
The First Rule of Software Sustainability:
Do not talk about Software Sustainability?
Colin C. Venters∗, Christoph Becker‡, Stefanie Betz§, Ruzanna Chitchyan¶, Leticia Duboc‖,

Steve M. Easterbrook‡, Birgit Penzenstadler∗∗, Guillermo Rodriguez-Navas††, and Norbert Seyff‡‡

∗University of Huddersfield, UK, c.venters@hud.ac.uk
‡University of Toronto, Canada, {christoph.becker@utoronto.ca; sme@cs.toronto.edu}

§Karlsruhe Institute of Technology, Germany, stefanie.betz@kit.edu
¶University of Leicester, UK, rc256@le.ac.uk

‖State University of Rio de Janeiro, Brazil, leticia@ime.uerj.br
∗∗California State University Long Beach, USA, birgit.penzenstadler@csulb.edu
††Mälardalen University Västeras, Sweden, guillermo.rodriguez-navas@mdh.se

‡‡University of Zurich, Switzerland, seyff@ifi.uzh.ch

Abstract—Principally associated with the field of ecology in
order to address humanities increasing ecological footprint on
the planet Earth, sustainability as a concept has emerged as an
area of interest in the field of computing. While a number of
related communities have attempted to understand and address
the challenges of sustainability from their different perspectives,
there is a fundamental lack of understanding of: the concept of
sustainability; how it relates to software artifacts and software
systems; and the wider implications of the software development
process and the impact of software products on the different
dimensions of sustainability. This position paper argues that
current efforts to address the sustainment i.e. longevity, of
software and software systems are futile because of a lack of
a common definition of sustainable software, which results in
a misalignment with established software engineering theory
and best practice that enables software products to endure.
While there have been a number of previous attempts to define
sustainability no consensus has been reached. As a result, the
term remains illusive and ambiguous. This paper argues that the
primary barrier to making progress in the field of sustainable
software systems engineering is the lack of a concrete definition,
which lays the foundation to understand how to design software
that is [technically] sustainable. As a basis for discussion we
propose a definition of sustainable software as a first-class,
composite, non-functional requirement that includes as its basic
building blocks the base sub-characteristics of maintainability
and extensibility.

Index Terms—Software sustainability, software engineering,
sustainability, technical sustainability, non-functional require-
ments, maintainability, extensibility

I. INTRODUCTION

Sustainable software. Software sustainability. Sustainable
software development. Sustainability requirements. Sustain-
able HPC. Sustainable human-computer interaction. Software
for sustainability. The concept of sustainment has become a
topic of interest in the field of computing, which is evidenced
by the rise in publication output [1], and the increase in the
number of events that focus on the topic of sustainability 1 2

1AAAI Computational Sustainability, http://www.aaai.org/Conferences/AAAI/
2GREENS, http://greens.cs.vu.nl

3 4 5 6 7 8 9. However, despite this increasing interest in the
topic, the concept of sustainability is not well understood in
the field of computing. Definitions of the concept range from
a measure of time [2] to simply an emergent property [3]. A
more thorough treatment of the range of definitions of software
sustainability is discussed by Venters et. al., [4]. As a result
there is no consensus on how sustainability might be achieved
with regards to the design of software artifacts and software
systems, or how software sustainability might be quantified.
While this position is not unique to the field of computing,
this paper argues that the lack of clarity about the concept of
software sustainability will lead to ineffective and inefficient
efforts to address the concept or result in its complete omission
from the software system [5]. Sustainability can be viewed
from a range of different dimensions including environmental,
economic, individual, social and technical [6], [5]. In this
paper we focus primarily on the concept of sustainability from
a technical perspective. We propose that the main barrier and
one important challenge for the field of computing is to define
the concept of sustainability. From this we can derive how to
design sustainable software from the existing body of software
engineering knowledge, identify gaps in software engineering
theory and best practice, all of which leads to forming an
understanding of the basis of a educational curriculum, which
lays the foundation for training and educating the broad
spectrum of domain scientists or advance the skills of software
engineers to develop software that is sustainable. The basis
for how this might be achieved is discussed in the following
section, where a definition of software sustainability from
a technical perspective is proposed along with a number of
related challenges.

3GInSEng, http://alarcos.esi.uclm
4ICT4S, http://ict4s.org
5RE4SuSy, http://web.csulb.edu/bpenzens/re4susy/
6S-HCI, http://www.sigchi.org/communities/hci-sustainability
7SHPC, https://sites.google.com/a/temple.edu/shpc2015/
8SSSE, http://http://sustainabilitydesign.org/ssse15
9WSSSPE, http://wssspe.researchcomputing.org.uk/



Position Paper: CSESSP2015: Computational Science & Engineering Software Sustainability and Productivity Challenges

II. SUSTAINABLE SOFTWARE

Before sustainable software can be designed it first must
be understood [7]. What does sustainability mean in the
context of software engineering? Despite a number of potential
candidates, little progress has been made towards defining
the concept and any consensus has still to be reached [8]. A
generally accepted definition of sustainability is the capacity to
endure that is a measurement of time. However, the generality
of this definition renders it meaningless for software engineers
and developers to enact upon, and fails to capture the complex-
ity of a concept that can be viewed from a range of different
dimensions [9]. In addition, it does not get at the heart of
what makes a software product endure over time. What are the
underlying factors that result in software sustainment? There is
growing consensus that sustainability should be considered as
a first-class, non-functional requirement [10] [11]. While this
has been supported by a number of commentators [12] [13], it
has been made without explicit reference to the characteristics
or qualities that sustainability would be composed of. In
contrast, Venters et. al., [14] and Chitchyan, Cazzola and
Rashid [15] consider software sustainability as a composite,
non-functional requirement, which is a measure of a number
of quality attributes of a systems. We propose that at the
very minimum, the genetic building blocks of [technically]
sustainable software should address two core quality attributes:

• Extensibility: the software’s ability to be extended and
the level of effort required to implement the extension;

• Maintainability: the effort required to locate and fix an
error in operational software.

