
A
c
m

N
N

h

�

�

�

�

�

a

A
R
R
A
A

K
Q
A
C
n
A
E
L

E

0
h

Analytica Chimica Acta 759 (2013) 28– 42

Contents lists available at SciVerse ScienceDirect

Analytica  Chimica  Acta

jou rn al hom epa ge: www.elsev ier .com/ locate /aca

ssessment  of  applicability  domain  for  multivariate
ounter-propagation  artificial  neural  network  predictive  models  by
inimum  Euclidean  distance  space  analysis:  A  case  study�
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The  concept  of  applicability  domain
(AD)  in  QSAR  modeling  is  discussed.
The  AD  assessment  method  for  non-
linear  neural  network  predictive
models  is proposed.
The  counter-propagation  artificial
neural  network  (CP-ANN)  was
applied  for  modeling.
Minimal  Euclidean  distance  space
(MEDS)  of CP-ANN  model  was
defined  and  analyzed.
The  resulting  outliers  coincide  with
those  from  linear  models  (leverage
based  AD).
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a  b  s  t  r  a  c  t

Alongside  the  validation,  the  concept  of  applicability  domain  (AD)  is  probably  one  of  the  most  important
aspects  which  determine  the  quality  as  well  as  reliability  of  the established  quantitative  structure–activity
relationship  (QSAR)  models.  To  date,  a variety  of  approaches  for AD estimation  have  been  devised  which
can be  applied  to particular  type  of QSAR  models  and  their practical  utilization  is  extensively  elaborated
in  the literature.  The  present  study  introduces  a novel,  simple,  and  effective  distance-based  method  for
estimation  of  the  AD  in  case  of  developed  and  validated  predictive  counter-propagation  artificial  neural
network  (CP  ANN)  models  through  a  proficient  exploitation  of  the  Euclidean  distance  (ED)  metric  in  the
structure-representation  vector  space.  The  performance  of  the  method  was  evaluated  and  explained  in  a
ounter-propagation artificial neural
etwork
pplicability domain

case  study  by  using  a pre-built  and  validated  CP  ANN  model  for prediction  of  the  transport  activity  of  the
transmembrane  protein  bilitranslocase  for  a diverse  set  of  compounds.  The  method  was  tested  on  two
more datasets  in  order  to  confirm  its performance  for  evaluation  of the  applicability  domain  in  CP ANN
uclidean distance models.  The  chemical  compounds  determined  as  potential  outliers,  i.e.,  outside  of  the  CP  ANN  model  AD,

everage approach were  confirmed  in  a comparat

offers a  graphical  depiction  of  

Abbreviations: QSAR, quantitative structure–activity relationship; KANN, Kohonen art
uclidean distance; MEDS, minimum Euclidean distance space; AD, applicability domain.
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. Introduction

In the past 40 years, the interest in the quantitative
tructure–activity relationship (QSAR) as a concept is undoubtly
ncreased. Just in the period between 1975 and 2011, an incredi-
le number of approximately 11,000 published articles observing
he problem of QSAR can be found (Web of Knowledge), which
ata clearly indicate the emergence and usefulness of the devel-
ped QSAR models for solving a variety of chemical problems
1,2]. Beside these facts, the quality as well as reliability of the
SAR models must be also taken into account [3].  Therefore, the
ECD principles for validation of the QSAR models for regulatory
urposes, clearly stated that a model should be used within the
oundaries of its applicability domain (AD) [4].  According to the
etubal’s Workshop guidance and acceptability criteria for appli-
ation of QSAR models for chemical management purposes, the AD
f a QSAR model is defined as a “physico-chemical, structural, or bio-

ogical space, knowledge or information on which the training set of
he model has been developed, and for which it is applicable to make
redictions for new compounds. The AD of a QSAR should be described

n terms of the most relevant parameters, i.e., usually those that are
escriptors of the model”  [5].

Depending on the modeling strategy utilized, several
pproaches for assessing the AD were developed [6] that can
e applied to a particular type of QSAR model (The Report and
ecommendations of ECVAM Workshop 52) [7].  A comprehensive
escription of these approaches can be found in the review articles
y Jaworska and Nikolova-Jeliazkova [8,9]. As described there,
he methodologies for assessment of the AD of QSAR models
re classified in four major categories: (1) range-based methods,
2) geometric methods, (3) distance-based methods, and (4)
robability density distribution methods.

Distance (similarity) metrics are very frequently used in QSAR
or solving different chemical problems [10–12] and their practical
tilization in the model’s AD evaluation is recently described in the

iterature [13,14]. Among the various distance metrics for model’s
D assessment (e.g., Euclidean, Mahalanobis, Manhattan, Hotelling
2, and Leverage), the Euclidean distance (ED) metric is one of the
ost commonly utilized. In its simplest form, it can be defined as

n “ordinary distance”, i.e., a line connecting two  points A and B
efined by their two-dimensional coordinates A(x1, x2) and B(y1,
2). This definition is mainly related to two-dimensional space,
.e., Euclidean plane [15]. However, the majority of the statistical

ethods used in the QSAR modeling (including artificial neural
etworks) deal with the problem of modeling multidimensional
ata and therefore the ED between a query point (e.g., a train-

ng/test/external validation set compound) and the centroid of the
odel can be determined within the framework of a more com-

lex high-dimensional Euclidean space [16,17]. The query object ni
e.g., a compound from the training/test/external validation set) is
efined as a vector of independent or input variables (e.g., molec-
lar descriptors), whereas the model’s centroid is usually defined
s a multidimensional averaged vector obtained by averaging the
nput vectors for all objects representing the compounds in the
ataset.

In non-linear modeling methods such as artificial neural
etworks (ANNs), there are two general strategies for determin-

ng the activation signal of a neuron, by either calculating the dot
roduct (vector scalar product) between the input vector and the
eight vector (synaptic efficacy) for each neuron, or by determin-

ng similarity (Euclidean distance) between the input vector and
he neuron in the Kohonen type of neural networks. In both cases,

he ANNs algorithm computes the so-called net input, which proce-
ure runs repeatedly for all the neurons constructing the network.

n the learning strategy of the Kohonen or self-organizing type of
eural networks, the neuron with the maximal output of the dot
ica Acta 759 (2013) 28– 42 29

product or the minimal ED is chosen as the “winning” or “central”
neuron [18,19]. This iterative procedure (i.e., learning of the net-
work) results in calculation of the minimum EDs for each input
object (compound) to the “central” neuron and construction of a
so-called “minimum ED space” (MEDS) [20]. Therefore, the model’s
coverage, i.e., the boundary to which a model is applicable could be
simply defined by selection of the training set object with maximal
value for ED within the MEDS (Fig. 1).

Comparing to some recommended distance-based methods
widely used for solving the AD problem for linear models (e.g., the
well known leverage approach [3]), a very small number of pub-
lications observing the problem of distance-based AD estimation
for non-linear models can be found in the literature [21–23].  In
a comprehensive comparative study published recently, Fjodorova
et al. demonstrated a successful utilization of ED metrics for estima-
tion of AD in case of non-linear ANNs-based classification models
[24].

