
LIBINTEGRA: A SYSTEM FOR SOFTWARE-INDEPENDENT
MULTIMEDIA MODULE DESCRIPTION AND STORAGE

Jamie Bullock Henrik Frisk

UCE Birmingham
Conservatoire

Music Technology

Lund University
Malmö Academy of Music

Composition and
Performance

ABSTRACT

In this paper we describe a means of storing information
about audio and message processing modules, which is
not software specific. This information includes a module
description, module instance data, and module implemen-
tation data. A novel XML file format and database schema
are proposed, and we show how a newly developed library
(libIntegra) can be used as a link between persistent stor-
age on a networked server, and an existing software en-
vironment for audio. The library provides methods for
instantiating and connecting modules in a given piece of
software, and addressing them using Open Sound Control
(OSC) messaging.

1. THE INTEGRA PROJECT

libIntegra is part of the Integra project, a 3-year project led
by UCE Birmingham Conservatoire in the UK and part
financed by Culture 2000 1 . The Integra library is being
developed as a foundation for the software development
aspect of the project.

2. INTEGRA MODULES

The basis of the Integra library is the concept of the Inte-
gra module. Integra modules encapsulate a specific piece
of message or signal processing functionality. A module
could perform a simple task like a numeric addition, or a
complex task like emulating a specific synthesiser. In this
section, we will outline how Integra modules and module
collections are constructed.

2.1. Module construction

The minimum requirement for an Integra module is that
it must have an interface definition. In addition, it may
also have an implementation and module instance data.
Of these, only the implementation is software specific.

1 http://www.integralive.org

Field Value
Name Oscillator
Parent Module
Attributes freq, phase
Attribute Unit Codes 1, 2
Attribute Minima 0, 0
Attribute Maxima inf, 6.2831853071795862
Attribute Defaults 440, 0

Table 1. Integra Oscillator interface definition

2.1.1. Module definition

An Integra module definition is data that defines what at-
tributes a module has, and what the characteristics of those
attributes are. An Integra attribute is a symbolic name
with which a value can be associated. The module defini-
tion does not store the actual values of attributes, instead
it stores data about the attributes such as their names, de-
scriptions, supported data types, maxima and minima, and
default values. Typical module definition data is shown in
Table 1.

The parent field is used to show an inheritance relation.
All Integra module definitions could be thought of as class
definitions, the members of which are all abstract (lack
implementation), or interface definitions. The interface of
a given class can inherit the interface of any other class,
and supplement this with additional members. This def-
inition hierarchy is the basis of the Integra database (see
section 4.1).

2.1.2. Module namespace

A module’s namespace is derived from its definition. The
namespace enables the values of attributes to be set, and
module methods to be called by using a symbolic nam-
ing scheme. From the user’s perspective, this will usu-
ally manifest itself as an automatically generated OSC ad-
dress space. The OSC address space for a Sinus module
is shown in table 2. The ’Sinus’ class inherits the ’Oscil-
lator’ class interface, which in turn inherits the ’Module’
class interface, so the attributes of these inherited classes
must be reflected in the Sinus module’s namespace. To



OSC address Purpose
/<modulename>/freq <value> Set the value of the

’freq’ attribute
/<modulename>/phase <value> Set the value of the

’phase’ attribute
/<modulename>/active <value> Set whether or not the

module is active

Table 2. Integra Sinus module namespace

keep addresses short, class names are omitted from the
namespace unless there is a name clash.

2.1.3. Module implementation

The module implementation is the only software-specific
data stored by Integra. It consists of a fragment of com-
puter code, in one or more files, which when run or loaded
by a particular piece of software will perform a specific
audio or message processing task. In order that module
implementations can be used by libIntegra, an implemen-
tation protocol must be devised for each software target.
This protocol must then supported by the target-specific
libIntegra bridge (see figure 1).

Integra currently provides implementation protocols for
Max/MSP and Pure Data along with a growing selection
of example module implementations and implementation
templates. An eventual aim of Integra is to provide a pro-
tocol for constructing module implementations in a range
of different software, and to develop a LADSPA/DSSI 2

host that wraps plugins in an Integra-compliant manner.

2.1.4. Module instance data

Module instance data consists of the run-time state of all
of its variable parameters. This data is stored in mem-
ory by the Integra library whilst a module is in use, and
can be written to an XML file on demand. This data is
stored in the Integra database in the module’s instance ta-
ble. However only one saved state can be associated with
each module instance. If the user wishes to record state
changes over time, then a separate ’Player’ module must
be used to store this data.

2.2. Module collections

An Integra collection consists of one or more Integra mod-
ule instances. A collection can also contain other collec-
tions. These contained collections encapsulate the func-
tionality of a number of connected Integra modules into
a single entity and can be addressed and connected as if
they were normal module instances. The facility is pro-
vided for collections to optionally expose the input and
output parameters of the modules they contain. For exam-
ple, the collection ’mySinus’ might contain a Sinus mod-
ule, which has the attributes Frequency and Phase, but the

2 http://dssi.sourceforge.net/

collection might only expose the Frequency attribute to
the containing collection, whilst setting the Phase to some
arbitrary constant value.

