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Why should we care about soot emission?

• Soot emitted from combustion is the second largest 
source of climate change1;

• Atmospheric particulates, including emitted soot, cause 
4.6 million annual global deaths2;

• Soot has a short atmospheric lifetime (under 5.5 days3); 
therefore, emission reductions have an immediate effect;

• Biofuels usually have a lower tendency to form soot than
their hydrocarbon counterparts due to the presence of
oxygen atoms.
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Different fuels have different sooting tendencies
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Polyoxymethylene ethers (POMEs) as alternative diesel fuels 

Biomass → CH3OH → methyl−POMEs
√ Low soot emission
√ High cetane number (CN)
× Low energy density
× High water solubility

? Higher soot emission
√ High cetane number (CN)2
√ Higher energy density2
√ Lower water solubility2
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• Objectives:
1. Quantify the sooting tendencies and the soot-energy tradeoff of alkyl-POMEs;
2. Establish structure-soot relationships and explain these relationships by

numerical simulations and reaction pathways.

1. Arellano-Treviño et al. Synthesis of butyl-exchanged 
polyoxymethylene ethers as renewable diesel blendstocks
with improved fuel properties. Accepted by ACS Sustainable 
Chemistry & Engineering

2. Bartholet et al. Fuel 295 (2021): 120509.



POME nomenclature

• Alkyl Index (AI) = n1 + n2
• Oxymethylene Index (OI) = n
• Nomenclature = R1nR2 (For R1 and R2, “M” = methyl,

“E” = ethyl, ”P” = n-propyl, “B” = n-butyl)

Ø Increase AI: 𝐌𝟏𝐌
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How do we quantify the sooting tendencies of POMEs?

1. Sequentially dope 3000 ppm of a test compound (TC),
water (W), and n-heptane (HEP) in the fuel;

2. Measure the maximum soot concentration of each flame
with line-of-sight spectral radiance (LSSR);

3. Rescale to Yield Sooting Index (YSI)1;

YSI'( = YSI&)* − (YSI&)*−YSI+)×
LSSR&)* − LSSR'(
LSSR&)* − LSSR+

where YSIW ≡ 0, YSIHEP = 36.0*

The mole-based YSI is defined such that YSIbenzene = 100
and the YSI of a fuel that produces no soot is around 0.

Fuel:
Methane
Nitrogen
Test Compound

Oxidizer:
Air

(photo: C. S. McEnally)

1. McEnally et al. Proceedings of the Combustion 
Institute 37.1 (2019): 961-968.

*For YSITC < 36.0 except P1P, we used water and n-heptane (YSIW = 0, YSIHEP = 36.0) with 3000 ppm of dopants;
For YSITC > 36.0, we used n-heptane and toluene (YSIHEP = 36.0, YSITOL = 170.9) with 1000 ppm of dopants;



YSI and YSI/LHV of POMEs

• Both soot/energy and soot/mole follow the
same trend: MnM < EnE < PnP < BnB;

• All the POMEs have much lower soot/energy
and soot/mole than a certification diesel (CF
diesel1).

1. Mueller et al. Energy & Fuels 30.2 (2016): 1445-1461.

B3B
B2B
B1B
P3P
P2P
P1P
E3E
E2E
E1E

M5M
M4M
M3M
M1M

CF diesel

0 50 100 150 200 250

 YSI/LHV
 YSI

YSI

0 5 10 15 20 25 30 35
 YSI/LHV (mol/MJ)Soot/energy →

Soot/mole →

O O

O O

O O

O O

O OO O

O OO O O O

O O O

O O O O

O OO O O

O O O

O O O O

O O O

O O O O



Structure-YSI relationship

1. For a given AI, YSI decreases with OI;
2. For a given OI, YSI increases with AI;
3. For MnM, YSIM1M > 0 while YSIM4M & YSIM5M < 0.
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Simulation result

• CFD flame simulations with 
kinetic mechanisms1 was used 
to explain structure-property 
relationships;

1. As OI of MnMs increases,
more CH2O is formed;

2. MnMs decompose to ·CH3 at
lower HAB compared to 
methane;

3. Initial decomposition of M3M
is dominated by unimolecular
reactions.

1. POME decomposition mechanisms from Sun et al. 
Proceedings of the Combustion Institute 36 (2017) 1269–
1278
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Simplified reaction pathways

𝐏𝐎𝐌𝐄
𝐂"𝐎 𝐨𝐫 𝐂"𝐂 𝐛𝐨𝐧𝐝 𝐟𝐢𝐬𝐬𝐢𝐨𝐧

𝐫𝐚𝐝𝐢𝐜𝐚𝐥𝐬
𝐛𝐞𝐭𝐚 𝐬𝐜𝐢𝐬𝐬𝐢𝐨𝐧

…⇒ 𝐩𝐫𝐨𝐝𝐮𝐜𝐭𝐬

• E2E ⇒ C* + 3 C=O + C=C + *H (6 total products, 3 carbon in hydrocarbons)
1. CCOCOCOCC → 2/8 C* + *COCOCOCC → … ⇒ C* + 3 C=O + C=C + *H
2. CCOCOCOCC → 2/8 CC* + *OCOCOCC → … ⇒ H* + C=C + 3 C=O + *C 
3. CCOCOCOCC → 2/8 CCO* + *COCOCC → … ⇒ C* + 3 C=O + C=C + *H
4. CCOCOCOCC → 2/8 CCOC* + *OCOCC → … ⇒ H* + C=C + 3 C=O + *C

• R-(O-CH2)OI-O-R ⇒ (OI+1) CH2O + (AI/2 - 1) C2H4 + ·CH3 + ·H



Simplified reaction pathways

1. OI↑, CH2O↑ (dilution effect), YSI↓;
2. AI↑, aliphatic hydrocarbons such as

C2H4↑ (chemical effect), YSI↑;
3. For M4M & M5M, dilution effect of

CH2O > chemical effect of ·CH3, YSI < 0.

