
LIBXTRACT: A LIGHTWEIGHT LIBRARY FOR AUDIO FEATURE
EXTRACTION

Jamie Bullock
UCE Birmingham Conservatoire

Music Technology

ABSTRACT

The libxtract library consists of a collection of over forty
functions that can be used for the extraction of low level
audio features. In this paper I will describe the develop-
ment and usage of the library as well as the rationale for
its design. Its use in the composition and performance of
music involving live electronics also will be discussed. A
number of use case scenarios will be presented, including
the use of individual features and the use of the library to
create a ’feature vector’, which may be used in conjunc-
tion with a classification algorithm, to extract higher level
features.

1. INTRODUCTION

1.1. Audio features

An audio feature is any qualitatively or quantitatively mea-
surable aspect of a sound. If we describe a sound as ’quite
loud’, we have used our ears to perform an audio fea-
ture extraction process. Musical audio features include
melodic shape, rhythm, texture and timbre. However, most
software-based approaches tend to focus on numerically
quantifiable features. For example, the MPEG-7 standard
defines seventeen low-level descriptors (LLDs) that can be
divided into six categories: ’basic’, ’basic spectral’, ’sig-
nal parameters’, ’temporal timbral’, ’spectral timbral’ and
’spectral basis representations’[1]. The Cuidado project
extends the MPEG-7 standard by providing 72 audio fea-
tures, which it uses for content-based indexing and retrieval[2]
.

1.2. libxtract

libxtract is a cross-platform, free and open-source soft-
ware library that provides a set of feature extraction func-
tions for extracting LLDs. The eventual aim is to provide a
superset of the MPEG-7 and Cuidado audio features. The
library is written in ANSI C and licensed under the GNU
GPL so that it can easily be incorporated into any program
that supports linkage to shared libraries.

2. EXISTING TECHNOLOGY

It is beyond the scope of this paper to conduct an exhaus-
tive study of existing technology and compare the results

with libxtract. However, a brief survey of the library’s
context will be given.

One project related to libxtract is the Aubio library 1 by
Paul Brossier. Aubio is designed for audio labelling, and
includes excellent pitch, beat and onset detectors[5]. libx-
tract doesn’t currently include any onset detection, this
makes Aubio complimentary to libxtract with minimal du-
plication of functionality.

libxtract has much in common with the jAudio project
[9], which seeks to provide a system that ’meets the needs
of MIR researchers’ by providing ’a new framework for
feature extraction designed to eliminate the duplication of
effort in calculating features from an audio signal’. jAudio
provides many useful functions such as the automatic res-
olution of dependencies between features, an API which
makes it easy to add new features, multidimensional fea-
ture support, and XML file output. Its implementation in
Java makes it cross-platform, and suitable for embedding
in other Java applications, such as the promising jMIR
software. However, libxtract was written out of a need to
perform real-time feature extraction on live instrumental
sources, and jAudio is not designed for this task. libx-
tract, being written in C, also has the advantage that it can
be incorporated into programs written in a variety of lan-
guages, not just Java. Examples of this are given in section
5.

libxtract also provides functionality that is similar to
aspects of the CLAM project 2 . According to Amatri-
ain, CLAM is ’a framework that aims at offering exten-
sible, generic and efficient design and implementation so-
lutions for developing Audio and Music applications as
well as for doing more complex research related with the
field’[8]. As noted by McKay, ’the [CLAM] system was
not intended for extracting features for classification prob-
lems’, it is a large and complex piece of software with
many dependencies, making it a poor choice if only fea-
ture extraction functionality is required.

Other similar projects include Marsyas 3 and Maate 4 .
The library components of these programs all include fea-
ture extraction functionality, but they all provide other func-
tions for tasks such as file and audio i/o, annotation or ses-
sion handling. libxtract provides only feature extraction
functions on the basis that any additional functionality can

1 http://aubio.piem.org
2 http://clam.iua.upf.edu
3 http://marsyas.sf.net
4 http://www.cmis.csiro.au/maaate



Figure 1. A typical libxtract feature cascade

be provided by the calling application or another library.

