b) Manipulate Boolean expressions, including the
use of Karnaugh maps to simplify Boolean
expressions.

(c) Use the following rules to derive or simplify
statements in Boolean algebra: De Morgan’s
Laws, distribution, association, commutation,
double negation.

(d) Using logic gate diagrams and truth tables.
See appendix 5d.

(e) The logic associated with D type flip flops, half
and full adders.

1.5 Legal, moral, cultural and ethical issues

The individual moral, social, ethical and cultural opportunities and risks of digital technology.
Legislation surrounding the use of computers and ethical issues that can or may in the future arise
from the use of computers

1.5.1 Computing related legislation (a) The Data Protection Act 1998.
(b) The Computer Misuse Act 1990.
(c) The Copyright Design and Patents Act 1988.
(d) The Regulation of Investigatory Powers Act 2000.

1.5.2 Moral and ethical Issues The individual moral, social, ethical and cultural
opportunities and risks of digital technology:

• Computers in the workforce.
• Automated decision making.
• Artificial intelligence.
• Environmental effects.
• Censorship and the Internet.
• Monitor behaviour.
• Analyse personal information.
• Piracy and offensive communications.
• Layout, colour paradigms and character

sets.

Content of Algorithms and programming (Component 02)

This component will incorporate and build on the
knowledge and understanding gained in the
Computer systems component (01).

In addition, learners should:

• understand what is meant by computational
thinking

• understand the benefits of applying
computational thinking to solving a wide
variety of problems

• understand the principles of solving problems
by computational methods

• be able to use algorithms to describe
problems

• be able to analyse a problem by identifying
its component parts.

2.1 Elements of computational thinking

Understand what is meant by computational thinking

2.1.1 Thinking abstractly (a) The nature of abstraction.
(b) The need for abstraction.
(c) The differences between an abstraction and reality.
(d) Devise an abstract model for a variety of situations.

2.1.2 Thinking ahead (a) Identify the inputs and outputs for a given situation.
(b) Determine the preconditions for devising a solution to

a problem.
(c) The nature, benefits and drawbacks of caching.
(d) The need for reusable program components.

2.1.3 Thinking procedurally (a) Identify the components of a problem.
(b) Identify the components of a solution to a problem.
(c) Determine the order of the steps needed to solve a

problem.
(d) Identify sub-procedures necessary to solve a

problem.

2.1.4 Thinking logically (a) Identify the points in a solution where a decision
has to be taken.

(b) Determine the logical conditions that affect the
outcome of a decision.

(c) Determine how decisions affect flow through a
program.

2.1.5 Thinking concurrently (a) Determine the parts of a problem that can be
tackled at the same time.

(b) Outline the benefits and trade offs that might result
from concurrent processing in a particular situation.

2.2 Problem solving and programming

How computers can be used to solve problems and programs can be written to solve them
(Learners will benefit from being able to program in a procedure/imperative language and object
oriented language.)

2.2.1 Programming techniques (a) Programming constructs: sequence, iteration,
branching.

(b) Recursion, how it can be used and compares
to an iterative approach.

(c) Global and local variables.
(d) Modularity, functions and procedures,

parameter passing by value and by reference.
(e) Use of an IDE to develop/debug a program.
(f) Use of object oriented techniques.

2.2.2 Computational methods (a) Features that make a problem
solvable by computational methods.

(b) Problem recognition.
(c) Problem decomposition.
(d) Use of divide and conquer.
(e) Use of abstraction.
(f) Learners should apply their knowledge

of:
• backtracking
• data mining
• heuristics
• performance modelling
• pipelining
• visualisation to solve problems.

2.3 Algorithms

The use of algorithms to describe problems and standard algorithms

2.3.1 Algorithms (a) Analysis and design of algorithms for a given
situation.

(b) The suitability of different algorithms for a given
task and data set, in terms of execution time
and space.

(c) Measures and methods to determine the
efficiency of different algorithms, Big O
notation (constant, linear, polynomial,
exponential and logarithmic complexity).

(d) Comparison of the complexity of algorithms.
(e) Algorithms for the main data structures, (stacks,

queues, trees, linked lists, depth-first (post-order)
and breadth-first traversal of trees).

(f) Standard algorithms (bubble sort, insertion sort,
merge sort, quick sort, Dijkstra’s shortest path
algorithm, A* algorithm, binary search and
linear search).

String Handling

To get the length of a string:
stringname.length

To get a substring:

stringname.subString(startingPosition, numberOfCharacters)
NB The string will start with the 0th character.