2.3. Module ports

Modules and collections are connected up to each other
using Integra ports. Each port corresponds to an audio
or messaging address, which has both a symbolic name
and a numeric identifier (port ID). Port symbolic names
correspond to a module’s attribute names (e.g. ’freq’),
and port numbers are derived implicitly from the index
of the port in the module’s attribute list. In addition to
its port numbers, each module has a globally unique sym-
bolic name (e.g. ’sinus1’), and an implicitly determined,
globally unique numeric identifier (UID). The Integra li-
brary can be used to address any module port using either
its symbolic name and attribute name (e.g. ’/sinus1/freq’),
or using a combination of its UID and port ID. It is an im-
portant part of the Integra module construction protocol
that port ordering is always consistent. Otherwise a mod-
ule implementation’s port numbering will not correspond
to the numbering expected by the Integra library.

From the perspective of the Integra library, database,
and XML schema, there is no distinction between audio
and control rate ports. This distinction is only made in the
implementation. There is also no conceptual distinction
between input ports and output ports; a port is just an ad-
dress that can receive data and connect to other addresses.

2.4. Connections

For each module or collection, the Integra library stores a
list of ports that each output port of a given module is con-
nected to. One-to-many, many-to-one or many-to-many
connections can easily be established. It is important to
note that for audio connections, the software hosting the
modules must support the required routings. This is be-
cause the library doesn’t currently process audio-rate data.

3. IXD (INTEGRA EXTENSIBLE DATA)

In order to store modules, module collections, and perfor-
mance data in a software-neutral manner, a bespoke Inte-
gra file format was developed. XML was chosen as the
basis for this since it is relatively human-readable, can be
transformed for a variety of output targets, and has a num-
ber of excellent tools for parsing, reading and writing.

Rather than keeping all data needed to store an Inte-
gra collection in a single file we make use of the XML
Linking language (XLink 3 ) to link in relevant resources.
This makes for more efficient parsing and helps to keep
file sizes small.

3.1. Integra module definition

Perhaps the most important part of the IXD specification is
the module definition file. It is the XML representation of

3 http://www.w3.org/TR/xlink/



an Integra module (see 2.1.1). These files are created and
updated through the database interface and stored locally
for offline access in a gzipped archive. Each file contains
the class and module definitions of one unique module and
a link to the parent class from which it inherits properties:

<Class>
<ClassDefinition>
<className>Sinus</className>
<classParent ...

xlink:href="Oscillator.xml">
Oscillator

</classParent>
...

</ClassDefinition>
<ModuleDefinition>

...
</ModuleDefinition>
</Class

All documents that are part of the Integra documen-
tation system must have a class definition - it represents
the super class of the Integra class hierarchy and it defines
those attributes shared by all kinds of data - performance
data, biographical data, etc. The module definition is spe-
cific to the notion of modules as defined in section 2.

Each module and each of its attributes may also hold
a documentation reference. This allows the implementing
host for this module to make a call to the instance host to
bring up on-line documentation, for a specific attribute or
for the module itself. The link points to a file included in
the local archive of module descriptions.

3.2. Integra collection definition

Once a module is defined and stored in an IXD file it may
be instantiated. Instances of classes of modules along with
their inter-connections are stored in a collection file which
is the Integra equivalent of a PD or Max/MSP ’patch’.

In a collection file each module instance is represented
by a locator that points to the definition of the class to
which the instance belongs. Connections between ports
are represented by arcs between resources (pointing to
definitions of individual addresses) in the module defini-
tion file pointed to by the locator. Finally, it also holds
references to performance data files.

3.3. Serialization layer

To facilitate the conversion between flat XML files con-
forming to the IXD specification, and a memory-resident
representation of the data, a serialization library compo-
nent has been developed (see 4.1). The serialization layer
is the link between the database and the local file system
(see figure 1).

The serialization component provides functions for load-
ing, saving and modifying XML, and is used by the in-
stance host (see 4.2), the database (see 4.1) and/or any
other application interfacing with the library. For exam-
ple, on the database server, the serialization layer is made

available to the python-based web interface via a SWIG-
generated interface.

The IXD format is specified and documented in several
XML Schemas 4 . The XML Schema for the module def-
inition files is closely correlated to the database schema
and they share the same versioning system. Any file con-
forming to the file format can be validated against a spe-
cific schema version and conditional actions may be per-
formed on them as appropriate.

Finally, we are also working on an Integra specific XSL
Transformation 5 specification for automatic generation
of XHTML and/or PDF documentation of a given module
or collection of modules. In practice this means that once
the user has created his or her own Integra collection for
a project and uploaded it to the database, a documentation
file for this collection is automatically generated.

