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Why should we care about soot emission?

« Soot emitted from combustion is the second largest
source of climate change’;

« Atmospheric particulates, including emitted soot, cause
4.6 million annual global deaths?;

« Soot has a short atmospheric lifetime (under 5.5 days?3);
therefore, emission reductions have an immediate effect;

TEM image of soot particles
from a flame (photo: J. Zhu)

« Biofuels usually have a lower tendency to form soot than
their hydrocarbon counterparts due to the presence of
oxygen atoms.

1.  Shindell et al. Science 335.6065 (2012): 183-189.

- —— — 2. Stanaway et al., The Lancet 392 (2018) 1923-1994
‘ S S P Q I N G 2 ‘ ’ 2 ] = SECO NTURY | 3. Lundetal npjClimate and Atmospheric Science 1.1 (2018): 1-8.
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Different fuels have different sooting tendencies
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(photo: C. S. McEnally)
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Polyoxymethylene ethers (POMEs) as alternative diesel fuels

IR e RAOADR,

polyoxymethylene methyl ether polyoxymethylene alkyl ether
(methyl-POMEs) (alkyl-POMEs)
C2—C4 alcohol
Biomass — CH;OH — methyl-POMEs ™, alkyl-POMEs'
o Nl \ Low soot emission ? Higher soot emission
v High cetane number (CN) \ High cetane number (CN)?
x Low energy density \ Higher energy density?
x High water solubility \ Lower water solubility?

« Objectives:
1.  Quantify the sooting tendencies and the soot-energy tradeoff of alkyl-POMEs;

2. Establish structure-soot relationships and explain these relationships by
numerical simulations and reaction pathways.

(photo J. Zhu)

1. Arellano-Trevifio et al. Synthesis of butyl-exchanged

. T 2 — s polyoxymethylene ethers as renewable diesel blendstocks
A C S S P Q I N G 2 O 2 ] ' :THE 'S OND | ! with improved fuel properties. Accepted by ACS Sustainable
4 % 3 — Chemistry & Engineering
" 2.  Bartholet et al. Fuel 295 (2021): 120509.




POME nomenclature

polyoxymethylene ethers (POMEs)
| i /O\/O\
Lo O :
R /f \CHZ% \:NR2 M1M (dimethoxymethane)
15t end-group backbone Co 27 end-group \/\/O\/O\/\/
n, C-atoms \ n C-at . ny C-atoms ,
01O-atoms : Z+1 E(l)(-);?gms : OzO-atoms B1B (dIbUtOXymethane)
« Alkyl Index (Al) = n, + n, _0._0._0._ 0,
* Oxymethylene Index (Ol) = n M3M (2,4,6,8-tetraoxanonane)
« Nomenclature = RynR, (For R, and R,, “M” = methyl,
“‘E” = ethyl, "P” = n-propyl, “B” = n-butyl) .0._0._.0._0._0._0,
> |ncrease Al: M1M riu()l)-l B1B M5M (2,4,6,8,10,12-hexa0xatridecane)

> Increase Ol: M1IM - M3M - M5M
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How do we quantify the sooting tendencies of POMEs?

1. Sequentially dope 3000 ppm of a test compound (TC),
water (W), and n-heptane (HEP) in the fuel;

2. Measure the maximum soot concentration of each flame
with line-of-sight spectral radiance (LSSR);

3. Rescale to Yield Sooting Index (YSI)’;

LSSRyzp — LSSRyy

where YSI, =0, YSl gp = 36.0*

YSITC — YSIHEP - (YSIHEP—YSIw)X

The mole-based YSI is defined such that YSlpen,ene = 100 II\:/llﬁlr;ane g\;:idizeri
and the YSI of a fuel that produces no soot is around O. Nitrogen

*For YSItc < 36.0 except P1P, we used water and n-heptane (YSIy = 0, YSIygp = 36.0) with 3000 ppm of dopants; TeSt Compound
For YSlrc > 36.0, we used n-heptane and toluene (YSlygp = 36.0, YSIroL = 170.9) with 1000 ppm of dopants; (photo: C. S. McEnally)

1. McEnally et al. Proceedings of the Combustion
Institute 37.1 (2019): 961-968.
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YSI and YSI/LHV of POMEs

Soot/energy -  YSI/LHV (mol/MJ)
« Both soot/energy and soot/mole follow the 0 5 10 15 20 25 30 35

same trend: MnM < EnE < PnP < BnB: CF diesel|

M1M
M3M
M4M
M5M
E1E
E2E
E3E
P1P
P2P
P3P
B1B
B2B
B3B

« All the POMEs have much lower soot/energy
and soot/mole than a certification diesel (CF
diesel?).