3. LIBRARY DESIGN

The central idea behind libxtract is that the feature extrac-
tion functions should be modularised so they can be com-
bined arbitrarily. Central to this approach is the idea of a
cascaded extraction hierarchy. A simple example of this is
shown in Figure 1. This approach serves a dual purpose:
it avoids the duplication of ’subfeatures’, making compu-
tation more efficient, and if the calling application allows,
it enables a certain degree of experimentation. For exam-
ple the user can easily create novel features by making
unconventional extraction hierarchies.

libxtract seeks to provide a simple API for developers.
This is achieved by using an array of function pointers
as the primary means of calling extraction functions. A
consequence of this is that all feature extraction functions
have the same prototype for their arguments. The array of
function pointers can be indexed using an enumeration of
descriptively-named constants. A typical libxtract call in
the DSP loop of an application will look like this:

xtract[XTRACT_FUNCTION_NAME]
(input_vector, blocksize, argv,
output_vector);

This design makes libxtract particularly suitable for use
in modular patching environments such as Pure Data and
Max/MSP, because it alleviates the need for the program
making use of libxtract to provide mappings between sym-
bolic ’xtractor’ names and callback function names.

libxtract divides features into scalar features, which give
the result as a single value, vector features, which give the
result as an array, and delta features, which have some
temporal element in their calculation process. To make
the process of incorporating the wide variety of features
(with their slightly varying argument requirements) eas-
ier, each extraction function has its own function descrip-
tor. The purpose of the function descriptor is to provide
useful ’self documentation’ about the feature extraction
function in question. This enables a calling application to
easily determine the expected format of the data pointed to

Feature name Description
Mean Mean of a vector
Kurtosis Kurtosis of a vector
Spectral Mean Mean of a spectrum
Spectral Kurtosis Kurtosis of a spectrum
Spectral Centroid Centroid of a spectrum
Irregularity (2 types) Irregularity of a spectrum
Tristimulus (3 types) Tristimulus of a spectrum
Smoothness Smoothness of a spectrum
Spread Spread of a spectrum
Zero Crossing Rate Zero crossing rate of a vector
Loudness Loudness of a signal
Inharmonicity Inharmonicity of a spectrum
F0 Fundamental frequency of a signal
Autocorrelation Autocorrelation vector of a signal
Bark Coefficients Bark coefficients from a spectrum
Peak Spectrum Spectral peaks from a spectrum
MFCC MFCC from a spectrum

Table 1. Some of the features provided by the library

by *data and *argv, and what the ’donor’ functions for
any sub-features (passed in as part of the argument vector)
would be.

The library has been written on the assumption that a
contiguous block of data will be written to the input ar-
ray of the feature extraction functions. Some functions
assume the data represents a block of time-domain audio
data, others use a special spectral data format, and others
make no assumption about what the data represents. Some
of the functions may therefore be suitable for analysing
non-audio data.

Certain feature extraction functions require that the FFT
of an audio block be taken. The inclusion of FFT process-
ing is provided as a compile time option because it entails
a dependency on the FFTW library. Signal windowing
and zero padding are provided as helper functions.

4. LIST OF FEATURES

It is beyond the scope of this paper to list all the features
provided by the library, but some of the most useful ones
are listed in table 1. If the feature is ’of a spectrum’ it
denotes that the input data will follow the format of libx-
tract’s spectral data types.

5. PROGRAMS USING THE LIBRARY

Despite the fact that libxtract is a relatively recent library,
it has already been incorporated into a number of useful
programs.



5.1. Vamp libxtract plugin

The Vamp analysis plugin API was devised by Chris Can-
nam for the Sonic Visualiser 5 software. Sonic Visualiser
is an application for visualising features extracted from
audio files, it was developed at Queen Mary University
of London, and has applications in musicology, signal-
processing research and performance practice[4]. Sonic
Visualiser acts as a Vamp plugin host, with vamp plugins
supplying analysis data to it.

libxtract is used to provide analysis functions for Sonic
Visualiser using the vamp-libxtract-plugin. The vamp-
libxtract-plugin acts as a wrapper for the libxtract library,
making nearly the entire set of libxtract features avail-
able to any vamp host. This is done by providing only
the minimum set of feature combinations, the implication
of this being that the facility to experiment with different
cascaded features is lost.

