Analysis of Multiple Sclerosis Lesions via Spatially Varying Coefficients

Tian Ge^{1,2}, Nicole Müller-Lenke³, Kerstin Bendfeldt³, Thomas E. Nichols², and Timothy D. Johnson⁴

¹Fudan University, ²University of Warwick,

³University Hospital Basel, and ⁴University of Michigan

June 19, 2013

Multiple Sclerosis

- An autoimmune disease of the central nervous system
- Neuronal demyelination and lesions in the brain and spinal cord

Multiple Sclerosis

- An autoimmune disease of the central nervous system
- Neuronal demyelination and lesions in the brain and spinal cord

T1 black-hole lesions

T2 lesions

Multiple Sclerosis

- An autoimmune disease of the central nervous system
- Neuronal demyelination and lesions in the brain and spinal cord
- Symptoms almost any neurological symptom or sign
- Disability measures
 - Expanded Disability Status Scale (EDSS) overall score of 7 functional systems subscores
 - Paced Auditory Serial Addition Test (PASAT) auditory speed/flexibility + calculation ability
- Clinical subtypes clinically isolated syndrome (CIS); relapsed-remitting (RLRM); primary progressive (PRP); secondary chronic progressive (SCP); progressive relapsing (PRL)
- Imaging T1, T2, Gadolinium-enhanced T1, DTI, etc

Quantitative Analysis of Classical T1/T2 Images

- Segmented, registered to standard template, thresholded to binary images that mark the exact location of lesions
- Compare lesion probability maps cross-sectionally or longitudinally [e.g., Holland et al., 2012; Filli et al., 2012]

- hard to associate lesion locations with certain covariates of interest

• Voxel-based lesion-symptom mapping (massive univariate method) [e.g., Bates et al., 2003]

- ill suited to the binary nature of the data and cannot account for the spatial structure

• Smooth lesion masks by a Gaussian kernel [e.g., Charil et al., 2003, 2007; Kincses et al., 2011]

- does not completely eliminate the non-Gaussian nature of the data and requires an arbitrary choice of smoothing parameter (different kernels might give different results)

- To appropriately model binary lesion maps
- To determine the relationship between local lesion incidence and subject specific covariates (e.g., age, gender, disease duration, disability scores, etc)

The Spatially Varying Coefficient Model

Voxel-wise generalized linear mixed model (Probit regression)

 $\Phi^{-1}[\Pr(Y_i(s_j) = 1 \mid \cdot)] = \mathbf{x}_i^\top [\boldsymbol{\alpha} + \boldsymbol{\beta}(s_j)] + w(s_j)\gamma$

• Subject $i = 1, \cdots, N$; voxel $s_j, j = 1, \cdots, M$

- Outcome $Y_i(s_j) \in \{0,1\}$
- $\bullet \ \Phi$ the cumulative distribution function for the standard normal distribution
- x_i subject specific covariates (e.g., age, gender, etc);
 w(s_j) spatially varying covariates (e.g., atlas white matter probability image)
- α and γ spatially constant coefficients (spatial fixed effects);
 β(s_i) spatially varying coefficients (spatial random effects)

Multivariate Markov Random Field

- View the spatially varying coefficients as latent spatial processes
- Multivariate Conditional Autoregressive (MCAR) model prior [Besag, 1993; Mardia, 1988]

$$[\boldsymbol{\beta}(s_j) \mid \boldsymbol{\beta}(s_{-j}), \boldsymbol{\Sigma}] \sim \text{MVN}\left(\frac{\sum_{s_r \in \partial s_j} \boldsymbol{\beta}(s_r)}{n(s_j)}, \frac{\boldsymbol{\Sigma}}{n(s_j)}\right)$$

- $s_j \sim s_k$ neighboring voxels; ∂s_j the set of neighbors of s_j ; $n(s_j)$ the number of neighbors of s_j
- Σ positive definite matrix (learn from data)
- Other priors
 - $\pi({m lpha}) \propto 1$ and $\pi(\gamma) \propto 1$
 - Wishart prior $\Sigma^{-1} \sim W(
 u, \mathsf{I})$

Application and Implementation

- Dimensionality of the data set
 - 250 subjects, 5 clinical subtypes, 3D T2-lesion images, 274,596 whole-brain in-mask voxels
 - Subject specific covariates age, gender, disease duration, EDSS, PASAT (associated with spatially varying coefficients)
 - Spatially varying covariates white matter probability image
 - Random intercept for each subtype
 - Approximately 70 million observed outcomes and 2.5 million spatially varying coefficients!
- Implementation (computation completed under 8 hours)
 - Latent variable representation [Albert and Chib, 1993]
 - Gibbs sampler
 - GPU and parallelization (50 times faster than using a CPU)