~o~_0._ 0 _O_~_- EEEEEE YSI/LHV
e 7 Vs

T T T T T T
0 50 100 150 200 250

- 1. Mueller etal. Energy & Fuels 30.2 (2016): 1445-1461.
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Structure-YSlI relationship

1. For a given Al, YSI decreases with Ol; 50 . | . .
2. Foragiven Ol, YSI increases with Al } % v BnB (Al =8)
40 - Tl A PnP (Al=6)
3. For MnM, YSI;1m > 0 while YSIyum & YSIysm < 0. % ° EnE(AI=4)| |
= MnM (Al = 2)
é 307 §\\‘\\\\§ OO0 OO
é 20 - \?/
R IS
2 by
1
-10 T T T T 1
1 2 3 4 5

Oxymethylene Index (Ol)
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Simulation result

« CFD flame simulations with
kinetic mechanisms' was used
to explain structure-property
relationships;

1. As Ol of MnMs increases,
more CH,0 is formed;

2. MnMs decompose to -CH; at
lower HAB compared to
methane;

3. Initial decomposition of M3M
is dominated by unimolecular
reactions.

ACS SPRING 2021

Simulated centerline profile of the flames with Xyop.nt = 1000 ppm
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four-centered H-atom abstraction
elimination (+-H/-CHg)
0=CH, + _O_0O_°0 8, .CgH;O4 + Hy/CH
2T YT T 55w 11.4% o e
. C-Ofission /""" 17 77 1777 1777170 C-O fission
HsC-0 + . _0.__0._0 =—— ' OO0 0 0 | — OO0 _0_0. + CHs
19.3% W eemmemmmmemeoiaoo ! 5.4%
M3M
(2,4,6,8-tetraoxanonane)
C-O fission C-O fission
O + .O O O -— _— > O . + .O O
PN NN TN 19.3% 19.3% IO TN AN

1. POME decomposition mechanisms from Sun et al.
Proceedings of the Combustion Institute 36 (2017) 1269—
1278




Simplified reaction pathways

C—-0 or C—C bond fission . beta scission
POME >radicals > ... = products

« E2E = C*+ 3 C=0 + C=C + *H (6 total products, 3 carbon in hydrocarbons)

CCOCOCOCC — 2/8 C*+*COCOCOCC - ...=C*+3C=0+C=C +*H
CCOCOCOCC — 2/8 CC* + *OCOCOCC —» ...=>H*+C=C+3C=0+*C
CCOCOCOCC — 2/8 CCO*+*COCOCC —» ...=C*+3C=0+C=C +*H
CCOCOCOCC — 2/8 CCOC* +*OCOCC - ...=>H*+C=C+3C=0+*C

s LN -

+ R-(0-CH,)o-O-R = (OI+1) CH,O + (Al/2 - 1) C,H, + -CH5 + ‘H
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Simplified reaction pathways

R'(O'CH2)0|'O'R = (O|+1) CHzo + (A|/2 - 1) CzH4 + CH3 + H
large dilution effect large chemical effect small chemical effect
— CH,0 does not — C,oH,4 leads strongly — -CH; leads weakly
lead to soot to soot to soot
1. Olf, CH,O1 (dilution effect), YSI|; ;% —
2. Al1, aliphatic hydrocarbons such as ] I N AR
C,H,1 (chemical effect), YSI1; N . N
3. For M4AM & M5M, dilution effect of 2 %
CH,O > chemical effect of -CH;, YSI < 0. 8 $- e ;
0- % \\\\\ _ =
_0._ 0L ﬁ ﬁ