This study presents an effective methodology for graphical
assessment of AD for non-linear ANNs-based prediction models
(descriptor space vs. model response space) – counter-propagation
artificial neural network (CP ANN) models by taking into account
the so-called “minimum ED space” (MEDS) as a function of the total
number of objects (compounds from the training/test/external vali-
dation set), coupled with a standard residual analysis. We  focused
on a detailed explanation along with a graphical depiction of the
AD for three pre-built and validated CP ANN models, as well as on
a thorough in-depth assessment of the detected outliers. Further-
more, the same case studies were approached by the partial least
squares (PLS) method and the leverage-based AD assessment of
the models was  performed for the purpose of comparison of both
methods.

2. Data and computational methods

In order to define and assess the practical applicability for a
given non-linear ANNs model utilizing the MEDS methodology, a
developed and validated ANN model must be available. For these
purposes we  used our previously published CP ANN predictive
models developed for three different datasets. The data, modeling
strategies utilized as well as the CP ANN prediction models devel-
oped are already elaborated in details [25–27],  and therefore we
give here only a short abridgement.

2.1. Datasets, experimental details and CP ANN models
development

2.1.1. Dataset 1
The biological assay data (a total of 88 compounds) which

belong to different chemical classes (nucleobases, nucleosides,
nucleotides, and various endogenous molecules, dyes and drugs)
were used as an initial data source for development of the in silico
CP ANN prediction model. The model was  built to estimate the
transport activity of the transmembrane protein bilitranslocase
for a large set of diverse endogenous compounds and xenobiotics
(Table 1) [25].

The biological activity values were known for 81 compounds.
For the majority of them (a total of 75 compounds) the inhibition
constants (KI [mmol  L−1], expressed in logarithmic units as pKI)
were experimentally determined [25], while for the rest 6 com-
pounds the inhibition constants were obtained from the literature
[28–30]. For the remaining 7 compounds (which are part of the

total 88 compounds) the experimental assays are not yet finished.

The effect of 75 compounds on bilitranslocase transport activ-
ity was evaluated spectrophotometrically in rat hepatical plasma
membrane vesicles. The initial rate of the bromosulphophtalein
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Table  1
List of all 88 compounds (Dataset 1) separated as training, external test, and external validation set, together with their activity classification code (ACC), the experimen-
tal/predicted inhibition constants (pKI-exp , pKI-pred), as well as their calculated Euclidean distances (ED) [25].

ID Compound ACC KI-exp [mmol  L−1]a pKI-exp pKI-pred ED

Training set
1 Adenineb I – −2.000 −1.1137 0.0863
2  Adenosineb I – −2.000 −1.5260 0.0211
3  Adenosine 3′-monophoshateb C 0.95 0.022 −0.5844 0.0226
5  Adenosine 3′ ,5′-cyclic monophosphateb I – −2.000 −1.9741 0.0419
6 Adenosine 5′-diphosphatec C 1.42 −0.152 −0.1373 0.0494
7 Adenosine 5′-triphosphateb C 0.385 0.415 −0.0958 0.0482
8 Adenosine-5′-diphosphoglucosec I – −2.000 −1.2062 0.1581
9  Adenosine 5′-(�.�-methylene) diphosphateb C 1.31 −0.117 −0.1373 0.0095

10  Adenine 9-�-d-arabinofuranosideb NC 3.76 −0.575 −1.5260 0.0158
11  Adenosine 3′-phosphate 5′-phosphosulfateb C 0.148 0.830 −0.0958 0.0728
12  S-(5′-Adenosyl)-l-homocysteinec C 0.44 0.357 0.3340 0.0658
13 S-(5′-Adenosyl)-l-methionine chlorideb C 0.408 0.389 0.3340 0.0127
15 Guanosineb I – −2.000 −1.5260 0.0337
16  Guanosine 5′-monophosphateb C 13.92 −1.144 −0.5844 0.0198
17 Guanosine 3′ ,5′-cyclic monophosphateb I – −2.000 −1.9741 0.0396
18  Guanosine 5′-diphosphateb C 4.55 −0.658 −0.0958 0.0459
19 Guanosine 5′-triphosphateb NC 7.66 −0.884 −0.0958 0.0299
20  Uracilb I – −2.000 −1.9811 0.0436
21  Uridineb C 2.58 −0.412 −1.4886 0.0288
22  Uridine 5′-monophosphateb C 4.13 −0.616 −0.6220 0.0155
23  Uridine 5′-diphosphatec C 3.10 −0.491 −0.4331 0.0412
24 Uridine 5′-triphosphateb C 1.425 −0.154 −0.1645 0.0501
25  Uridine 5′-diphosphoglucoseb I – −2.000 −1.2062 0.0125
26 Uridine 5′-diphosphogalactoseb C 2.47 −0.393 −1.2062 0.0196
28  Thyminec I – −2.000 −1.9811 0.1127
29  Thymidineb I – −2.000 −1.4886 0.0543
30 Thymidine 5′-monophosphatec C 3.71 −0.570 −0.6220 0.0879
31  Thymidine 5′-diphosphateb C 2.23 −0.348 −0.4331 0.0062
32 Thymidine 5′-triphosphateb C 1.45 −0.161 −0.1645 0.0473
33  Cytosineb I – −2.000 −1.9811 0.0453
34  Cytidineb I – −2.000 −1.4886 0.0445
35  Cytidine 2′-monophosphatec I – −2.000 −1.8244 0.0398
37  Cytidine 5′-monophosphateb I – −2.000 −1.8244 0.0146
42 Uric  acidb C 1.50 −0.176 −1.1137 0.0842
43  Ouabainb I – −2.000 −1.9872 0.0872
44 Aucubinb I – −2.000 −1.9531 0.0460
45  Loganinc I – −2.000 −1.9531 0.0718
47  Isovitexinb I – −2.000 −1.7429 0.0175
48  Vitexin-2′-O-rhamnosideb I – −2.000 −1.9529 0.0467
49  Cibacron Blue F3G-Ab C 0.00347 2.460 2.4751 0.0497
50 Digoxinc I – −2.000 −1.9872 0.3497
51  Taurocholateb I – −2.000 −1.9872 0.0868
52 Sulfobromophtaleinb C 0.00532 2.274 1.9787 0.0397
54  Bilirubinb C 0.00111 2.955 2.9023 0.0452
55  Biliverdinc C 0.00111 2.955 2.9023 0.0683

External test set
4 Adenosine 5′-monophoshate C 2.63 −0.420 −0.5844 0.0560

14  Guanine Insoluble / / −1.1137 0.0660
27  Uridine 5′-diphosphoglucuronic acid I – −2.000 −1.2062 0.0686
36  Cytidine 2′:3′-cyclic monophosphate / / / −1.9741 0.1021
38  Cytidine 5′-diphosphate / / / −0.4285 0.0742
39  Cytidine 5′-triphosphate / / / −0.1645 0.0788
40  Cytosine �-d-arabinofuranoside / / / −1.4886 0.0448
41  Cytosine �-d-arabinofuranoside 5′-monophosphate / / / −1.8244 0.0336
46  Verbenalin I – −2.000 −1.9531 0.0947
53  Thymol Blue C / / 1.9787 0.3090