Empirical Lesion Probabilities

T. Ge et al.

Analysis of MS Lesions

Estimated Lesion Probabilities

T. Ge et al.

Analysis of MS Lesions

Spatially Varying Coefficients

Voxel-wise Firth Regression Coefficients

Spatially Varying Coefficients: EDSS & PASAT

T. Ge et al. Analysis of MS Lesions 1

Leave-one-out Classification Results

Bayesian Spatial Model						Firth Logistic Regression						
(Average classification rate: 82.8%)						(Average classification rate: 30.0%)						
	CIS	RLRM	PRP	SCP	PRL		CIS	RLRM	PRP	SCP	PRL	
CIS	1.000	0.000	0.000	0.000	0.000	CIS	0.000	1.000	0.000	0.000	0.000	
RLRM	0.243	0.734	0.000	0.023	0.000	RLRM	0.052	0.821	0.006	0.087	0.034	
PRP	0.154	0.000	0.846	0.000	0.000	PRP	0.000	0.538	0.000	0.385	0.077	
SCP	0.140	0.000	0.00	0.860	0.000	SCP	0.000	0.302	0.023	0.582	0.093	
PRL	0.100	0.000	0.100	0.100	0.700	PRL	0.000	0.400	0.000	0.500	0.100	

 CIS - 11 subjects; RLRM - 173 subjects; PRP - 13 subjects; SCP - 43 subjects; PRL - 10 subjects.

Leave-one-out Classification Results

Bayesian Spatial Model						Naïve Bayesian Classifier						
(Average classification rate: 82.8%)						(Average classification rate: 24.5%)						
	CIS	RLRM	PRP	SCP	PRL		CIS	RLRM	PRP	SCP	PRL	
CIS	1.000	0.000	0.000	0.000	0.000	CIS	0.000	1.000	0.000	0.000	0.000	
RLRM	0.243	0.734	0.000	0.023	0.000	RLRM	0.046	0.757	0.017	0.093	0.087	
PRP	0.154	0.000	0.846	0.000	0.000	PRP	0.077	0.769	0.000	0.077	0.077	
SCP	0.140	0.000	0.00	0.860	0.000	SCP	0.023	0.744	0.023	0.070	0.140	
PRL	0.100	0.000	0.100	0.100	0.700	PRL	0.000	0.600	0.000	0.000	0.400	

 CIS - 11 subjects; RLRM - 173 subjects; PRP - 13 subjects; SCP - 43 subjects; PRL - 10 subjects.

- A Bayesian spatial generalized linear mixed model with spatially varying coefficients
- Respects binary nature of the data
- Exploits the spatial structure and produces regularized estimates of lesion maps without a fixed smoothing parameter
- Explicitly models covariates and allows for spatially varying coefficients
- Detects spatial dependence between lesion location and covariates
- Suitable to model any patterns of lesion data
- Can be easily extended to include other covariates of interest
- Potentials in classification of different subtypes of MS

References

- Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. JASA 88: 669-679.
- Bates, E. et al. (2003). Voxel-based lesion-symptom mapping. Nature Neurosci. 6: 448-449.
- Besag, J. (1993). Towards Bayesian image analysis. Journal of Applied Statistics 20: 107-119.
- Charil, A. et al. (2003). Statistical mapping analysis of lesion location and neurological disability in multiple sclerosis: application to 452 patient data sets. NeuroImage 19: 532-544.
- Charil, A. et al. (2007). Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. NeuroImage 34: 509-517.
- Filli, L. et al. (2012). Spatiotemporal distribution of white matter lesions in relapsing-remitting and secondary progressive multiple sclerosis. Multiple Sclerosis Journal 18: 1577-1584.
- Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80: 27-38.
- Gelfand, A. E. et al. (2003). Spatial modeling with spatially varying coefficient processes. JASA 98: 387-396.
- Holland, C. M. et al. (2012). The relationship between normal cerebral perfusion patterns and white matter lesion distribution in 1,249 patients with multiple sclerosis. Journal of Neuroimaging 22: 129-136.
- Kincses, Z. T. et al. (2011). Lesion probability mapping to explain clinical deficits and cognitive performance in multiple sclerosis. Multiple Sclerosis Journal 17: 681-689.
- Mardia, K. V. (1988). Multi-dimensional multivariate Gaussian Markov random fields with application to image processing. Journal of Multivariate Analysis 24: 265-284.

- Dr. Thomas E. Nichols, Department of Statistics & Warwick Manufactory Group, University of Warwick, UK
- Dr. Timothy D. Johnson, Department of Biostatistics, School of Public Health, University of Michigan, USA
- Drs. Ernst Wilhelm Radü, Nicole Müller-Lenke, Kerstin Bendfeldt, Medical Image Analysis Center (MIAC), University Hospital Basel, Switzerland
- Dr. Jianfeng Feng, Department of Computer Science, University of Warwick, UK; Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, China

Thanks for Your Attention!