Oxymethylene Index (Ol)
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Simplified reaction pathways

YS| ~ chemical effect _ #Cin hydrocarbons

dilution effect #total products
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Conclusion

1. Both soot/mol and soot/energy of POMEs follow the same trend: MnM < EnE < PnP <
BnB << certification diesel;

The sooting tendency of POMEs decreases with Ol and increases with Al;

Numerical simulation shows that more CH,0 is formed as Ol of MnMs increases and
the initial decomposition of M3M is dominated by unimolecular reactions;

4. Simplified reaction pathways based on simulation show that:
1) Ol 1, CH,O 1, more dilution and less soot;

2) Al 1, aliphatic hydrocarbons 1, more soot;
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Other POME talks from our collaborators

« Synthesis:

Present by Stephen Lucas and Fan Liang Chan, “Extended alkyl terminated polyoxymethylene
ethers as a potential renewable diesel fuel blendstock: synthesis approaches and
physicochemical property characterization”

Present by Martha Arellano-Trevino, “Butyl-terminated polyoxymethylene ethers as renewable
diesel blendstocks with improved fuel properties”

« Mechanisms:

Present by Jatinder Sampathkumar and Katherine Lockwood, “Combined experimental and
theoretical approach for understanding molecular structure effects on targeted fuel properties”

« LCA/TEA:

Presented by Dan Gaspar, "Screening and identification of diesel bio-blendstocks to improve
performance and reduce emissions”
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Back-up slides
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Back-up slides

1. Simple bond fission followed by beta scission;

2. Assume the C-O and C-C bond fissions happen simultaneously and are
much faster than other reactions (C-H breaks if it's the only beta bond).
» Rate constants of C-C fission is much higher than other reactions;

»88% n-propyl (CCC*) and 94% n-butoxyl (CCCO*) react via C-C fission.

e O S N N

(rxn-dependent) (K) (rxn-dependent) (-) (kJ/mol)
CCC*— C=C+C* 4.81E+09 2000 6.15E+17 -4.75 160 JPCA 121.6 (2017): 1261-1280.
CCC*— C=CC + H* 6.32E+08 2000 7.66E+17 -5.3 180 JPCA 121.6 (2017): 1261-1280.
CCCCO*-> CCC*+C=0 1.57E+12 2000 2.92E+13 0.47 63.5 JPCA 117.9 (2013): 1890-1906.
CCCCOo* = C*Ccco 6.51E+10 2000 1.28E+08 3.63 11.3 PCCP 12.28 (2010): 7782-7793.
CCCCO* - CCc*Ccco 2.94E+10 2000 1.19E+06 6.2 28.1 PCCP 12.28 (2010): 7782-7793.
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Back-up slides

iP1iP = C* + CC=0 + C=0 + C=CC + *H (5 #total products, 4 C# in hydrocarbons)

1. CC(C)OCOC(C)C — 4/8 C* + CC*OCOC(C)C — C* + CC=0 + *COC(C)C = C* + CC=0 +
C=0 + C=CC + *H

2. CC(C)OCOC(C)C — 2/8 CC*C + *OCOC(C)C — H* + CC=C + 0=C + *OC(C)C = H* +
CC=C + O=C + 0=CC + *C

3. CC(C)OCOC(C)C — 2/8 CC(C)O* + *COC(C)C — C* + CC=0 + C=0 + *C(C)C = C* +
CC=0 + C=0 + C=CC + *H

P1P = C*+ 2 C=0 + 2 C=C + *H (6 #total products, 5 C# in hydrocarbons)
1. CCCOCOCCC — 2/8 C*+*CCOCOCCC=C*+2C=0+2C=C+"*H
2. CCCOCOCCC —2/8CC*+*COCOCCC=>H*"+2C=0+2C=C+*C
3. CCCOCOCCC — 2/8 CCC*+*OCOCCC=>C*+2C=0+2C=C+*H
4. CCCOCOCCC — 2/8 CCCO* +*COCCC > H*"+2C=0+2C=C +*C
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