Validating RDF data tutorial
ShEx/SHACL by example

Jose Emilio Labra Gayo
WESO Research group
Spain

Iovka Boneva
LINKS, INRIA & CNRS, France

Eric Prud'hommeaux
World Wide Web Consortium
MIT, Cambridge, MA, USA
More info…and some publicity
Contents

Overview of RDF data model
Motivation for RDF Validation
ShEx by example
SHACL by example
Comparing ShEx and SHACL
Applications
RDF Data Model

Overview of RDF Data Model and simple exercise

Link to slides about RDF Data Model

http://www.slideshare.net/jelabra/rdf-data-model
RDF, the good parts...

RDF as an integration language
RDF as a *lingua franca* for semantic web and linked data
RDF data stores & SPARQL
RDF flexibility
 - Data can be adapted to multiple environments
 - Open and reusable data by default
RDF, the other parts

Inference & knowledge representation
- RDF should combine well with KR vocabularies (RDF Schema, OWL...)
- Performance of RDF based systems with inference = challenging

Consuming & producing RDF
- Multiple serializations: Turtle, RDF/XML, JSON-LD, ...
- Embedding RDF in HTML
- Describing and validating RDF content
Why describe & validate RDF?

For RDF producers
- Developers can understand the contents they are going to produce
- They can ensure they produce the expected structure
- Advertise and document the structure
- Generate interfaces

For RDF consumers
- Understand the contents
- Verify the structure before processing it
- Query generation & optimization
Similar technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Schema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relational Databases</td>
<td>DDL</td>
</tr>
<tr>
<td>XML</td>
<td>DTD, XML Schema, RelaxNG, Schematron</td>
</tr>
<tr>
<td>Json</td>
<td>Json Schema</td>
</tr>
<tr>
<td>RDF</td>
<td>?</td>
</tr>
</tbody>
</table>

Fill that gap
Understanding the problem

RDF is composed by nodes and arcs between nodes
We can describe/check
 form of the node itself (node constraint)
 number of possible arcs incoming/outgoing from a node
 possible values associated with those arcs

RDF Node

:alice schema:name "Alice";
 schema:knows :bob .

ShEx

<UserShape> IRI {
 schema:name xsd:string ;
 schema:knows IRI *
}

Shape RDF Node that represents a User

IRI schema:name string 1
 schema:knows IRI 0, 1,...
Understanding the problem

RDF validation ≠ ontology definition ≠ instance data

Ontologies are usually focused on real world entities
RDF validation is focused on RDF graph features (lower level)

Different levels

- Ontology
 - Constraints
 - RDF Validation
 - Instance data

```
schema:knows a owl:ObjectProperty ;
rdfs:domain schema:Person ;
rdfs:range schema:Person .
```

A user must have only two properties:
```
schema:name of value xsd:string
schema:knows with an IRI value
```

```
<User> IRI {
    schema:name xsd:string ;
    schema:knows IRI
}
```

```
:alice schema:name "Alice";
    schema:knows :bob .
```
Understanding the problem

Shapes ≠ types

Nodes in RDF graphs can have zero, one or many \texttt{rdf:type} arcs

One type can be used for multiple purposes (\texttt{foaf:Person})

Data doesn't need to be annotated with fully discriminating types

\texttt{foaf:Person} can represent friend, invitee, patient,...

Different meanings and different structure depending on the context

We should be able to define specific validation constraints in different contexts
Understanding the problem

RDF flexibility

Mixed use of objects & literals

Example:

Value of \texttt{schema:creator} can be: \texttt{string} or \texttt{schema:Person}

in the same data

Lots of examples at \url{http://schema.org}
Understanding the problem

Repeated properties
Sometimes, the same property is used for different purposes in the same data
Example: A product must have 2 codes with different structure

A practical example from FHIR
See: http://hl7-fhir.github.io/observation-example-bloodpressure.ttl.html
Previous RDF validation approaches

SPARQL based
 Plain SPARQL
 SPIN: http://spinrdf.org/

OWL based
 Stardog ICV
 http://docs.stardog.com/icv/icv-specification.html

Grammar based
 OSLC Resource Shapes
 https://www.w3.org/Submission/2014/SUBM-shapes-20140211/
SPARQL queries that detect errors

Pros:
- Expressive
- Ubiquitous

Cons
- Expressive
- Idiomatic - many ways to encode the same constraint

Example: SPARQL query to check that...
There is one schema:name which must be a xsd:string and one schema:gender must be schema:Male or schema:Female

```
ASK {{
  SELECT ?Person {
    ?Person schema:name ?o .
  }
  GROUP BY ?Person HAVING (COUNT(*)=1)
}

{{
  SELECT ?Person {
    ?Person schema:name ?o .
    FILTER (isLiteral(?o) &&
            datatype(?o) = xsd:string )
  }
  GROUP BY ?Person HAVING (COUNT(*)=1)
}

{{
  SELECT ?Person (COUNT(*) AS ?c1) {
  }
  GROUP BY ?Person HAVING (COUNT(*)=1)
}

{{
  SELECT ?Person (COUNT(*) AS ?c2) {
    FILTER ((?o = schema:Female ||
             ?o = schema:Male))
  }
  GROUP BY ?Person HAVING (COUNT(*)=1)
}
FILTER (?c1 = ?c2)
```
SPIN

SPARQL inferencing notation http://spinrdf.org/
- Developed by TopQuadrant
- Commercial product

Vocabulary associated with user-defined functions in SPARQL

SPIN has influenced SHACL (see later)
Stardog ICV

ICV - Integrity Constraint Validation
- Commercial product
OWL with unique name assumption and closed world
Compiled to SPARQL
More info: http://docs.stardog.com/icv/icv-specification.html
OSLC Resource Shapes

Grammar based approach
Language for RDF validation
Less expressive than ShEx

```
:user a rs:ResourceShape ;
 rs:property [ 
  rs:name "name" ;
  rs:propertyDefinition schema:name ;
  rs:valueType xsd:string ;
  rs:occurs rs:Exactly-one ;
] ;
 rs:property [ 
  rs:name "gender" ;
  rs:propertyDefinition schema:gender ;
  rs:allowedValue schema:Male, schema:Female ;
  rs:occurs rs:Zero-or-one ;
].
```
Other approaches

Dublin Core Application profiles (K. Coyle, T. Baker)
http://dublincore.org/documents/dc-dsp/

RDF Data Descriptions (Fischer et al)

RDFUnit (D. Kontokostas)
http://aksw.org/Projects/RDFUnit.html

...
ShEx and SHACL

2013 RDF Validation Workshop

Conclusions of the workshop:

There is a need of a higher level, concise language for RDF Validation

ShEx initially proposed (v 1.0)

2014 W3c Data Shapes WG chartered

2017 SHACL accepted as W3C recommendation

2017 ShEx 2.0 released
Continue this tutorial with...

ShEx by example ➔ http://www.slideshare.net/jelabra/shex-by-example

SHACL by example ➔ http://www.slideshare.net/jelabra/shacl-by-example

ShEx vs SHACL ➔ http://www.slideshare.net/jelabra/shex-vs-shacl

Future work and applications ➔ http://www.slideshare.net/jelabra/rdf-validation-future-work-and-applications