External validation set
56 Nicotinic Acid I – −2.000 −1.9811 0.2600
57  [d-Ala2]-Deltorphin II I – −2.000 2.5195 0.4062
58  [d-Pen2.5]-Enkephtalin (DPDPE) I – −2.000 −1.9529 0.2716
59  17�-Estradiolo 3-glucuronide I – −2.000 −1.9872 0.1440
60  5-Fluorouracil I – −2.000 −1.9811 0.1051
61  Acetazolamide I – −2.000 −1.1137 0.1988
62  Acycloguanosine (Acyclovir) I – −2.000 −1.5260 0.1231
63  Etacrynic Acid I – −2.000 1.9787 0.3078
64  Mefenamic Acid I – −2.000 1.9787 0.4074
65  Dehydroisoandrosterone 3-sulfate I – −2.000 −1.9531 0.3027
66 Diclofenac I – −2.000 1.9787 0.3533
67  Dichlorofluorescein (DCFH) I – −2.000 1.9787 0.2660
68  Enalapril maleate I – −2.000 −1.9531 0.2721
69 Estrone 3-sulfate I – −2.000 −0.6692 0.3385
70  Phenacetin I – −2.000 −1.4796 0.4971
71 Furosemide I – −2.000 −1.3612 0.2661
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Table  1 (Continued)

ID Compound ACC KI-exp [mmol L−1]a pKI-exp pKI-pred ED

72 Glycocholate I – −2.000 −1.9872 0.0919
73  Ibuprofen I – −2.000 1.9787 0.4966
74  Hydrochlorothiazide C 0.056 1.251 −1.4796 0.3436
75 Hydrocortisone I – −2.000 −1.9531 0.1745
76  Indomethacin I – −2.000 1.9787 0.2714
77 Ketoprofen I – −2.000 1.9787 0.3769
78  l-Thyroxine (T4) I – −2.000 −1.4886 0.2759
79  Methotrexate I – −2.000 0.8018 0.1852
80  Naproxene I – −2.000 1.9787 0.4501
81 Piroxicam I – −2.000 −1.1137 0.2969
82 Pravastatin I – −2.000 −1.9872 0.1840
83 Probenecid I – −2.000 1.9787 0.3771
84  Progesterone I – −2.000 −1.9531 0.3072
85  Prostaglandin E2 I – −2.000 −1.9531 0.2164
86  Sulindac C 0.062 1.209 1.9787 0.3018
87  Triiodo-l-thyronine (T3) NC 0.174 0.759 1.9787 0.2880
88 �-Estradiol I – −2.000 −1.9531 0.4088
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a Inactive compounds were considered for modeling purposes at hypothetical co
b Internal training set compounds (a total of 35 molecules).
c Internal test set compounds (a total of 10 molecules).

BSP) passage into vesicles (called electrogenic BSP uptake) was
sed as the measure of bilitranslocase transport activity [28,31–34].
he experimental assays performed, successfully identified 28
ompounds as active (of which 25 compounds as competitive (“C”)
nd 3 compounds as non-competitive inhibitors (“NC”)), and 53
ompounds as inactive (“I”). For all compounds determined as inac-
ive (“I”), a pKI-exp value of (pKI-exp = −2.000) that corresponds to a
ypothetical concentration of 100 mmol  L−1 was  assigned (Table 1)
25].

The geometry of all 88 chemical structures was initially opti-
ized by using AM1  semi-empirical procedure [35], whereas

ohonen artificial neural network (KANN) [36,37] was employed
or dataset division (Table 1) into training set (45 compounds),
xternal test set (10 compounds), and external validation set (33
ompounds). The training set was additionally split into an inter-
al training set (Table 1; 35 compounds indexed by b) and internal
est set (Table 1; 10 compounds indexed by c) for the optimization
f the ANN parameters [25]. Counter-propagation artificial neural
etwork (CP ANN) [38,39] which can be considered as an extension
f KANN, was  exploited for development of the 14-parameters CP
NN predictive model (R2 = 0.89). The model was built using the

nternal training set, optimized with the internal test set (Q 2 =

te/F3

.89), as well as externally validated using the external vali-
ation set (Q 2

ext/F3 = −1.83) which was not used during the model
evelopment [25]. The model’s predictive ability quantificators,

ig. 1. Schematic representation of the overall methodology workflow, depicting differe
escriptors); Ts , is multidimensional target vector (e.g., experimentally-determined endpo
hile  MEDS for the external validation set is represented in red. (For interpretation of th

f  this article.)
ration 100 mmol  L−1, with pKI-exp = −2.000.

were calculated according to the following equations (Eqs. (1) and
(2)) [40,41]:

R2 = 1 −

[∑ntr
i=1(ŷi − yi)

2
]

/ntr

[∑ntr
i=1(yi − ȳtr)2]/ntr

(1)

Q 2
(te/ext)/F3 = 1 −

[∑n(te/ext)
i=1 (ŷi − yi)

2
]

/n(te/ext)[∑ntr
i=1(yi − ȳtr)2]/ntr

(2)

where ntr designates the number of training set objects, whereas
n(te/ext) is the number of test set, i.e., number of external validation
set objects, respectively. Here we would like to stress that the Q2

parameter as defined by (Eq. (2)) might be negative in case of large
error in prediction of the external validation set compared to the
range of the target values in the training set [40]. For the pur-
pose of this study, an additional PLS model (R2 = 0.78, Q 2

te/F3 = 0.47,

Q 2
ext/F3 = 0.15) was  developed by using the same dataset division

as well as the number of molecular descriptors, as described previ-
ously.
2.1.2. Dataset 2
The second dataset consists of 59 trypsin inhibitors, initially

selected from the Brookhaven PDB database, that were experimen-
tally tested for their inhibitory potency (pKI) against the trypsin

nt stages, where: Xs , is multidimensional input vector (e.g., calculated molecular
int values); MEDS for the training & internal test set (model) is represented in blue,

e references to color in this figure legend, the reader is referred to the web  version
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Fig. 2. Euclidean geometry and calculation of EDs between objects [47]. (a) Determination of ED between two points A and B in a simple two-dimensional Cartesian (Euclidean)
s dimen
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pace,  defined by their two-dimensional Cartesian coordinates. (b) Mapping of multi
nto  two-dimensional grid of neurons (Kohonen map) and determination of the mi
Wc ,s) [38]. (For interpretation of the references to color in this figure legend, the re

nzyme. All inhibitors are heterogeneous, non-covalently bound
o the same site on the enzyme surface. The dataset, modeling
trategy applied, as well as the CP ANN prediction model are
escribed in details in our previous work [26]. The best model
hich was selected (R2

[CP  ANN−97−p] = 0.89, Q 2
ext/F3[CP ANN−97−p] =

.85) was developed by using 97 molecular descriptors, while
6, 15 and 18 compounds in the training, internal test, and
xternal validation set, respectively, were used for its modeling
nd validation. Furthermore, the same dataset division was used
or building two additional QSAR models taking into account a
educed number of molecular descriptors (7 out of total pool
f 97 molecular descriptors were selected) for the purpose of
his study; CP ANN (R2

[CP ANN−7−p] = 0.82, Q 2
ext/F3[CP ANN−7−p] = 0.45)

nd PLS (R2
[PLS−7−p] = 0.42, Q 2

ext/F3[PLS−7−p] = 0.33). The descriptors
eduction here was performed explicitly to avoid obtaining an
ll-conditioned diagonalized matrix [42] constructed of extremely
arge diagonal elements (such as the leverage values, hii) which
re usually impractical for work and further interpretation (e.g.,
dentification of structurally-influential outliers).

