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Likes coding
10 years assembly only

Likes research
Former academic. PhD in IR.

Likes open source
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How tomake this presentation interesting?
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Talk outline

Test randomization is cool.
…and it's good for you.

Randomized testing.
…what can be randomized, how to assert on the unknown.

Support from tools.
RandomizedTesting package.

Parallel <junit>.
How to speed up tests onmulticores.



Unit Testing



The things we all have been told about

Unit Testing

Tests are good.

More tests ! more reliable software.

Tests should cover boundary conditions.



But…

1 execution = 1000 executions.
Tests react to changes (regressions) only.
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But…

1 execution = 1000 executions.
Tests react to changes (regressions) only.

Complex interactions are hard implement.
Boundary conditions in complex code are rarely or never reached.

Increased CO2 emission :)
Wasted CPU cycles on CI/build servers, developer test runs.
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The why?















Randomized Testing



Randomized Testing
(mini-manifesto)

Each test covers a possibly different ::::::::::execution :::::path (or ::::data).
Each test can be ::::::::repeated given the same randomization seed.
Each test :is:::::::::repeated lots of times (! build server, developers).
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Historical note

Industry and academia
Duran, Ntafos: An evaluation of random testing, 1984! Haskell: QuickCheck.

Hacking.
Fuzziöers, vulnerability discovery.

Lucene Test Framework.
Lots of great ideas. Driven by real needs and bugs. Many contributors.

Carrot Search.
Handcrafted pseudo-randomness in Carrot2, Lingo3G, HPPC,…









What can be randomized?

1. Input data, iteration counts, arguments.
Random, constraint-bound, shuffled.

2. Software components.
If multiple implementations exist. LTC: Field, Directory, IndexSearcher…

3. Environment.
Locale, TimeZone, JVM (!), operating system.

4. Exceptional triggers.
I/O problems, network problems (usingmocks or runtime engineering).



What can be asserted?

Exact output.
If > 1method is available; naïve algorithms, different implementations.

Sanity checks.
Only crude output checks and assertions inside the codebase. Logs.

Nothing.
Waiting for an exception. Or a jvm core dump. Surprisingly effective :)
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RandomizedRunner







RandomizedRunner's goals

Compatibility
with JUnit (and tools). At 99%, relax contracts when useful.

Built-in randomization
including reporting/ stack augmentations.

Test isolation
by tracking spawned threads. Timeouts. Terminations.

Utilities
@Repeat, @Seed, @Nightly, @TestGroup, @TestFactories…
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@RR: Intermediate

















Threads and Timeouts

ThreadGroup per suite.
Sub-threads inherit their own randomness (context).
No races—öxed seed (master) for each thread. Repeatable?

@ThreadLeakstm
Left-behind threads failure control. Lingering control.

Global andmethod@Timeout.
Violators cause test or suite failure.

Thread termination.
Rationale: no interference from left-behinds.
Interrupt-pause-stop-pause-continue cycle. Problems with Thread.stop().
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@RR: Advanced
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@ThreadLeaks and stop()

After a thread is stopped its resources should not be reused
(may be left in an inconsistent state!).

Applies to executors and thread pools in particular.
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…more at:
https://github.com/carrotsearch/randomizedtesting/issues/



<JUnit4>



Parallel <junit> for Ant

Ant task andMaven plugin
Needs to be loaded.

Forks multiple JVMs
And runs tests in parallel. Load balances.

Coordinated listeners
Aggregated event stream.
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Summary



Randomized Testing

Complex boundary conditions.
May or may not hit them, but there is a chance!

Input noise resilience.
You simply cannot predict what will appear on input.

Unexpected component-component interactions.
Pairwise component compatibility.

Unexpected environment interactions.
JVM, operating system differences.

Tool support.
Not really crucial (can be handcrafted), but a nice-to-have.
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