5.2. PD and Max/MSP externals

The libxtract library comes with a Pure Data (PD) exter-
nal, which acts as a wrapper to the library’s API. This is an
ideal use case because it enables feature extraction func-
tions to be cascaded arbitrarily, and for non-validated data
to be passed in as arguments through the [xtract˜] object’s
right inlet. The disadvantage of this approach is that it
requires the user to learn how the library works, and to
understand in a limited way what each function does.

A Max/MSP external is available, which provides func-
tionality that is analogous to the PD external.

5.3. SC3 ugen

There also exists a Supercollider libxtract wrapper by Dan
Stowell. This is implemented as a number of SuperCol-
lider UGens, which are object-oriented multiply instan-
tiable DSP units 6 . The primary focus of Stowell’s libx-
tract work is a libxtract-based MFCC UGen, but several
other libxtract-based Ugens are under development.

6. EXTRACTING HIGHER LEVEL FEATURES

The primary focus of the libxtract library is the extrac-
tion of relatively low-level features. However, one the
main reasons for its development was that it could serve as
a basis for extracting more semantically meaningful fea-
tures. These could include psychoacoustic features such
as roughness, sharpness and loudness[10], some of which
are included in the library; instrument classification outputs[3];
or arbitrary user-defined descriptors such as ’Danceability’[7].

It is possible to extract these ’high level’ features by
using libxtract to extract a feature vector, which can be
constructed using the results from a range of extraction
functions. This vector can then be submitted to a map-
ping that entails a further reduction in dimensionality of

5 http://www.sonicvisualiser.org
6 http://mcld.co.uk/supercollider

the data. Possible algorithms for the dimension reduc-
tion task include Neural Networks, k-NN and Multidi-
mensional Gauss[11]. Figure 2 shows a dimension re-
duction implementation in Pure Data using the [xtract˜]
libxtract wrapper, and the [ann mlp] Fast Artificial Neural
Network 7 (FANN) library wrapper by Davide Morelli 8 .

An extended version of this system has recently been
used in one of the author’s own compositions for Piano
and Live electronics. For this particular piece, a PD patch
was created to detect whether a specific chord was being
played, and to add a ’resonance’ effect to the Piano ac-
cordingly. For the detection aspect of the patch, a selec-
tion of audio features, represented as floating point val-
ues, are ’packed’ into a list using the PD [pack] object.
This data is used to train the neural network (a multi-layer
perceptron), by successively presenting it with input lists,
followed by the corresponding expected output. Once the
network has been trained (giving the minimum possible
error), it can operate in ’run’ mode, whereby it should
give appropriate output when presented with new data that
shows similarity to the training data. With a close-mic’d
studio recording in a dry acoustic, an average detection
accuracy of 92% was achieved. This dropped to around
70% in a concert environment. An exploration of these
results is beyond the scope of this paper.

Another possible use case for the library is as a source
for continuous mapping to an output feature space. With
a continuous mapping, the classifier gives as output, a lo-
cation on a low-dimensional map rather than giving a dis-
crete classification ’decision’. This has been implemented
in one of the author’s recent works for Flute and live elec-
tronics, whereby the flautist can control the classifier’s
output by modifying their instrumental timbre. Semantic
descriptors were used to tag specific map locations, and
proximity to these locations was measured and used as a
source of realtime control data. The system was used to
measure the ’breathiness’ and ’shrillness’ of the flute tim-
bre. Further work could involve the recognition of timbral
gestures in this resultant data stream.

7. EFFICIENCY AND REALTIME USE

The library in its current form makes no guarantee about
how long it will take for a function to execute. For any
given blocksize, there is no defined behaviour determining
what will happen if the function does not return in the
duration of the block.