.1.3. Dataset 3
The third dataset includes the retention factors (k) of ionized

norganic and organic acids measured on ion-exchange analyti-
al column (IonPac AS18, Dionex) at 25 mM eluent (KOH) [27].
P ANN and PLS models were built to predict retention factor
f ions from molecular structures of their corresponding acids.
tarting with a pre-selected pool of total 64 molecular descrip-
ors, the best CP ANN model was build (R2

[CP  ANN−64−p] = 0.99,
2
ext/F3[CP ANN−64−p] = 0.96) with 15 training and 5 internal test
ompounds, while 5 compounds were used as the external vali-
ation set [27]. Similarly to Dataset 2, two more QSAR models

CP ANN and PLS) were additionally developed by using a subset
f 13 descriptors from the starting pool of total 64 descriptors;
P ANN (R2

[CP  ANN−13−p] = 0.99, Q 2
ext/F3[CP ANN−13−p] = 0.86) and PLS

R2
[PLS−13−p] = 0.71, Q 2

ext/F3[PLS−13−p] = 0.91) which were used to
ssess the ADs in a comparative manner.
sional input data (e.g., compounds) encoded as multidimensional descriptor vectors
 ED (the red line, min(Wj − Xs) → EDj ,s) for each input object to the “central” neuron
s referred to the web version of this article.)

2.2. From trained network to definition of the “minimum
Euclidean distance space”

No matter which modeling strategy (linear or non-linear) will
be utilized for developing of a QSAR model for chemical manage-
ment purposes, two  substantial things must be taken into account:
(1) chemical structures must be represented numerically in a
form of molecular descriptors, and (2) a defined experimentally-
determined endpoint (e.g., pKI for Dataset 1 and 2, or retention
factor k for Dataset 3) must be available for each compound. Since
the molecular descriptors are unique numerical values obtained
by quantification of various structural and/or physico-chemical
properties of the molecule, they could be successfully used not
only for prediction of the endpoint values of unknown com-
pounds, but also for performing similarity measurements between
two  or more molecular structures. For those purposes, different
distance (similarity) metrics are available (e.g., Euclidean dis-
tance (ED), Mahalanobis distance, Manhattan (City-block) distance,
etc.) [13,14,43],  which can be exploited in several different ways
[44–47]. Among them, the Euclidean distance (ED) metric is one of
the most widely used metrics for the determination of similarity.
The most simple form of ED could be defined as a distance between
two  points in a two-dimensional Cartesian space (known as Carte-
sian or Euclidean plane) [15]. Therefore, if A and B are two points
defined by their two-dimensional Cartesian coordinates A(xA1, xA2)
and B(xB1, xB2), respectively (Fig. 2a), then the ED between them can
be simply calculated using the following equation (Eq. (3)) [48]:

EDA−B =
√

(xB1 − xA1)2 + (xB2 − xA2)2 (3)

The smaller the ED between the points A and B is, the higher the
similarity between them is. Although, this similarity-measurement
concept is very simple, it can be effectively used for solving more
complex problems. The QSAR modeling methods are constructed

for handling large amount of data describing a so-called multidi-
mensional data space, where each chemical structure is usually
encoded in a form of a multidimensional descriptor vector. Con-
sequently, the similarity measures between the objects must be
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alculated in such complex space according to the dimensionality
f the descriptor vector.

In order to simplify the problem of complexity, a data com-
ression (mapping) from the multidimensional space to a space
f lower complexity is required, which is the basis of the Koho-
en artificial neural networks (KANN) [36,49,50].  KANN provides a
o-called self-organizing maps (SOMs) which are not comparable to
he Cartesian space mentioned previously, since the metrics are not
onserved. It is conserving the topology of the multidimensional
nput data (usually multidimensional descriptor vectors) within a
wo-dimensional network of neurons (as a result of unsupervised
ompetitive learning), which are captivated with objects in a way
here similar objects are situated on same or close neighbor neu-

ons [38].
The mapping of the objects progresses iteratively over a non-

inear algorithm (known as training of the network), which is
ainly based on object-similarity determination through utiliza-

ion of ED metrics. It can be literally described as “winner takes all
trategy”, which means that for each multidimensional input vec-
or, only the most excited neuron (or the so-called “winning” or
central” neuron) is selected and all the corrections are performed
round it. The learning algorithm selects the “central” neuron
ccording to the minimal ED calculated between the multidimen-
ional input vector Xs (xs1, xs2, xs3, . . .,  xsi, . . .,  xsm) for each input
bject (e.g., a compound from the training set) and all the weight
ectors Wj (wj1, wj2, wj3, . . .,  wji, . . .,  wjm), using the following equa-
ion (Eq. (4))  [38]:

Dj,s = dEucl
j,s =

√√√√
m∑

i=1

(Wj,i − Xs,i)
2,

min{dEucl
j,s , j = 1, . . . , Nnet} → Wc,s (4)

here Nnet describes the total number of neurons constructing the
etwork, while Wc,s designates the selected “central” neuron to
hich the object s is the most similar (Fig. 2b). At the end of the

earning process (developing of the model), every object is assigned
o its “central” or closest neuron; there are as much minimum EDs
alculated, as is the total number of input (training) objects, which
ogether define a so-called “minimum ED space” (MEDS) [20]. Since,
ach training compound used for building of the ANN model is char-
cterized with its unique ED, the MEDS concept could be effectively
sed for assessing of the model’s applicability domain (AD) which
oundaries can be simply defined by selection of the maximal ED
hereafter named as EDcrit) within the MEDS (Fig. 1). For the purpose
f assessing the AD, the MEDS boundaries should be extended to the
nternal test compounds involved in the model parameters opti-

ization (internal test set distances). Consequently, each object
e.g., a compound from the external test/external validation set)
ntering the trained network (model) with calculated ED greater
han EDcrit, can be considered as it is outside of the model’s AD,
nd vice versa. The distances in MEDS depend on the dimension of
he descriptor vectors entering the network. In order to unify their
cale, they should be normalized by division with the total number
f molecular descriptors used for modeling. Hereafter, normalized
alues are considered for ED and EDcrit.

.3. Descriptor space versus model response space

While the MEDS concept is carrying only the structural infor-
ation (encoded in a form of molecular descriptors) extracted
rom the trained Kohonen map  for the compounds used in the
SAR study, it can be applied only for assessment of the possi-
le outliers within the compound’s descriptors space. Although,
hese data could be extremely helpful for detection of the
ica Acta 759 (2013) 28– 42 33

structurally-influential outliers that could affect the quality of the
QSAR model (e.g., a two dimensional plot of the EDs vs. total num-
ber of compounds), they do not tell anything about the accuracy
of predictions, and therefore the AD of the model would be only
partially defined. To alleviate this problem as well as to define as
much as informative domain of model’s applicability, the model’s
predictability information (model response space) must be addi-
tionally incorporated into the AD definition.

Contrary to KANNs which are constructed of only one layer of
neurons, the counter-propagation artificial neural networks (CP
ANNs) contain an additional layer located exactly below the Koho-
nen layer, and therefore it can be regarded as an extension of
KANN [37,38,50].  This additional layer is trained in exactly the same
manner as the Kohonen layer, i.e., it receives the vector of target
(dependent) variables Ts (e.g., experimentally-determined values
of KI), and as a result of the learning procedure controlled by the
Kohonen network above, outputs their predicted (response) values
which reflect the model’s response space (Fig. 1) [51]. Taking these
additional information into account, the AD of the CP ANN predic-
tive model could be defined in a more informative way through
expression of the MEDS of the model as a function of the standard-
ized residuals.

