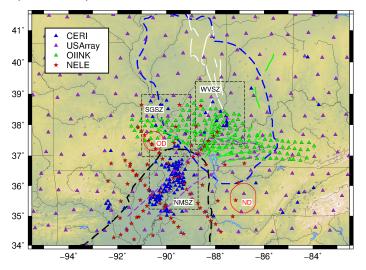
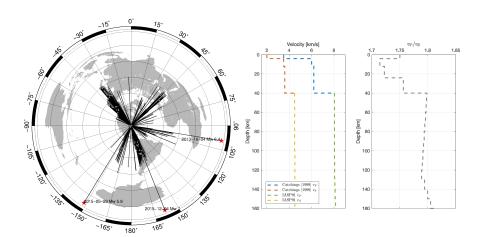
Mantle structures beneath the northern Reelfoot Rift and southern Illinois Basin


Yu Geng Arushi Saxena

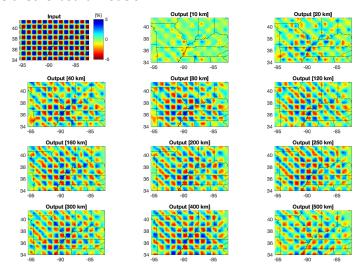
Overview

- Previous studies
 - Low-velocity zone beneath the RR [Pollitz and Mooney, 2014]
 - Structural variations in the upper mantle [Biryol et al., 2016]
 - High crustal v_s [Chen et al., 2016]
- Unanswered questions
 - Relation between the RR and the IB
 - Relation between mantle structures and seismic zones
 - Does the LVZ beneath ME extend to the transition zone?
- Research target
 - v_P, v_S, and v_P/v_S structures to transition zone depths beneath the upper RR and lower IB

Data and method


Stations (2011-2015)

Data and method


Azimuth coverage

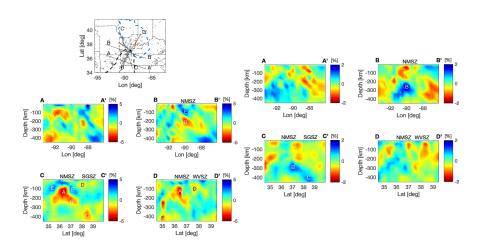
Starting models

Synthetic test

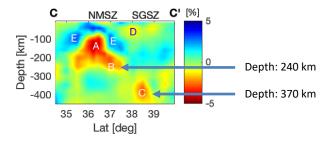
P-wave checkerboard models

Results (map view)

v_P model


(The v_S model is similar to the v_P model)

Cross-section views


v_P model

v_P/v_S ratio

Interpretation

- LVZ below the NMSZ (labeled A)
 - Bermuda hotspot [Pollitz and Mooney, 2014]
 - Counter flow [Biryol et al., 2016]
 - Rifting origin [Chen et al., 2016]
- LVZ below the IB (labeled B and C)
 - v_s anomalies are larger than v_P anomalies (in %)

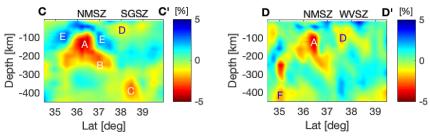
Interpretation

- Factors that reduce mantle velocities
 - Water (reduces v_s more than v_p)
 - Mg# (reduces v_s)
 - Temperature (reduces v_s more than v_p)
 - ➤ Orthopyroxene (reduces v_P more than v_S)
- Calculations

Anomaly B at 240 km

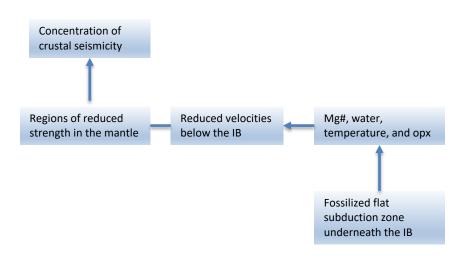
- Reduced Mg# (94 → 86)
- Solubility of water: 900 ppm
- Temperature elevation: 170±10°C
- Opx volume fraction: ~60%

Anomaly C at 370 km


- Reduced Mg# (94 → 86)
- Solubility of water: 1500 ppm
- Temperature elevation: $100 \pm 10^{\circ}$ C
- Opx volume fraction: ~50%

 $Mg\# = 100 \times \frac{Mg}{Mg + Fe}$

Implications for flat slab subduction


- Flab slab underneath the ME [e.g., Liu et al., 2008; 2010]
 - Does not exert a pull force
 - Incapable of further penetration
- Processes that may weaken SCLM [Kusky et al., 2014]
 - Hydration
 - May help explain the saturation of water at 240 km and 370 km
 - Influx of fertile mantle
 - May help explain temperature, Mg#, opx content

Implications for intraplate seismicity

- Common factors that weaken mantle materials
 - ▶ Increased iron [Zhao et al., 2009]
 - ➤ The incorporation of water [e.g. Demouchy et al., 2012]
- Numerical modeling
 - Stress transfer to the upper crust [Kenner and Segall, 2000]

Conclusions

Acknowledgement

- Dataset, Moho depth, etc.
 - Cecilia Nyamwandha
 - Hersh Gilbert (Purdue University)
 - **>** ...
- Software package
 - Xiaoting Lou (Northweastern University)
 - Dapeng Zhao (Tohoku University)
 - **>** ..
- Grants to access NELE and OIINK
 - Charles Langston
 - Christine Powell