4. (INTEGRA)TION VIA THE LIBRARY

libIntegra is a cross-platform shared library, mostly writ-
ten in ISO C89 compliant C, and packaged using the GNU
autotools tool chain. It consists of a common API, and a
number of optional components. The library is hosted on
Sourceforge.net 6 where source code and API documen-
tation can be accessed.

4.1. Data persistence

For persistent storage of module data and other data re-
lating to musical works we have designed and configured
an on-line database. The only way in which users may
add new, or edit existing module definitions is via a web-
based interface to this database. The database makes use
of the libIntegra serialization component to generate XML
files on-the-fly, and these files are bundled into a gzipped
archive to be downloaded and stored locally for potential
offline use. Any program linked to libIntegra can then use
the same XML handling functions to de-serialise the data,
and form an in-memory representation of it.

4.2. Instance host

As well as a serialization component the library provides
an instance host, which is responsible for keeping a record
of each module’s run-time state. This includes the val-
ues that any of its ports have, and any connections that
are made between modules. The instance host acts as an
OSC server (using the liblo library 7 ), and operations can
be performed on modules by sending OSC messages to
it. The instance host supports a condensed OSC syntax
for loading, removing, connecting, disconnecting and ad-
dressing modules. For example two module ports can be
connected with the following message:

4 http://www.w3.org/XML/Schema
5 http://www.w3.org/TR/xslt
6 http://www.sourceforge.net/projects/

integralive
7 http://liblo.sourceforge.net/



/connect <module id> <port id>
<module id> <port id>

Module instances can either communicate with each
other through the instance host using OSC, or using an
environment-specific messaging system. When messages
pass through the Instance host, various operations can be
performed on the data that passes through. These opera-
tions include type checking, range checking, unit conver-
sion and type conversion. All of these can be validated
against the module definition held in memory.

4.3. Library/target bridge

In order to instantiate modules in a target environment
and to communicate directly with these modules, a target-
specific ’bridge’ is required. The ’bridge’ is a dynamically
loaded, binary shared object hosted ’inside’ the instance
host. Its purpose is to facilitate bi-directional communica-
tion between the instance host and a given target module
host (see 4.4). The library provides a very simple API
that each target-specific bridge must conform to. The in-
stance host has no knowledge of the software being used
to host module instances so the bridge acts like a trans-
lator receiving function calls, and performing the relevant
target-specific actions. These actions include instantiating
modules, removing them and connecting them. Most OSC
commands supported by the Instance host have a corre-
sponding function in the bridge.

It is the bridge’s software-specific communication mech-
anism that determines the protocol used to construct mod-
ule implementations. It is possible, although not neces-
sarily desirable to have several bridges for a given target,
each of which elicits a different approach to module con-
struction. This might be useful for compatibility with ex-
isting modularisation efforts, such as the Jamoma project
or Faust’s auto-generated PD abstractions.

4.4. Module host

The module host is any software that hosts Integra mod-
ules: it is not part of libIntegra. Typically, a module host
will be dynamically linked to libIntegra at compile time.
At run time the module host can make direct calls to func-
tions in the instance host and also make use of the Instance
host OSC interface. Typically the OSC interface is used
for communication with modules or hosts that are running
in a different program or operating system process. Com-
munication from the Instance host to the module host and
modules is always achieved through the ’bridge’.

It is also possible for the module host to be a standalone
application that doesn’t link to libIntegra. In this case the
bridge will usually use a network-based protocol such as
OSC to communicate with the module host. A Unix pipe
or socket is another possibility for this type of setup.

4.5. Inter-library communication

An arbitrary number of libIntegra instances may be run-
ning on the same computer or on any number of networked

Figure 1. A model of the parts constituting libIntegra and
how the library interfaces with other parts of the system.

computers. Each libIntegra instance can be running in a
new instance of a common module host, or a completely
different module host. A single computer setup is shown
in Figure 1.

When multiple libIntegra instances are used, only one
(the master), can make use of the serialization layer to
load and save Integra module instance data and collec-
tions. This is to prevent several versions of the same col-
lection being opened by different library instances, and
becoming unsynchronised. If the user or developer knows
that the serialization layer will not be required, the library
can be compiled without it.

The Instance host contains mechanisms for inter-library
communication and auto-discovery. This is mostly achieved
through OSC messaging, and facilitates the loading of In-
tegra collections across several module hosts, with trans-
parent state saving.

5. CONCLUSION

We have outlined a robust, cross-platform, software-in-
dependent means of storing and loading module data. In
addition we have discussed the facilities that the Integra li-
brary provides for loading, saving, instantiating and man-
aging modules and collections of modules. The next stage
in our work will entail a phase of alpha and beta testing,
both internally and with our end-users. The aim of the
Integra project is to improve the usability of software for
working with live electronics, and to provide a mechanism
for the sustainability of the musical works it is used to cre-
ate. libIntegra should ultimately provide a foundation for
this.