2.4. Partial least squares model development

In order to assess the performances of the MEDS-based AD
method developed for non-linear CP ANN models with a well
known leverage approach [3] used in multiple linear regression
or partial least squares (PLS) regression modeling, the linear mod-
els were built with the same data as non-linear ones. PLS models
were developed taking into account the same settings (number and
type of molecular descriptors as well as the same training/internal
test/external validation set division) as described previously for the
neural network models (see Sections 2.1.1–2.1.3).

2.5. The hat matrix and influential observations – leverage
approach

Analogously to the MEDS-based AD approach defined previ-
ously, the leverage approach which is usually applied for regression
diagnostics (outliers identification) in case of linear models (e.g.,
MLR, PLS) [52,53], was  additionally included in this study. Although,
both methods are substantially diverse with regards to the differ-
ence between the distance metrics on which are based, they were
jointly utilized just for comparative purposes.

In the linear regression it is often very useful to determine the
influence of a given yi value (e.g., experimentally-determined end-
point values such as KI) over each predicted ŷi value. Contrary to the
relationship between yi and ŷi, which interpretation can be easily
performed through implementation of a simple residual analysis
(yi − ŷi), the influence of the independent variables xi (e.g., cal-
culated molecular descriptors) on the model might be difficult to
determine. The solution to this problem lies into the so-called hat
matrix H [54,55],  which maps the vector of observed values to the
vector of fitted values. It is an n × n symmetric matrix which diag-
onal elements hii (known as leverage values) directly reflect the
structural influence of a compound to the values predicted by the
model (i.e., a distance metric which shows how far a compound is
from the model experimental space) [53].

Therefore, for a given set of compounds encoded in a form of
calculated molecular descriptors, one can solve the hat matrix H

through an implementation of a simple set of matrix algebra rules
[54,55]. Let us Xtr be a multidimensional n × m matrix carrying the
structural information mj (calculated molecular descriptors) for
each training set compound ni separately. The calculation of the
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at matrix H of the original Xtr matrix requires several consecutive
teps:

1) generation of a transposed version (XT
tr = m × n) of the original

descriptor matrix Xtr.
2) multiplication of the transposed matrix XT

tr and the original
matrix Xtr: (XT

trXtr).
3) inversion of the product matrix (XT

trXtr) obtained by multiplica-

tion in (2):  (XT
trXtr)

−1
.

4) multiplication of the original Xtr, the inverse (XT
trXtr)

−1
, and the

transposed matrix XT
tr .

The obtained result is an n × n symmetric matrix (H, hat matrix)
54] which maps the yi,tr values into ŷi,tr (Eq. (5)):

tr = Xtr(XT
trXtr)

−1
XT

tr → ŷtr = Htrytr ↔ ŷtr = Xtr(XT
trXtr)

−1
XT

trytr (5)

here ŷtr and ytr are the predicted and experimentally-determined
ndpoint values for the training set compounds, respectively,
hereas Htr designates the hat matrix for the training set which
iagonal elements (hii,tr) describe the distance of each training set
ompound to the structural centroid of the model [53].

The calculation of the hat matrix as well as the extraction of the
iagonal elements (leverages) for any test/external validation set
ompound entering the model, can be performed as for the training
et described above, but slightly modified (Eq. (6)):

1) generation of a transposed version (XT
te/ext

= m × n) of the orig-
inal descriptor matrix of test data Xte/ext.

2) generation of a clone version of the inverse matrix solved above
for the training data: (XT

trXtr)
−1

.

3) multiplication of the original Xte/ext, the inverse (XT
trXtr)

−1
, and

the transposed matrix XT
te/ext

.

te/ext = Xte/ext(X
T
trXtr)

−1
XT

te/ext → ŷte/ext = Hte/extyte/ext ↔ ŷte/ext

= Xte/ext(X
T
trXtr)

−1
XT

te/extyte/ext (6)

here ŷte/ext and yte/ext are the predicted and experimentally-
etermined endpoint values for the test/external validation set
ompounds, respectively, whereas Hte/ext designates the hat matrix
or the test/external validation set which diagonal elements
hii,te/ext) describe the distance of each test/external validation set
ompound to the structural centroid of the training set (model)
53].

One of the recommended hat-based methods for AD investiga-
ion in case of linear QSAR models is the widely known leverage
pproach [3,53,56]. The method offers a graphical assessment of
he leverage values (hii), as a function of the standardized cross-
alidated residuals (Williams plot) [53,57] and it is suitable not
nly for detection of the structurally-influential outliers, but also
or determination of the response outliers. The model predictions
hould be referred as unreliable for those compounds for which hii
iagonal elements are greater than the cut-off leverage value (h*).
hese compounds are located far from the structural centroid of the
odel, and therefore could be referred as structurally-influential

utliers, too. The cut-off leverage value (h*) is usually defined as
Eq. (7)):

∗ = 3(p  + 1)
(7)
n

here p is the total number of descriptors used for developing of
he QSAR model, while n is the total number of the training set
ompounds. Moreover, the compounds for which the calculated
ica Acta 759 (2013) 28– 42

standardized residual values are greater than three standard devi-
ation units (>±3�), could be considered as response outliers.

3. Results and discussion

No matter how good (robust, meaningful, and validated) a devel-
oped QSAR model could be, its inherent limitation is data-driven
correlation pursuit: it cannot be expected to give reliable pre-
dictions for the property under investigation for the compounds
out of the domain of chemical space defined by the training data.
In order to be used for chemical management (screening) pur-
poses, the QSAR model should have a clearly defined domain of
applicability, and therefore the property estimations for only those
compounds situated within the model’s AD boundaries can be con-
sidered reliable [3–5]. Among the various methods available today
for AD estimation of established QSAR models, the distance-based
approaches (e.g., ED-based or leverage-based) proved to be partic-
ularly useful not only in the case of linear models [53], but also
for non-linear models such as artificial neural networks [24]. The
following study involves a simple and effective approach for AD
estimation of a non-linear QSAR models [25–27] developed using
CP ANN modeling method through the utilization of the MEDS con-
cept elaborated in Section 2.2.

3.1. MEDS-based applicability domain assessment for CP ANN
predictive models

3.1.1. Dataset 1
In order to demonstrate the practical significance of the MEDS

concept for graphical assessment of the AD (Fig. 1), a developed
and validated predictive CP ANN model was  used. As described
previously, the MEDS concept for AD assessment is simply a
distance-based method (based on ED metrics), and therefore the
availability of calculated ED data is crucial. For these purposes, as
a result of the network training which process runs iteratively (i.e.,
learning of the network), the minimum EDs (Table 1) between each
input object (e.g., a compound expressed as a multidimensional
descriptor vector) entering the network and the so-called “central”
neuron are calculated (Fig. 2b) according to the (Eq. (4))  [38]. Once
calculated, the AD of the CP ANN model could be easily defined
as a two-dimensional column plot (Fig. 3) which expresses the
calculated minimum EDs (MEDS) for each compound (e.g., train-
ing/external test/external validation set) as a function of the total
number of objects (88 compounds).