These fundamental building blocks could then be extended
to include other quality attributes such as portability, resua-
bility, scalability, usability, and energy efficiency etc. Never-
theless, this raises the question of what metrics and measures
are suitable to demonstrate the sustainability of the software.
A related challenge is therefore how to demonstrate that the
quality factors have been addressed in a quantifiable way.
This is an open question and provides an avenue for further
research.

III. BEYOND THE TOWER OF BABEL

This paper argued that the lack of consensus regarding the
concept of sustainability is the principal barrier to progress
in the design of software that is [technically] sustainable.
To address this, we proposed that sustainability, in the con-
text of software engineering, is a first-class, composite, non-
functional requirement, that includes as its basic building
blocks the base sub-characteristics of maintainability and ex-
tensibility. However, we recognize that this is a rather narrow
view of sustainability and does not take into account other
dimensions [16].

The call for participation to CSESSP identified the need
for new approaches to scientific software that significantly
improves sustainability and productivity, including leverag-
ing software engineering research.This suggests that current
software engineering techniques and practices are inadequate.

This argument is simply without merit. There is a substantive
body of knowledge available to draw upon in the design
of sustainable software to whoever avails of it. This raises
the question of why the existing software engineering body
of knowledge, such as that contained in SWEBOK [17], is
largely ignored by the computational scientific and engineering
communities.

Beyond the definition of sustainable software, the challenge
is how to distill this large body of knowledge into a set of core
software engineering principles and accompanying practices
that underpin the concept of sustainability that developers
of software products can incorporate into their development
streams as well as how different areas relate to sustainability
as a whole.

REFERENCES

[1] B. Penzenstadler et al., “Systematic mapping study on software engi-
neering for sustainability (se4s),” in Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineer-
ing. ACM, 2014.

[2] H. Koziolek, “Sustainability evaluation of software architectures: a sys-
tematic review,” in Proceedings of the joint ACM SIGSOFT conference–
QoSA and ACM SIGSOFT symposium–ISARCS on Quality of software
architectures–QoSA and architecting critical systems–ISARCS. ACM,
2011, pp. 3–12.

[3] WSSSPE’1, “Wssspe’1 collaborative notes.” [Online]. Available:
bit.ly/wssspe13

[4] C. C. Venters et al., “Software sustainability: The modern tower of
babel,” in RE4SuSy: Proceedings of the Third Int. Workshop on RE for
Sustainable Systems. Karlskrona, Sweden: CEUR-WS 1216, 2014.

[5] B. Penzenstadler and H. Femmer, “A generic model for sustainability
with process-and product-specific instances,” in Proc. of the 2013
workshop on Green in/by software engineering. ACM, 2013, pp. 3–8.

[6] R. Goodland, “Sustainability: Human, social, economic and environmen-
tal,” in Encyclopedia of Global Environmental Change, T. Munn, Ed.
John Wiley & Son, 2002.

[7] C. C. Venters et al., “The nebuchadnezzar effect: Dreaming of sustain-
able software through sustainable software architectures,” figshare, Tech.
Rep. 1112484, 2014, http://dx.doi.org/10.6084/m9.figshare.1112484.

[8] D. S. Katz et al., “Summary of the first workshop on sustainable software
for science: Practice and experiences (WSSSPE1),” Journal of Open
Research Software, vol. 2, 2014.

[9] C. Becker et al., “Requirements: The key to sustainability,” 2015,
unpublished.

[10] N. Amsel et al., “Toward sustainable software engineering,” in ICSE:
Proceedings of the 33rd International Conference on Software Engineer-
ing, Waikiki, Honolulu, HI, USA, 2011, pp. 976–979.

[11] B. Penzenstadler et al., “Safety, security, now sustainability: The non-
functional requirement for the 21st century,” Software, IEEE, vol. 31,
no. 3, pp. 40–47, May 2014.

[12] S. Naumann et al., “The greensoft model: A reference model for green
and sustainable software and its engineering,” Sustainable Computing:
Informatics and Systems, vol. 1, no. 4, p. 294–304, December 2011.

[13] C. Calero, M. F. Bertoa, and M. Ángeles Moraga, “Sustainability and
quality: Icing on the cake,” in RE4SuSy: Proceedings of the Second
International Workshop on RE for Sustainable Systems, Rio de Janeiro,
Brazil, 2013.

[14] C. C. Venters et al., “The blind men and the elephant: Towards an
empirical evaluation framework for software sustainability,” Journal of
Open Research Software, vol. 2, pp. 1–6, 2014.

[15] R. Chitchyan, W. Cazzola, and A. Rashid, “Engineering sustainability
through language,” in ICSE’15: Proceedings of the International Con-
ference on Software Engineering, Florence, Italy, 2015.

[16] C. Becker et al., “Sustainability design and software: The karlskrona
manifesto,” in ICSE’15: Proceedings of the International Conference
on Software Engineering, Florence, Italy, 2015.

[17] P. Bourque and R. E. Fairley, Eds., SWEBOK version 3.0: Guide to the
Software Engineering Body of Knowledge. IEEE Press, 2014.


