
Engineers Code:
re-usable, open educational modules for
engineering undergraduates

@LorenaABarba

Associate Professor of Mechanical and Aerospace Engineering
The George Washington University, Washington DC

Key concepts and design principles
1. idea of “computable content”
2. open pedagogy
3. modularization
4. harnessing “worked-example effect”
5. f2f active learning with live coding
6. learners documenting their work

Open education
‣ Open Ed movement was inspired by free &

open source software (FOSS).
‣ Features missed: open development,

networked collaboration, community,
value-based framework…

‣ OS ethics and practices: put computing
at the center of engineering education

Computational Thinking,
Computational Learning

Seymour Papert

“Mindstorms” (1980), p. 182

— Seymour Papert, “Mindstorms” (1980)

The killer app: Jupyter
A new genre of open
educational resources
(OER).

Computable content
Educational content made powerfully interactive
via compute engines in the learning platform.

https://github.com/barbagroup/CFDPython

https://github.com/barbagroup/CFDPython

Engineers Code: re-usable computing
modules for undergraduate engineering

Module 1:
Get data off the ground

Learn to interact with Python
and handle data with Python.

lessons:
1. Interacting with Python
2.Play with data in Jupyter
3.Strings and lists in action
4.Play with NumPy arrays
5.Linear regression with real data

Module 2:
Take off with stats

Hands-on data analysis using a
computational approach and
real-life applications.

lessons:
1.Cheers! Stats with beers
2.Seeing stats in a new light
3.Lead in lipstick
4.Life expectancy and wealth

Module 3:
Fly at changing systems

Tackling the dynamics of change
with computational thinking.

lessons:
1.Catch things in motion
2.Step to the future
3.Get with the oscillations
4.Bird's-eye view of mechanical
vibrations

Example:
http://go.gwu.edu/engcomp3lesson1

http://go.gwu.edu/engcomp3lesson1

How to develop lessons:
1. Break it down into small steps
2. Chunk small steps into bigger steps
3. Add narrative and connect
4. Link out to documentation
5. Interleave easy exercises
6. Spice with challenge questions/tasks
7. Publish openly online!

In class…

Pedagogy: worked-example effect

http://go.gwu.edu/engcomp1

http://go.gwu.edu/engcomp1

Jupyter Notebook Viewer XBlock
1. Write “Jupyter-first” course
2. Publish notebooks online (e.g., GitHub)
3. Add content to Open edX via the XBlock
a. use notebook URL (dynamic content)

b. break long notebook into “unit-sized” parts using
‘start’ & ‘end’ strings

c. get pretty code formatting, plots, embedded images

https://github.com/ibleducation/jupyter-viewer-xblock

Graded Jupyter Notebook XBlock
1. Write assignment using nbgrader
2. Upload requirements.txt with dependencies:
XBlock builds course image
3. Upload instructor notebook, enter settings
4. Students download assignment & solve
5. Uploaded assignment:
a.launches Docker container with requirements
b.auto-grading gives student a score report, writes into gradebook

https://github.com/ibleducation/jupyter-viewer-xblock

Computational Thinking for STEM
1.Data practices
2.Modeling and simulation practices
3.Computational problem-solving
4.Systems-thinking practices

Weintrop, David, et al. "Defining computational thinking for mathematics
and science classrooms." Journal of Science Education and Technology
25.1 (2016): 127-147. https://doi.org/10.1007/s10956-015-9581-5