As shown in Fig. 3, the AD coverage of our CP ANN predic-
tion model is simply defined by the threshold value (EDcrit = 0.350),
which corresponds to the training set object with maximal value
for ED (Table 1; ID = 50, Digoxin). Therefore, all other objects
(e.g., external test or external validation set compounds) for
which the calculated ED is greater than EDcrit, could be con-
sidered as being outside of the model AD. According to Fig. 3,
a total of 9 compounds (ID = 57, 64, 66, 70, 73, 77, 80, 83,
and 88) belonging to the external validation set (33 com-
pounds), could be distinguished as potential outliers (Table 1)
with (ED > EDcrit = 0.350). Except two compounds (ID = 57 (Del-
torphin; a heptapeptide of exogenic origin) and 88 (�-Estradiol;
steroidal hormone)) which belong to different therapeutic classes,
i.e., selective �-opioid agonist (analgesic) and selective estro-
gen receptor modulator (contraceptive), respectively, the rest of
the identified outliers are mainly non-steroidal antiinflammatory
agents. These compounds are structurally very different compar-

ing to the compounds used for building of the CP ANN model
which are mainly purine and pyrimidine derivatives, and there-
fore their calculated EDs are much larger than the selected ED
threshold (EDcrit = 0.350). Consequently, the identified outlying
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Fig. 3. Two-dimensional column plot of the AD for the CP ANN prediction model for bilitranslocase transport activity together with the corresponding CP ANN’s obtained
output  layers (Dataset 1) [25]: (a) the training & internal test set objects (45 compounds) are represented as solid blue columns, the external test set objects (10 compounds)
as  solid red columns, while the external validation set objects (33 compounds) as solid green columns. The domain coverage (AD threshold, EDcrit = 0.350) is depicted as a
horizontal black line. The identified outlying objects (green columns with ED > EDcrit) are signed by their ID numbers (Table 1); below the plot (a), EDs-based output layers
(MEDS) for each set separately are given: (b) internal training set, (c) internal test set, (d) external test set, and (e) external validation set; all 88 compounds are mapped
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y  their corresponding ID number (Table 1); the central neurons are colored accor
trong  red (maximal ED value), while the intact (empty) neurons were colored in w

bjects could be considered as pure structurally-influential
utliers, i.e., outside of the CP ANN model’s AD. All the objects
dentified as outliers (Fig. 3), were experimentally-determined as
nactive (“I”) compounds (Table 1).

The MEDS analysis of the CP ANN model (Fig. 3) makes possi-
le to assess the AD regarding the compound’s structural space.
hus it is capable to detect only those objects (compounds) which
re structurally different comparing to the compounds used for

eveloping of the model, taking into account only the structural

nformation (i.e., compounds descriptor space) stored in the frame-
ork of the trained Kohonen map  of the CP ANN architecture

Fig. 1). In order to define the domain of applicability regarding the
o the calculated ED values in the range between dark blue (minimal ED value) and

response data (the molecular property or activity values), the infor-
mation about the predictivity of the CP ANN model (response space)
must be additionally included into the AD definition. As a result,
the AD of our CP ANN predictive model could now be defined as a
two-dimensional dot plot representing the model response space
(depicted in a form of calculated standardized residuals) as a func-
tion of the previously defined MEDS (Fig. 4a). In this way, one can
identify those compounds for which the predicted activity values

are questionable [53,56].

Similarly to the column plot represented in Fig. 3, the
structurally-influential outliers (signed by the corresponding
ID numbers in Fig. 4a) can be easily (visually) determined
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Fig. 4. Graphical representation (dot plots) of the (a) MEDS-based versus (b) leverage-based method for AD estimation for our CP ANN prediction model and its linear
counterpart (PLS model), respectively, for prediction of the bilitranslocase transmembrane protein transport activity (Dataset 1) [25]. Training set objects (45 compounds)
are  depicted as solid blue rectangles, external test set object (10 compounds) as solid red circles, while the external validation set objects (33 compounds) as solid green
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riangles. The critical hat value ((b) h* = 1.00) is calculated according to (Eq. (7)). The
y  their corresponding ID numbers ((a) Table 1; (b) Supporting information in Ta
eferred  to the web  version of this article.)

ED > EDcrit = 0.350), however only two of them (ID = 70 and 88)
an be recognized as correctly predicted by the model, with calcu-
ated standardized residual values in the boundaries between ±3�
nits [53,56].  The rest 7 outlying compounds regarding structural
omain (ID = 57, 64, 66, 73, 77, 80 and 83) are also out of the 3�
oundaries (with large prediction errors, see Table 1 and Ref. [25])
nd therefore they could be recognized as pure response outliers,
s well. A closer look at Fig. 4a indicates five additional response
utliers from the external validation set (ID = 63, 67, 74, 76, and 79).
ccording to the calculated ED values, these external validation set
ompounds are located within the domain boundaries as defined by
Dcrit = 0.350, however their calculated standardized residual val-
es greater than ±3� units pinpoint to objects wrongly predicted
y the model (Table 1). In summary, 9 compounds from the exter-
al validation set were found out of structural AD and thus the
redictions are considered unreliable, and 7 of them were really
oorly predicted. On the other hand, 23 compounds were found
ithin the structural AD and thus expected as reliably predicted by

he model, and 18 of them were predicted correctly, only 5 of them
ere response outliers. Thus, by assessing the structural AD outliers
nly, we got rid of 7 out of 12 response outliers. This is important
ecause the assessing of structural AD is affordable also in case
f unknown experimental values of properties of new active/toxic
ompounds.
ounds identified as outliers (outside of the model’s AD) by both methods are signed
). (For interpretation of the references to color in this figure legend, the reader is

3.2. MEDS-based versus leverage-based applicability domain
assessment

3.2.1. Dataset 1
As demonstrated in Figs. 3 and 4a,  the MEDS-based AD assess-

ment of our CP ANN prediction model [25] performed so far, showed
reasonable and in some instance satisfactory results. Namely,
all compounds which were identified as potential structurally-
influential outliers (Table 1) are indeed structurally very different
than the compounds used for developing of the model, and there-
fore they could be expected to be situated far from the structural
centroid of the model, i.e., outside of the model’s AD. Comparing to
the well known leverage approach [3] and particularly its graphi-
cal representation for AD estimation (Williams plot; standardized
residuals vs. leverages) [53], a certain degree of similarity between
both methods is evident (distance-based methods) [8,9]. On the
other hand, both methods are considerably different in regard to
the distance metrics used (Euclidean distances vs. leverages) and
consequently limited to the nature of the developed QSAR model
(non-linear, i.e., linear model, respectively) to which can be applied,

however, for comparison purposes we  decided to evaluate and
demonstrate both of them.

Analogously to the MEDS-based AD approach (Fig. 4a) for which
definition the calculated EDs for each investigated object are
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equired, the leverage-based method for AD estimation (Williams
lot) [53] requires the leverage values (hii), which are the diagonal
lements of the hat matrix (H; see Eqs. (5) and (6)) [52,53]. In order
o compare both methods as well as to assess the performances
f the MEDS-based AD approach applied to our CP ANN predic-
ion model (Fig. 4a) [25], a linear model (14-parameters PLS model)
as additionally developed (see Section 2.1.1) using the same data

same number and type of molecular descriptors and same train-
ng/external test/external validation set division were exploited)
o which the leverage-based method was applied (Fig. 4b). The
xperimental and predicted activity values (pKI-exp, pKI-pred) and
alculated leverage values (hii) for each investigated compound are
vailable as Supporting information in Table S1.

