Future work and applications

RDF Validation tutorial

Jose Emilio Labra Gayo
WESO Research group
University of Oviedo, Spain

Eric Prud'hommeaux
World Wide Web Consortium
MIT, Cambridge, MA, USA

Harold Solbrig
Mayo Clinic, USA

Iovka Boneva
LINKS, INRIA & CNRS
University of Lille, France
Contents

Some applications
 ShEx
 WebIndex: A linked data portal using ShEx
 FHIR
 SHACL

Future work
Web Index

Measure WWW's contribution to development and human rights by country

Developed by the Web Foundation

81 countries, 116 indicators, 5 years (2007-12)

Linked data portal

http://data.webfoundation.org/webindex/2013
Webindex workflow

Data (Excel) → Conversion Excel → RDF → Enrichment → RDF Datastore → Visualizations

Linked data portal
WebIndex data model

Model based on RDF Data Cube

Main entity = Observation

Observations have values by years
Observations refer to indicators and countries

DataSets are published by Organizations

Datasets contain several slices
Slices group observations

Indicators are provided by Organizations

Examples
ITU = International Telecommunication Union
UN = United Nations
WB = World bank

Countries	2010	2011	2012	...
Germany	20.34	35.46	37.12	...
Spain	19.12	23.78	25.45	...
France	20.12	21.34	28.34	...
...
Excel → RDF (Turtle)

indicator:ITU_B	a	wf:SecondaryIndicator ;
rdfs:label	"Broadband subscribers %" .	
dataset:DITU	a	qb:DataSet ;
rdfs:label	"ITU Dataset" ;	
dc:publisher	org:ITU ;	
qb:sliceStructure	wf:sliceByYear ;	
qb:observation	obs:obs8165 , obs:obs8166 , . . .	
org:ITU	a	org:Organization ;
rdfs:label	"ITU" ;	
foaf:homepage	<http://www.itu.int/> .	
country:Spain	a	wf:Country ;
wf:iso2	"ES" ; wf:iso3 "ESP" ;	
rdfs:label	"Spain" .	
Description and Validation

Lots of constraints

Observations must be linked to some country

Observations have a float value

Observations are related with an indicator, a country and a year

Dataset contains several slices and slices contain several observations

....etc.

Q: How can we express those constraints easily?

Our proposal: Shape expressions
A `<Country>` has at least the following properties:
- `rdf:type` with value `wf:Country`
- `rdfs:label` with value of type `xsd:string`
- `wf:iso2` with value of type `xsd:string`
- `wf:iso3` with value of type `xsd:string`

Using shape Expressions:
DataSets

A `<DataSet>` has the shape:

- `rdf:type` with value `qb:Dataset`
- `qb:structure` with value `wf:DSD`
 Optional `rdfs:label` with value of type `xsd:string`
- One or more `qb:slice` with shape `<Slice>`

```xml
<DataSet> {  
  rdf:type [qb:DataSet];  
  qb:structure (wf:DSD);  
  dc:publisher @<Organization>;  
  rdfs:label xsd:string?;  
  qb:slice @<Slice>+  
}
```

Cardinality possibilities:
- `*` (0 or more)
- `?` (0 or 1)
- `+` (1 or more)
- `{m,n}` between `m` and `n`
Slices

<Slice> {
 rdf:type [qb:Slice]
 ; qb:sliceStructure (wf:sliceByYear)
 ; qb:observation @<Observation>+
 ; cex:indicator @<Indicator>
}

<Slice> has the properties:
- rdf:type with value qb:Slice
- qb:SliceStructure with value wf:sliceByYear
- Several qb:observation with shape <Observation>
- cex:indicator with shape <Indicator>
Observations

```xml
<Observation> {
  rdf:type [qb:Observation]
  cex:value xsd:float ?
  dc:issued xsd:dateTime
  rdfs:label xsd:string ?
  qb:dataSet @<DataSet>
  cex:ref-area @<Country>
  cex:indicator @<Indicator>
  cex:ref-year xsd:gYear
}
```
...and more

Indicators

```xml
<Indicator> {
    rdf:type [wf:PrimaryIndicator wf:SecondaryIndicator]
    ; rdfs:label xsd:string
    ; rdfs:comment xsd:string
    ; skos:notation xsd:string
}
```

Organizations

```xml
<Organization> {
    rdf:type [org:Organization]
    ; rdfs:label xsd:string
    ; foaf:homepage IRI
    ; org:hasSubOrganization @<Organization>
}
```
Use of shape expressions in WebIndex

1. Documentation of linked data portal
 Human-readable
 Machine processable

2. Team communication
 Communicate the developers which shapes they had to generate

3. Validation
 For example: check if a value of type qb:Observation has shape
 $<$Observation$>$

http://weso.github.io/wiDoc
WebIndex as a benchmarking

We have created a tool to generate synthetic RDF data that conforms (or not) to the WebIndex data model.
The tool can be used to benchmark ShEx and SHACL.

See: http://labra.github.io/wiGen/
HL7 FHIR

ShEx is currently being used to develop FHIR/RDF
• validate examples (in documentation)
• exchange site-specific restrictions
• enable consumer and producer validation

See: https://www.w3.org/2016/FHIR-tutorial/Constellations
SHACL applications

TopBraid Composer includes support for SHACL
 See: http://www.topquadrant.com/technology/shacl/tutorial/

RDFUnit is also planning to include SHACL support
 See: https://github.com/AKSW/RDFUnit

OpenPublicData: prototype to list, filter and present open data
 See: http://www.openpublicdata.com/

Schema.org converted to SHACL
 See: http://datashapes.org/schema
Future work

SHACL Recommendation
 Data Shapes WG chartered until Jul 2017

Other features
 Property paths
 Named graphs
 ...

ShEx vs SHACL
 Translate ShEx to SHACL (looks difficult, impossible?)
 Translate SHACL to ShEx (work in progress, see Shaclex)
Future work

SHACL: Data Shapes Working Group:
Mailing list, list of issues,...
https://www.w3.org/2014/data-shapes/

ShEx Community portal http://shex.io
List of issues:
https://github.com/shexSpec/shex/issues