Example

someText=”Computer Science”

print(someText.length)
print(someText.substring(3,3))

Will display

16
put

Subroutines

function triple(number)
return number*3

endfunction

Called from main program
y=triple(7)

procedure greeting(name)
	 print(“hello”+name)
endprocedure

Called from main program

greeting(“Hamish”)

Unless stated values passed to subroutines can be assumed to be passed by value.
If this is relevant to the question byVal and byRef will be used. In the case below x is passed by value and y is
passed by reference.

procedure foobar(x:byVal, y:byRef)
	 …
	 …
endprocedure

Arrays

Arrays will be 0 based and declared with the keyword array.

array names[5]
names[0]=”Ahmad”
names[1]=”Ben”
names[2]=”Catherine”
names[3]=”Dana”
names[4]=”Elijah”

print(names[3])

Example of 2D array:
Array board[8,8]
board[0,0]=”rook”

Reading to and Writing from Files

To open a file to read from openRead is used and readLine to return a line of text from the file.

The following program makes x the first line of sample.txt

myFile = openRead(“sample.txt”)
x = myFile.readLine()
myFile.close()

endOfFile() is used to determine the end of the file. The following program will print out the contents of
sample.txt

myFile = openRead(“sample.txt”)
while NOT myFile.endOfFile()

print(myFile.readLine())
endwhile
myFile.close()

To open a file to write to openWrite is used and writeLine to add a line of text to the file. In the program below
hello world is made the contents of sample.txt (any previous contents are overwritten).

myFile = openWrite(“sample.txt”)
myFile.writeLine(“Hello World”)
myFile.close()

Comments

Comments are denoted by //

print(“Hello World”) //This is a comment

Object-Oriented

Object oriented code will match the pseudocode listed above with the following extensions:

Methods and Attributes:

Methods and attributes can be assumed to be public unless otherwise stated. Where the access level is relevant to
the question it will always be explicit in the code denoted by the keywords.

public and private.

private attempts = 3

public procedure setAttempts(number)
	 attempts=number
endprocedure

public function getAttempts()
return attempts

endfunction

Methods will always be instance methods, learners aren’t expected to be aware of static methods. They will be
called using object.method so

player.setAttempts(5)

print(player.getAttempts())

Constructors and Inheritance
Inheritance is denoted by the inherits keyword, superclass methods will be called with the keyword super.
i.e. super.methodName(parameters) in the case of the constructor this would be super.new()
Constructors will be procedures with the name new.

class Pet

private name
	 public procedure new(givenName)

name=givenName

	 endprocedure

endclass

class Dog inherits Pet

private breed

	 public procedure new(givenName, givenBreed)
super.new(givenName)
breed=givenBreed

	 endprocedure

endclass

Constructors and Inheritance
Constructors will be procedures with the name new.

class Pet

 private name
 public procedure new(givenName)

name=givenName

 endprocedure

endclass

Inheritance is denoted by the inherits keyword, superclass methods will be called with the keyword super.
i.e. super.methodName(parameters) in the case of the constructor this would be super.new()

class Dog inherits Pet

 private breed

 public procedure new(givenName, givenBreed)
super.new(givenName)
breed=givenBreed

 endprocedure

endclass

To create an instance of an object the following format is used

objectName = new className(parameters)

e.g.

myDog = new Dog(“Fido”, “Scottish Terrier”)

HTML

Learners are expected to have an awareness of the following tags. Any other tags used will be introduced in the
question.

<html>
<link> to link to a CSS file
<head>

<title>

<body>

<h1> <h2> <h3>

 including the src, alt, height and width attributes.

<a> including the href attribute.

<div>

<form>

<input> where the input is a textbox (i.e. has the attribute type=”text” and another attribute name to
identify it) or a submit button (i.e. has the attribute type=”submit”)

<p>

<script>

Any other elements used will be explained in the question.

CSS

Learners are expected to be able to use CSS directly inside elements using the style attribute

 <h1 style=”color:blue;”>

and external style sheets. In the style sheets they should be able to use CSS to define the styling of elements:

h1{
	 color:blue;
}

classes

.infoBox{
background-color: green;

}

and Identifiers

#menu{
background-color: #A2441B;

}

They are expected to be familiar with the following properties.

background-color
border-color
border-style
border-width
color with named and hex colours
font-family
font-size
height
width

Any other properties used will be explained in the question.

JavaScript

Learners are expected to be able to follow and write basic JavaScript code. It is hoped they will get practical
experience of JavaScript in their study of the course. They will not be expected to commit exact details of syntax
to memory. Questions in the exam will not penalise learners for minor inaccuracies in syntax. Learners will be
expected to be familiar with the JavaScript equivalents of the structures listed in the pseudocode section (with
the exception of input and output (see below). They will not be expected to use JavaScript for Object Oriented
programming or file handling. Questions will not be asked in JavaScript where something is passed to a subroutine
by value or reference is relevant.