As shown in Fig. 4, both methods give comparable distribution
f compounds in the AD plots, however, the vertical border (cut-off
alue) of the AD showing the limit of the model with regard to the
tructural space is much more restrictive for the PLS model (Fig. 4b).
onsequently, the external validation set compounds (ID = 57, 64,
6, 70, 73, 77, 80, 83, and 88) which were identified as structurally-

nfluential outliers by MEDS-based approach in the CP ANN model
Fig. 4a), were identified as extreme points (h > h* = 1.00) in the

illiams plot of the PLS model (Fig. 4b), too. While the major-
ty of these compounds (more precisely the objects with ID = 57,
4, 66, 73, 77, 80 and 83) were determined as response outliers
points with calculated standardized residual values greater than
3�) on the MEDS plot (Fig. 4a), the same compounds could be

dentified as acceptably predicted by the PLS model (see Supporting
nformation, Table S1;  Fig. 4b). Comparing to the MEDS-based
pproach (Fig. 4a), the leverage-based approach (Fig. 4b) identified
n external test set compound thymol blue (thymolsulphoneph-
halein, ID = 53) as a structurally-influential outlier (hID=53 = 1.277).
ndeed, this compound is structurally very different comparing to
he training/internal test set compounds, and therefore it is located
ar from the structural centroid of the PLS model (Fig. 4b). It is also
ar from the training/internal test set ensembles (EDID=53 = 0.309;
ig. 4a), nevertheless, it is situated within the CP ANN model AD
oundaries since the cut-off value (EDcrit) is determined as 0.350
y the training compound Digoxin (ID = 50). Surprisingly, of total
3 compounds from the external validation set, the leverage-based
pproach identified only 7 compounds (ID = 62, 63, 72, 75, 78, 82,
nd 85) situated within the PLS model AD (Fig. 4b), while the major-
ty of them are located out of the model’s domain (h > h*), although
hey are structurally-similar to the compounds used for developing
f the model. On the other hand, these compounds were correctly
dentified by the MEDS-based approach as non-outlying objects
inside the model’s applicability domain) as shown in Fig. 4a.

.2.2. Dataset 2
The Dataset 2 of total 59 trypsin inhibitors was  used to

uild three models, as described in Section 2.1.2. The first
ne was our previously published CP ANN model constructed
sing 97 molecular descriptors (R2

[CP  ANN-Dataset 2; 97−p] = 0.89,
2
ext/F3[CP ANN-Dataset 2; 97−p] = 0.85) [26], while the other two  mod-
ls were built additionally utilizing a reduced number of molecular
escriptors. In order to avoid the obtaining an ill-conditioned hat
atrix [42] (constructed of extremely large elements) and con-

equently extremely large leverage values hii which are usually
ot very useful for construction of the Williams plot, we  decided
o reduce the number of molecular descriptors in a way  where
he number of molecular descriptors not exceed the total num-
er of training set objects. Taking this limitation into account

nd for the purpose of this study, the additional CP ANN and
LS models were built by using only 7 out of 97 molecular
escriptors through elimination of those descriptors for which
he intercorrelation coefficients were more than or equal than
ica Acta 759 (2013) 28– 42 37

0.40 [58]. Although the performance of the obtained models
with 7 descriptors was  worse comparing to the original one (CP
ANN model: R2

[CP  ANN−Dataset 2; 7−p] = 0.82, Q 2
ext/F3[CP ANN-Dataset 2/7-p]

= 0.5, PLS model: R2
[PLS-Dataset 2; 7-p] = 0.42, Q 2

ext/F3[PLS-Dataset 2; 7-p] =
0.33), they are jointly elaborated here to compare the novel MEDS-
based AD method with the leverage one (Fig. 5).

As demonstrated in Fig. 5a, the CP ANN model constructed
by using 97 molecular descriptors covers very well the structural
domain of the compounds from the external validation set – all the
objects are situated within the MEDS boundary with calculated EDs
significantly smaller than the critical ED value (EDcrit = 0.153) that
corresponds to the training set object (ID = 17). However, two exter-
nal validation set compounds (ID = 42 and 59) could be determined
as pure response outliers (see Supporting information, Table S2).  On
the other hand, the CP ANN model constructed by using 7 molec-
ular descriptors assigns three external validation set compounds
(ID = 34, 42, and 56 with EDs > EDcrit = 0.279) to be situated out of
the MEDS (Fig. 5b). They are also determined outside of the AD
of the PLS model (h > h* = 0.59) as represented on its Williams plot
(Fig. 5c). Chemical structure of the compounds with ID = 34 and 56
do not contain SO2 group as most of the compounds in the training
set, while the outlier ID = 42 contains three fluor atoms, unlike the
rest of the compounds in the Dataset 2. While no response outliers
could be identified in the PLS model’s AD depicted on the Williams
plot (Fig. 5c), only one external validation set compound (ID = 42) is
identified as a common response outlier on the MEDS plots (Fig. 5a
and b).

3.2.3. Dataset 3
Similarly to the Dataset 2, the first model of the retention

factor (k) was  taken from previous work [27] – a  CP ANN
model built with 15 training and 5 internal test set compounds
based on 64 molecular descriptors (see Section 2.1.3). The model
was  validated by using 5 external validation set compounds
(R2

[CP ANN−Dataset 3; 64−p] = 0.99, Q 2
ext/F3[CP ANN−Dataset 3; 64−p] = 0.96).

Analogously to the Dataset 2, two more additional models were
constructed by using a reduced number of molecular descriptors
(13 out of 64 descriptors)–CP ANN (R2

[CP  ANN-Dataset 3; 13−p] = 0.99,

Q 2
ext/F3[CP ANN-Dataset 3; 13−p] = 0.86) and PLS (R2

[PLS-Dataset 3; 13-p] =
0.71, Q 2

ext/F3[PLS-Dataset 3; 13−p] = 0.91). The applicability domain
assessment for all three models is shown in Fig. 6.

As demonstrated in Fig. 6, one can observe satisfactory perform-
ances in all three cases (almost all objects are situated within the
models AD). In the AD plot for the CP ANN model constructed by
using 64 molecular descriptors (Fig. 6a) only one object from the
external validation set is evidently structurally-influential outlier,
ID = 20; This is sulfurous acid ant its 64-dimensional descriptor vec-
tor shows significant difference from the most similar structure in
the training set, which is sulfuric acid that has a different number of
oxygen atoms bound to sulfur atom with a different oxidation state.
No outlying objects could be identified in the 13-parameters CP
ANN and PLS models AD as to be located outside of their structural
centroids (Fig. 6b and c). On the other hand, regarding the mod-
els response space, the AD for the 13-parameters CP ANN model
(Fig. 6b) identified an external validation set object (ID = 9) as a
response outlier, hence it is acceptably predicted by 64-parameters
CP ANN and 13-parameters PLS models as depicted in Fig. 6a and c
(see Supporting information, Table S3).

3.3. Is the MEDS-based AD estimation affected by the neural

network architecture?

