
Solr & Lucene use case

DawidWEISS
Carrot Search, Poland

Geecon Conference
Poznań, May 2012



DawidWeiss

Likes coding
10 years assembly only

Likes research
Former academic. PhD in IR.

Likes open source
Carrot2, HPPC, Lucene,…

Likes industry
Carrot Search s.c.

.

.

.

.

.

.

. .



How tomake this presentation interesting?



.

.



.

.





Talk outline

Test randomization is cool.
…and it's good for you.

Randomized testing.
…what can be randomized, how to assert on the unknown.

Support from tools.
RandomizedTesting package.

Parallel <junit>.
How to speed up tests onmulticores.



Unit Testing



The things we all have been told about

Unit Testing

Tests are good.

More tests ! more reliable software.

Tests should cover boundary conditions.



But…

1 execution = 1000 executions.
Tests react to changes (regressions) only.



isRectange(shape)



isRectange(shape)



But…

1 execution = 1000 executions.
Tests react to changes (regressions) only.

Complex interactions are hard implement.
Boundary conditions in complex code are rarely or never reached.

Increased CO2 emission :)
Wasted CPU cycles on CI/build servers, developer test runs.



But…

1 execution = 1000 executions.
Tests react to changes (regressions) only.

Complex interactions are hard implement.
Boundary conditions in complex code are rarely or never reached.

Increased CO2 emission :)
Wasted CPU cycles on CI/build servers, developer test runs.









The why?















Randomized Testing



Randomized Testing
(mini-manifesto)

Each test covers a possibly different ::::::::::execution :::::path (or ::::data).
Each test can be ::::::::repeated given the same randomization seed.
Each test :is:::::::::repeated lots of times (! build server, developers).



Randomized Testing
(mini-manifesto)

Each test covers a possibly different ::::::::::execution :::::path (or ::::data).

Each test can be ::::::::repeated given the same randomization seed.
Each test :is:::::::::repeated lots of times (! build server, developers).



Randomized Testing
(mini-manifesto)

Each test covers a possibly different ::::::::::execution :::::path (or ::::data).
Each test can be ::::::::repeated given the same randomization seed.

Each test :is:::::::::repeated lots of times (! build server, developers).



Randomized Testing
(mini-manifesto)

Each test covers a possibly different ::::::::::execution :::::path (or ::::data).
Each test can be ::::::::repeated given the same randomization seed.
Each test :is:::::::::repeated lots of times (! build server, developers).



Historical note

Industry and academia
Duran, Ntafos: An evaluation of random testing, 1984! Haskell: QuickCheck.

Hacking.
Fuzziöers, vulnerability discovery.

Lucene Test Framework.
Lots of great ideas. Driven by real needs and bugs. Many contributors.

Carrot Search.
Handcrafted pseudo-randomness in Carrot2, Lingo3G, HPPC,…









What can be randomized?

1. Input data, iteration counts, arguments.
Random, constraint-bound, shuffled.

2. Software components.
If multiple implementations exist. LTC: Field, Directory, IndexSearcher…

3. Environment.
Locale, TimeZone, JVM (!), operating system.

4. Exceptional triggers.
I/O problems, network problems (usingmocks or runtime engineering).



What can be asserted?

Exact output.
If > 1method is available; naïve algorithms, different implementations.

Sanity checks.
Only crude output checks and assertions inside the codebase. Logs.

Nothing.
Waiting for an exception. Or a jvm core dump. Surprisingly effective :)



What can be asserted?

Exact output.
If > 1method is available; naïve algorithms, different implementations.

Sanity checks.
Only crude output checks and assertions inside the codebase. Logs.

Nothing.
Waiting for an exception. Or a jvm core dump. Surprisingly effective :)



What can be asserted?

Exact output.
If > 1method is available; naïve algorithms, different implementations.

Sanity checks.
Only crude output checks and assertions inside the codebase. Logs.

Nothing.
Waiting for an exception. Or a jvm core dump. Surprisingly effective :)



RandomizedRunner







RandomizedRunner's goals

Compatibility
with JUnit (and tools). At 99%, relax contracts when useful.

Built-in randomization
including reporting/ stack augmentations.

Test isolation
by tracking spawned threads. Timeouts. Terminations.

Utilities
@Repeat, @Seed, @Nightly, @TestGroup, @TestFactories…



RandomizedRunner's goals

Compatibility
with JUnit (and tools). At 99%, relax contracts when useful.