Most of the extraction functions have an algorithmic
efficiency of O(n) or better, meaning that computation time
is usually proportional to the audio blocksize used. How-
ever, because of the way in which the library has been de-
signed (flexibility of feature combination has been given
priority), certain features end up being computed com-
paratively inefficiently. For example if only the Kurtosis
feature was required in the system shown in figure 1, the
functions xtract mean(), xtract variance(),

7 http://leenissen.dk/fann/
8 http://www.davidemorelli.it



Figure 2. Audio feature vector construction and dimen-
sion reduction using libxtract and FANN bindings in Pure
Data

xtract standard deviation() and xtract kurtosis() must all
execute N iterations over their input (where N is the size of
the input array). The efficiency of xtract kurtosis() could
be improved if the outputs from all the intermediate fea-
tures were not exposed to the user or developer.

Tests show that all the features shown in table 1 can
be computed simultaneously with a blocksize of 512 sam-
ples, and 20 Mel filter bands with a load of 20-22% on a
dual Intel 2.1GHz Macbook Pro Laptop running GNU/Linux
with a 2.6 series kernel. This increases to 70% for a block
size of 8192, but removing xtract f0() reduces this figure
to 50%.

8. CONCLUSIONS

In this paper I have described a new library that can be
used for low level audio feature extraction. It is capable
of being used inside a realtime application, and serves as
a useful tool for experimentation with audio features. Use
of the library inside a variety of applications has been dis-
cussed, along with a description of its role in extracting
higher level, more abstract features. It can be concluded
that the library is a versatile tool for low-level feature ex-
traction, with a simple and convenient API.

9. REFERENCES

[1] Lindsay, T., Burnett, I., Quackenbush, S.,
Jackson, M. ”Fundamentals of Audio Descrip-

tors”, Introduction to MPEG-7 Multimedia
Content Description Interface, West Sussex,
England, 2003.

[2] Peeters, G. A large set of audio features
for sound description (similarity and classi-
fication) in the CUIDADO project,. IRCAM,
Paris, 2003.

[3] Fujinaga, I., and MacMillan, K. ”Realtime
recognition of orchestral instruments.” Pro-
ceedings of the Interface Computer Music
Conference 2000.

[4] Cannam, C., Landone, C., Sandler, M., and
Bello, J., P. ”The Sonic Visualiser: A Visual-
isaton Platform for Semantic Descriptors from
Musical Signals.” Proceedings of the 7th In-
ternational Conference on Music Information
Retrieval Victoria, Canada, 2006.

[5] Brossier, P., M. ”Automatic Annotation of
Musical Audio for Interactive Applications”
PhD Thesis Centre for Digital Music, Queen
Mary, University of London, UK, 2006.

[6] Lerch, A. ”FEAPI: A Low Level Feature Ex-
traction Plugin API” Proceedings of the 8th
International Conference on Digital Audio Ef-
fects (DAFx) Madrid, Spain, 2005

[7] Amatriain, X., Massaguer, J., Garcia, D., and
Mosguera, I. ”Features for Audio and Music
Classification” Proceedings of the 6th Interna-
tional Conference on Music Information Re-
trieval London, UK, 2005

[8] Amatriain, X. ”An Object-Oriented Meta-
model for Digital Signal Processing with a fo-
cus on Audio and Music” PhD Thesis Mu-
sic Technology Group of the Institut Univer-
sitari de l’Audiovisual at the Universitat Pom-
peu Fabra, Barcelona, Spain, 2004

[9] McEnnis, D., McKay, C., Fujinaga, I., De-
palle, P. ”jAudio: A Feature Extraction Li-
brary” Proceedings of the 6th International
Conference on Music Information Retrieval
London, UK, 2005

[10] Moore, B. C. J., Glasberg, B. R., and Baer,
T. ”A model for the prediction of thresholds,
loudness and partial loudness” J. Audio Eng.
Soc., vol. 45, pp. 224-240 New York, USA,
1997

[11] Herrera-Boyer, P., Peeters, G., Dubnov, S.
”Automatic Classification of Musical Instru-
ment Sounds” Journal of New Music Re-
search, Volume 32, Issue 1, pages 3 - 21 Lon-
don, UK, 2003