R-(O-CH2)OI-O-R ⇒ (OI+1) CH2O + (AI/2 - 1) C2H4 + ·CH3 + ·H

large dilution effect 
— CH2O does not 
lead to soot

large chemical effect 
— C2H4 leads strongly 
to soot

small chemical effect 
— ·CH3 leads weakly 
to soot
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Simplified reaction pathways

• YSI ~ :;<=>:?@ <AA<:B
C>@$B>D! <AA<:B
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Conclusion

1. Both soot/mol and soot/energy of POMEs follow the same trend: MnM < EnE < PnP <
BnB << certification diesel;

2. The sooting tendency of POMEs decreases with OI and increases with AI; 
3. Numerical simulation shows that more CH2O is formed as OI of MnMs increases and

the initial decomposition of M3M is dominated by unimolecular reactions;
4. Simplified reaction pathways based on simulation show that:

1) OI ↑, CH2O ↑, more dilution and less soot;
2) AI ↑, aliphatic hydrocarbons ↑, more soot;



Other POME talks from our collaborators

• Synthesis:
Present by Stephen Lucas and Fan Liang Chan, “Extended alkyl terminated polyoxymethylene 
ethers as a potential renewable diesel fuel blendstock: synthesis approaches and 
physicochemical property characterization”
Present by Martha Arellano-Trevino, “Butyl-terminated polyoxymethylene ethers as renewable 
diesel blendstocks with improved fuel properties”
• Mechanisms:
Present by Jatinder Sampathkumar and Katherine Lockwood, “Combined experimental and 
theoretical approach for understanding molecular structure effects on targeted fuel properties”
• LCA/TEA:
Presented by Dan Gaspar, ”Screening and identification of diesel bio-blendstocks to improve 
performance and reduce emissions”
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Back-up slides
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Back-up slides

1. Simple bond fission followed by beta scission;
2. Assume the C-O and C-C bond fissions happen simultaneously and are

much faster than other reactions (C-H breaks if it’s the only beta bond).
ØRate constants of C-C fission is much higher than other reactions;
Ø88% n-propyl (CCC*) and 94% n-butoxyl (CCCO*) react via C-C fission.

reaction k T A n Ea source*

(rxn-dependent) (K) (rxn-dependent) (-) (kJ/mol)

CCC*→ C=C + C* 4.81E+09 2000 6.15E+17 -4.75 160 JPCA 121.6 (2017): 1261-1280.

CCC*→ C=CC + H* 6.32E+08 2000 7.66E+17 -5.3 180 JPCA 121.6 (2017): 1261-1280.

CCCCO*→ CCC* + C=O 1.57E+12 2000 2.92E+13 0.47 63.5 JPCA 117.9 (2013): 1890-1906.

CCCCO* → C*CCCO 6.51E+10 2000 1.28E+08 3.63 11.3 PCCP 12.28 (2010): 7782-7793.

CCCCO* → CC*CCO 2.94E+10 2000 1.19E+06 6.2 28.1 PCCP 12.28 (2010): 7782-7793.



Back-up slides

iP1iP ⇒ C* + CC=O + C=O + C=CC + *H (5 #total products, 4 C# in hydrocarbons)
1. CC(C)OCOC(C)C → 4/8 C* + CC*OCOC(C)C → C* + CC=O + *COC(C)C ⇒ C* + CC=O + 

C=O + C=CC + *H
2. CC(C)OCOC(C)C → 2/8 CC*C + *OCOC(C)C → H* + CC=C + O=C + *OC(C)C ⇒ H* + 

CC=C + O=C + O=CC + *C
3. CC(C)OCOC(C)C → 2/8 CC(C)O* + *COC(C)C → C* + CC=O + C=O + *C(C)C ⇒ C* + 

CC=O + C=O + C=CC + *H

P1P ⇒ C* + 2 C=O + 2 C=C + *H (6 #total products, 5 C# in hydrocarbons)
1. CCCOCOCCC → 2/8 C* + *CCOCOCCC ⇒ C* + 2 C=O + 2 C=C + *H
2. CCCOCOCCC → 2/8 CC* + *COCOCCC ⇒ H* + 2 C=O + 2 C=C + *C 
3. CCCOCOCCC → 2/8 CCC* + *OCOCCC ⇒ C* + 2 C=O + 2 C=C + *H
4. CCCOCOCCC → 2/8 CCCO* + *COCCC ⇒ H* + 2 C=O + 2 C=C + *C