Input

Input will be taken in by reading values from a form. NB learners will not be expected to memorise the method for
doing this as focus will be on what they do with that input once it is received.

Output

By changing the contents of an HTML element
chosenElement = document.getElementById(“example”);
chosenElement.innerHTML = “Hello World”;

By writing directly to the document
document.write(“Hello World”);

By using an alert box
alert(“Hello World”);

Any other JavaScript used will be explained in the question.

Little Man Computer Instruction Set

In questions mnemonics will always be given according to the left hand column below. Different implementations
of LMC have slight variations in mnemonics used and to take this into account the alternative mnemonics in the
right hand column will be accepted in learners’ answers.

Mnemonic Instruction Alternative mnemonics
accepted

ADD Add
SUB Subtract
STA Store STO

LDA Load LOAD

BRA Branch always BR

BRZ Branch if zero BZ

BRP Branch if positive BP

INP Input IN, INPUT

OUT Output
HLT End program COB, END

DAT Data location

Structured Query Language (SQL)

Learners will be expected to be familiar with the structures below. Should any other aspects of SQL be used they
will be introduced and explained in the question.

SELECT (including nested SELECTs)

FROM

WHERE

LIKE

AND

OR

DELETE

INSERT

DROP

JOIN (Which is equivalent to INNER JOIN, there is no expectation to know about outer, left and right joins)

WILDCARDS (Learners should be familiar in the use of ‘*’ and ‘%’ as a wildcard to facilitate searching and
matching where appropriate)

Boolean Algebra

When Boolean algebra is used in questions the notation described below will be used. Other forms of notation
exist and below are also a list of accepted notation we will accept from learners.

Conjunction

Notation used:
	 e.g. A  B

A B A  B
T T T
T F F
F T F
F F F

Alternatives accepted:

AND �e.g. A AND B
e.g. A.B

Disjunction

Notation used:
	 e.g. A  B

A B A  B
T T T
T F T
F T T
F F F

Alternatives accepted:

OR	 e.g. A OR B
+ e.g. A+B

Negation

Notation used:
¬ e.g. ¬A

A ¬A
T F
F T

Alternatives Accepted:
bar	 e.g. A
~	 e.g. ~A
NOT	 e.g. NOT A

Exclusive Disjunction

Notation used:
	 e.g. AB

A B AB
T T F
T F T
F T T
F F F

Alternatives accepted:

XOR	 e.g. A XOR B
 e.g. A B

Equivalence / Iff
Notation used:
	 e.g. (AB)  ¬(¬A¬B)

Alternatives accepted:
↔

5f.	 Entity relationship diagrams

The following symbols are used for entities and their relationships.

Entity

One-To-One relationship

Many-To-Many relationship

One-To-Many relationship

	H446_A_Level_Computer_Science_specification_v2.3.pdf
	Introducing…
A Level Computer Science (from September 2015)
	Teaching and learning resources
	Professional development
	1	Why choose an OCR A Level in Computer Science?

	1a.	Why choose an OCR qualification?
	1b.	Why choose an OCR A Level in Computer Science?
	1c.	What are the key features of this specification?
	1d.	How do I find out more information?
	2	The specification overview

	2a.	Overview of A Level in Computer Science (H446)
	2b.	Content of A Level in Computer Science (H446)
	2c.	Content of Computer systems (Component 01)
	2c.	Content of Algorithms and programming (Component 02)
	2c.	Content of non exam assessment Programming project (Component 03 or 04)
	2d.	Prior learning and progression
	3	Assessment of OCR A Level in Computer Science

	3a.	Forms of assessment
	3b.	Assessment objectives (AO)
	3c.	Assessment availability
	3d.	Retaking the qualification
	3e.	Assessment of extended responses
	3f.	Non exam assessment
	3g.	Synoptic assessment
	3h.	Calculating qualification results
	4	Admin: what you need to know

	4a.	Pre-assessment
	4b.	Accessibility and special consideration
	4c.	External assessment arrangements
	4d.	Non exam assessment
	4e.	Results and certificates
	4f.	Post-results services
	4g.	Malpractice
	5	Appendices

	5a. 	Overlap with other qualifications
	5b.	Avoidance of bias
	5c.	Mathematical skills
	5d.	Languages and Boolean logic guide for use in external assessments
	5e.	Acceptable programming languages for the Programming project (03)
	5f.	Entity relationship diagrams
	Summary of updates

