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Multiple Sclerosis

An autoimmune disease of the central nervous system

Neuronal demyelination and lesions in the brain and spinal cord

Symptoms - almost any neurological symptom or sign

Disability measures

Expanded Disability Status Scale (EDSS) - overall score of 7
functional systems subscores
Paced Auditory Serial Addition Test (PASAT) - auditory
speed/flexibility + calculation ability

Clinical subtypes - clinically isolated syndrome (CIS);
relapsed-remitting (RLRM); primary progressive (PRP); secondary
chronic progressive (SCP); progressive relapsing (PRL)

Imaging - T1, T2, Gadolinium-enhanced T1, DTI, etc
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Quantitative Analysis of Classical T1/T2 Images

Segmented, registered to standard template, thresholded to binary
images that mark the exact location of lesions

Compare lesion probability maps cross-sectionally or longitudinally
[e.g., Holland et al., 2012; Filli et al., 2012]
- hard to associate lesion locations with certain covariates of interest

Voxel-based lesion-symptom mapping (massive univariate method)
[e.g., Bates et al., 2003]
- ill suited to the binary nature of the data and cannot account for
the spatial structure

Smooth lesion masks by a Gaussian kernel
[e.g., Charil et al., 2003, 2007; Kincses et al., 2011]
- does not completely eliminate the non-Gaussian nature of the data
and requires an arbitrary choice of smoothing parameter (different
kernels might give different results)
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Our Motivation

To appropriately model binary lesion maps

To determine the relationship between local lesion incidence
and subject specific covariates (e.g., age, gender, disease
duration, disability scores, etc)
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The Spatially Varying Coefficient Model

Voxel-wise generalized linear mixed model (Probit regression)

Φ−1[Pr(Yi (sj) = 1 | ·)] = x>i [α + β(sj)] + w(sj)γ

Subject i = 1, · · · ,N; voxel sj , j = 1, · · · ,M

Outcome Yi (sj) ∈ {0, 1}

Φ - the cumulative distribution function for the standard
normal distribution

xi - subject specific covariates (e.g., age, gender, etc);

w(sj) - spatially varying covariates (e.g., atlas white matter
probability image)

α and γ - spatially constant coefficients (spatial fixed effects);

β(sj) - spatially varying coefficients (spatial random effects)
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Multivariate Markov Random Field

View the spatially varying coefficients as latent spatial processes

Multivariate Conditional Autoregressive (MCAR) model prior
[Besag, 1993; Mardia, 1988]

[β(sj) | β(s−j),Σ] ∼ MVN

(∑
sr∈∂sj β(sr )

n(sj)
,

Σ

n(sj)

)

sj ∼ sk - neighboring voxels; ∂sj - the set of neighbors of sj ;
n(sj) - the number of neighbors of sj

Σ - positive definite matrix (learn from data)

Other priors

π(α) ∝ 1 and π(γ) ∝ 1

Wishart prior – Σ−1 ∼W (ν, I)
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Application and Implementation

Dimensionality of the data set

250 subjects, 5 clinical subtypes, 3D T2-lesion images,
274,596 whole-brain in-mask voxels

Subject specific covariates - age, gender, disease duration,
EDSS, PASAT (associated with spatially varying coefficients)

Spatially varying covariates - white matter probability image

Random intercept for each subtype

Approximately 70 million observed outcomes and 2.5 million
spatially varying coefficients!

Implementation (computation completed under 8 hours)

Latent variable representation [Albert and Chib, 1993]

Gibbs sampler

GPU and parallelization (50 times faster than using a CPU)
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Empirical Lesion Probabilities

     CIS                         RLRM                      PRP                        SCP                         PRL
 11 Subj                 173 Subj                13 Subj                  43 Subj                 10 Subj
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Estimated Lesion Probabilities

     CIS                         RLRM                      PRP                        SCP                         PRL
 11 Subj                 173 Subj                13 Subj                  43 Subj                 10 Subj
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Spatially Varying Coefficients

Age                    Gender                      DD                        EDSS                     PASAT
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Voxel-wise Firth Regression Coefficients

Age                    Gender                      DD                        EDSS                     PASAT
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Spatially Varying Coefficients: EDSS & PASAT
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Leave-one-out Classification Results

Bayesian Spatial Model

(Average classification rate: 82.8%)

CIS RLRM PRP SCP PRL

CIS 1.000 0.000 0.000 0.000 0.000

RLRM 0.243 0.734 0.000 0.023 0.000

PRP 0.154 0.000 0.846 0.000 0.000

SCP 0.140 0.000 0.00 0.860 0.000

PRL 0.100 0.000 0.100 0.100 0.700

Firth Logistic Regression

(Average classification rate: 30.0%)

CIS RLRM PRP SCP PRL

CIS 0.000 1.000 0.000 0.000 0.000

RLRM 0.052 0.821 0.006 0.087 0.034

PRP 0.000 0.538 0.000 0.385 0.077

SCP 0.000 0.302 0.023 0.582 0.093

PRL 0.000 0.400 0.000 0.500 0.100

CIS - 11 subjects; RLRM - 173 subjects; PRP - 13 subjects;
SCP - 43 subjects; PRL - 10 subjects.
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Naı̈ve Bayesian Classifier

(Average classification rate: 24.5%)

CIS RLRM PRP SCP PRL

CIS 0.000 1.000 0.000 0.000 0.000

RLRM 0.046 0.757 0.017 0.093 0.087

PRP 0.077 0.769 0.000 0.077 0.077

SCP 0.023 0.744 0.023 0.070 0.140

PRL 0.000 0.600 0.000 0.000 0.400

CIS - 11 subjects; RLRM - 173 subjects; PRP - 13 subjects;
SCP - 43 subjects; PRL - 10 subjects.
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Summary

A Bayesian spatial generalized linear mixed model with spatially
varying coefficients

Respects binary nature of the data

Exploits the spatial structure and produces regularized estimates of
lesion maps without a fixed smoothing parameter

Explicitly models covariates and allows for spatially varying
coefficients

Detects spatial dependence between lesion location and covariates

Suitable to model any patterns of lesion data

Can be easily extended to include other covariates of interest

Potentials in classification of different subtypes of MS
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