Built-in randomization
including reporting/ stack augmentations.

Test isolation
by tracking spawned threads. Timeouts. Terminations.

Utilities
@Repeat, @Seed, @Nightly, @TestGroup, @TestFactories…



RandomizedRunner's goals

Compatibility
with JUnit (and tools). At 99%, relax contracts when useful.

Built-in randomization
including reporting/ stack augmentations.

Test isolation
by tracking spawned threads. Timeouts. Terminations.

Utilities
@Repeat, @Seed, @Nightly, @TestGroup, @TestFactories…



RandomizedRunner's goals

Compatibility
with JUnit (and tools). At 99%, relax contracts when useful.

Built-in randomization
including reporting/ stack augmentations.

Test isolation
by tracking spawned threads. Timeouts. Terminations.

Utilities
@Repeat, @Seed, @Nightly, @TestGroup, @TestFactories…



RandomizedRunner's goals

Compatibility
with JUnit (and tools). At 99%, relax contracts when useful.

Built-in randomization
including reporting/ stack augmentations.

Test isolation
by tracking spawned threads. Timeouts. Terminations.

Utilities
@Repeat, @Seed, @Nightly, @TestGroup, @TestFactories…



@RR: Basics

















.

.





















@RR: Intermediate

















Threads and Timeouts

ThreadGroup per suite.
Sub-threads inherit their own randomness (context).
No races—öxed seed (master) for each thread. Repeatable?

@ThreadLeakstm
Left-behind threads failure control. Lingering control.

Global andmethod@Timeout.
Violators cause test or suite failure.

Thread termination.
Rationale: no interference from left-behinds.
Interrupt-pause-stop-pause-continue cycle. Problems with Thread.stop().



Threads and Timeouts

ThreadGroup per suite.
Sub-threads inherit their own randomness (context).
No races—öxed seed (master) for each thread. Repeatable?

@ThreadLeakstm
Left-behind threads failure control. Lingering control.

Global andmethod@Timeout.
Violators cause test or suite failure.

Thread termination.
Rationale: no interference from left-behinds.
Interrupt-pause-stop-pause-continue cycle. Problems with Thread.stop().



Threads and Timeouts

ThreadGroup per suite.
Sub-threads inherit their own randomness (context).
No races—öxed seed (master) for each thread. Repeatable?

@ThreadLeakstm
Left-behind threads failure control. Lingering control.

Global andmethod@Timeout.
Violators cause test or suite failure.

Thread termination.
Rationale: no interference from left-behinds.
Interrupt-pause-stop-pause-continue cycle. Problems with Thread.stop().



Threads and Timeouts

ThreadGroup per suite.
Sub-threads inherit their own randomness (context).
No races—öxed seed (master) for each thread. Repeatable?

@ThreadLeakstm
Left-behind threads failure control. Lingering control.

Global andmethod@Timeout.
Violators cause test or suite failure.

Thread termination.
Rationale: no interference from left-behinds.
Interrupt-pause-stop-pause-continue cycle. Problems with Thread.stop().









.

.



@RR: Advanced





.

.





@ThreadLeaks and stop()

After a thread is stopped its resources should not be reused
(may be left in an inconsistent state!).

Applies to executors and thread pools in particular.



@ThreadLeaks and stop()

After a thread is stopped its resources should not be reused
(may be left in an inconsistent state!).

Applies to executors and thread pools in particular.





…more at:
https://github.com/carrotsearch/randomizedtesting/issues/



<JUnit4>



Parallel <junit> for Ant

Ant task andMaven plugin
Needs to be loaded.

Forks multiple JVMs
And runs tests in parallel. Load balances.

Coordinated listeners
Aggregated event stream.









.

.



.

.











Summary



Randomized Testing

Complex boundary conditions.
May or may not hit them, but there is a chance!

Input noise resilience.
You simply cannot predict what will appear on input.

Unexpected component-component interactions.
Pairwise component compatibility.

Unexpected environment interactions.
JVM, operating system differences.

Tool support.
Not really crucial (can be handcrafted), but a nice-to-have.





.

.


	Unit Testing
	The why?
	Randomized Testing
	RandomizedRunner
	@RR: Basics
	@RR: Intermediate
	@RR: Advanced
	<JUnit4>
	Summary