All the MEDS-based AD estimations performed so far, were
established by using a single-architecture CP ANN prediction
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Fig. 5. Graphical representation of the (a, b) MEDS-based versus (c) leverage-based method for AD estimation for our (a) 97-parameters CP ANN prediction model [26] and the
additionally developed 7-parameters (b) CP ANN and (c) PLS models, for prediction of the inhibitory potency for a set of 59 trypsin inhibitors (Dataset 2) [26]. Training/internal
test  set objects (41 compounds) are depicted as solid blue rectangles, while the external validation set object (18 compounds) as solid red circles. The critical hat value ((c)
h (outsi
t pretat
v

m
m
d
A
f
A
a
t

*  = 0.59) is calculated according to (Eq. (7)). The compounds identified as outliers 

heir  corresponding ID numbers ((a–c) Supporting information, Table S2).  (For inter
ersion of this article.)

odel. On the other hand, when working with non-linear QSAR
odeling methods such as ANN, the colloquial strategy is to train

ifferent ANN architectures before to make a final decision which
NN model will be accepted (usually according to the highest value
or the cross-validated coefficient of correlation for the model) [51].
ccording to this, the probability to find more than one accept-
ble model (trained under conditions different than those used
o develop the best one) must be also taken into account, and
de of the model’s AD) by both methods ((a, b) MEDS vs. (c) leverage) are signed by
ion of the references to color in this figure legend, the reader is referred to the web

therefore a crucial question arises: Is the MEDS-based AD estimation
really affected by the ANN architecture employed? In order to give
an answer to this question, a side-by-side comparative evaluation
of the ADs for different ANN models of Dataset 1 developed under

various network architectures must be performed as demonstrated
in Fig. 7.

Fig. 7 shows the MEDS-based AD plots for three CP ANN mod-
els for prediction of the bilitranslocase transport activity for 88
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Fig. 6. Graphical representation of the (a, b) MEDS-based versus (c) leverage-based method for AD estimation for our (a) 64-parameters CP ANN prediction model [27] and
the  additionally developed 13-parameters (b) CP ANN and (c) PLS models, for prediction of the retention factors (k) for a set of 25 ions (Dataset 3) [27]. Training/internal
test  set objects (20 compounds) are depicted as solid blue rectangles, while the external validation set object (18 compounds) as solid red circles. The critical hat value ((c)
h ide of
c tation
v

c
w
m
w
d
w
a
s

*  = 2.10) is calculated according to (Eq. (7)). The objects identified as outliers (outs
orresponding ID numbers ((a–c) Supporting information, Table S3).  (For interpre
ersion of this article.)

ompounds (Dataset 1) developed under different conditions (net-
ork architectures). Namely, alongside our published CP ANN
odel [25] which AD plot is represented in Fig. 7b (6 × 6 net-
ork), for comparative purposes we selected two more models

eveloped under two vicinal network architectures, i.e., 5 × 5 net-
ork and 7 × 7 network, which AD plots are depicted in Fig. 7a

nd c, respectively. Comparing to the 6 × 6 model’s AD (Fig. 7b), no
ignificant differences were determined between all three cases
 the model’s AD) by both methods ((a, b) MEDS vs. (c) leverage) are signed by their
 of the references to color in this figure legend, the reader is referred to the web

in regard to the identified outliers. The external validation set
compounds (ID = 57, 64, 66, 70, 73, 77, 80, 83, and 88) which
were previously identified as extreme points, i.e., structurally-
influential outliers (ED > EDcrit) as well as the response outliers

(ID = 63, 67, 74, 76, and 79), were found to be outside of the AD in
all three cases. The only questionable compound predicted by 5 × 5
(Fig. 7a) and 7 × 7 (Fig. 7c) models as structurally-influential outlier
is the compound hydrochlorothiazide (ID = 74; EDID=74[5×5] = 0.357
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Fig. 7. Side-by-side comparative assessment of the MEDS-based AD for three CP ANN prediction models for estimation of the bilitranslocase transport activity developed using
different network architectures: (a) 5 × 5, (b) 6 × 6 (our published model, Dataset 1) [25], and (c) 7 × 7. The normalized ED threshold values (a) EDcrit = 0.350, (b) EDcrit = 0.350,
and  (c) EDcrit = 0.354, respectively, correspond to the training set object with maximal ED value. The training set objects (45 compounds) are depicted as solid blue rectangles,
e idatio
i  numb
r  this a

a
t
d
m
b
t
H
a

xternal test set objects (10 compounds) as solid red circles, while the external val
dentified as potential outliers (ED > EDcrit) are signed with their corresponding ID
eferences to color in this figure legend, the reader is referred to the web  version of

nd EDID=74[7×7] = 0.356) that belongs to the thiazide diuretic’s
herapeutic class. Indeed, hydrochlorothiazide is structurally very
ifferent than the compounds used for developing of the CP ANN
odels (no similar compound can be found) and therefore should
e expected to be outside of the model’s AD, even it was experimen-
ally determined as bilitranslocase competitive inhibitor (Table 1).
ence, the same compound is situated within the 6 × 6 model’s AD
s shown in Fig. 7b.
n set objects (33 compounds) are represented as solid green triangles. The objects
er ((a, c) Supporting information Table S4;  (b) Table 1). (For interpretation of the
rticle.)

4. Conclusion

In this study a novel, simple and effective distance-based
methodology for AD estimation in case of established prediction-

like ANN models was  introduced taking into account the so-called
“minimum Euclidean distance space” (MEDS) concept. The method
offers a graphical depiction of the ANNs model AD for fast and accu-
rate visual determination of the detected structurally-influential
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utliers. The performances of our MEDS-based AD estimation con-
ept were thoroughly evaluated through three case studies utilizing

 pre-built and validated CP ANN prediction models. In the model
or the estimation of the transport activity of the transmem-
rane protein bilitranslocase for a diverse set of compounds, the
ethod identified 9 compounds out of total 33 compounds (used

or external validation of the CP ANN model) as pure structurally-
nfluential outliers with calculated EDs greater than the critical
hreshold value (EDcrit), of which the majority were also determined
s response outliers (objects with standardized residual values
reater than ±3� units). The structural analysis of these compounds
learly confirmed that no similarity exist between them and the
hemical structures used for developing of the CP ANN model, and
herefore it is very likely to be situated far from the structural cen-
roid of the model. Furthermore, the PLS modeling methodology
as applied on the same data and the leverage-based AD was esti-
ated and compared with the MEDS-based AD results. Although,

oth AD estimation methods are essentially different with regards
o the distance metrics utilized (EDs vs. leverages), they gave com-
arable outcome. The same outlying objects identified by using the
EDS-based AD approach were again identified as extreme points

n the assessed Williams plot (h > h*), together with a much larger
nsemble of external validation set objects. These results explic-
tly show that the calculated cut-off leverage value (h*) is much

ore restrictive for the PLS model, comparing to the EDcrit for the
P ANN model. Finally, the side-by-side comparative assessment
f the AD plots generated for different CP ANN models developed
nder various ANN architectures close to the optimal one showed
o significant differences in the identified outliers, allowing us to
onclude that the MEDS-based AD assessment is not significantly
ffected by the neural network size.

From pharmacological point of view, the majority of the com-
ounds identified as outliers throughout this case study belong to
he class of non-steroidal antiinflammatory drugs (NSAIDs) which
re totally different than the training set compounds. Therefore we
elieve that their permanent appearance out of the model AD pin-
oint to some degree of weakness of the model for prediction of
SAIDs. Additionally, the same methodology was  applied on two
ore case studies and similar outcomes were observed.
In conclusion, our MEDS-based approach demonstrated satis-

actory performances for proficient assessment of the AD in case
f non-linear predictive distance-based ANN models such as KANN
nd CP ANN, as has been already shown for classification CP ANN
odels [24]. This method is supposed to improve the choice of

tandard methods needed in providing the high quality validations
n the QSAR world.

. Notes

All the AD plots provided in this study were generated and ana-
yzed by using the CPNN-AD Builder and MLR-AD Builder available
pon request.
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