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The following is intended to outline our general product direction. It
is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing
of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.
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Motivation

Everything is well. Why do we need any Streams?

public void printGroups(List <People > people) {

Set <Group > groups = new HashSet <>();

for (People p : people) {

if (p.getAge () >= 65)

groups.add(p.getGroup ());

}

List <Group > sorted = new ArrayList <>(groups );

Collections.sort(sorted , new Comparator <Group >() {

public int compare(Group a, Group b) {

return Integer.compare(a.getSize(), b.getSize ())

}

});

for (Group g : sorted)

System.out.println(g.getName ());

}
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Motivation

It would be awesome to omit miles and miles of duplicated code.

public void printGroups(List <People > people) {

people.stream ()

.filter(p -> p.getAge () > 65)

.map(p -> p.getGroup ())

.distinct ()

.sorted(comparing(g -> g.getSize ()))

.map(g -> g.getName ())

.forEach(n -> System.out.println(n));

}
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Motivation

It would be awesome to do less work, and do it later (laziness).

public void printGroups(List <People > people) {

people.stream ()

.filter(p -> p.getAge () > 65)

.map(p -> p.getGroup ())

.distinct ()

.sorted(comparing(g -> g.getSize ()))

.map(g -> g.getName ())

.forEach(n -> System.out.println(n));//⇐ ACTIONS!

}
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Motivation

Parallelism?

Collection <Item > data;

...

for(int i=0; i < data.size (); i++) {

processItem(data.get(i));

}
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Motivation

Parallelism?

Collection <Item > data;

...

for(Item item : data) {

processItem(item);

}
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Motivation

Parallelism?

Collection <Item > data;

...

#pragma omg parallel

for(Item item : data) {

processItem(item);

}
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Motivation

Parallelism?

Collection <Item > data;

...

#pragma omp parallel

for(Item item : data) {

processItem(item);

}
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Motivation

Parallelism?

Collection <Item > data;

...

parallel_for(Item item : data) {

processItem(item);

}
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Motivation

Parallelism!

Collection <Item > data;

...

data.parallelStream ()

.forEach(item -> processItem(item ));

}
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Design

Slide 13/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



Design

Most of the code fits the same simple pattern

𝑠𝑜𝑢𝑟𝑐𝑒

→ 𝑜𝑝 → 𝑜𝑝 → 𝑜𝑝 →

“sources”: collections, iterators, channels, ...

“operations”: filter, map, reduce, ...

“sinks”: collections, locals, ...
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Sources

Standard classes?
not-yet-created classes?
3𝑟𝑑 party classes?

Collection?
should we put everything into collection?

Iterable?
“Iterator Hell” (inherently sequential)
interface pollution

Stream!
new (just invented) interface with required semantic
inject the only stream() method into existing classes
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Stream
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Stream

“A multiplicity of values”

Not a collection (no storage)

Operations are deferred as long as possible

May be infinite

Source is unmodifiable

Can be used only once

Ordered/Unordered

Parallel/Sequential

Primitive specializations:
IntStream, LongStream, DoubleStream
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Stream pipeline

𝑎 𝑠𝑜𝑢𝑟𝑐𝑒: Source → Stream

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: Stream → Stream

𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛: Stream → PROFIT!

public void printGroups(List <People > people) {

people.stream()

.filter(p -> p.getAge () > 65)

.map(p -> p.getGroup ())

.distinct()

.sorted(comparing(g -> g.getSize ()))

.map(g -> g.getName ())

.forEach(n -> System.out.println(n));

}
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Stream pipeline

𝑎 𝑠𝑜𝑢𝑟𝑐𝑒: Source → Stream

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: Stream → Stream

𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛: Stream → PROFIT!

public void printGroups(List <People > people) {

Stream <People > s1 = people.stream ();

Stream <People > s2 = s1.filter(p -> p.getAge () > 65);

Stream <Group > s3 = s2.map(p -> p.getGroup ());

Stream <Group > s4 = s3.distinct ();

Stream <Group > s5 = s4.sorted(comparing(g->g.getSize ()));

Stream <String > s6 = s5.map(g -> g.getName ());

s6.forEach(n -> System.out.println(n));

}
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Stream Sources
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Stream Sources: collections

ArrayList <T> list;

Stream <T> s = list.stream (); // sized , ordered

HashSet <T> set;

Stream <T> s = set.stream (); // sized , distinct

TreeSet <T> set;

Stream <T> s = set.stream (); // sized , distinct

// sorted , ordered
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Stream Sources: factories, builders

T[] arr;

Stream <T> s = Arrays.stream(arr);

Stream <T> s = Stream.of(v0, v1, v2);

Stream <T> s = Stream.builder ()

.add(v0).add(v1).add(v2)

.build ();

IntStream s = IntStream.range(0, 100);
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Stream Sources: generators

AtomicInteger init = new AtomicInteger (0);

Stream <Integer > s =

Stream.generate(init:: getAndIncrement );

Stream <Integer > s = Stream.iterate(0, i -> i+1);
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Stream Sources: others

Stream <String > s = bufferedReader.lines ();

Stream <String > s = Pattern.compile(myRegEx)

.splitAsStream(myStr);

DoubleStream s =

new SplittableRandom (). doubles ();
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Intermediate Operations
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Intermediate Operations

Stream <S> s;

Stream <S> s.filter(Predicate <S>);

Stream <T> s.map(Function <S, T>);

Stream <T> s.flatMap(Function <S, Stream <T>>);

Stream <S> s.peek(Consumer <S>);

Stream <S> s.sorted ();

Stream <S> s.distinct ();

Stream <S> s.limit(long);

Stream <S> s.skip(long);

Stream <S> s.unordered ();

Stream <S> s.parallel ();

Stream <S> s.sequential ();
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Terminal Operations a.k.a. PROFIT
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Terminal Operations

Terminal operations yield final result

Parallel or sequential execution

Terminal operations ’flavors’:
iteration: forEach, iterator
searching: findFirst, findAny
matching: allMatch, anyMatch, noneMatch
aggregation:

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟𝑠
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Short-circuiting

Do not consume the entire stream, drop it on the floor as
necessary

May operate infinite streams

find*, *Match, limit
e.g.:

int v = Stream.iterate(1, i -> i+1)

.filter( i % 2 == 0)

.findFirst (). get();
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Iteration

Process each stream element:

IntStream.range(0, 100)

.forEach(System.out:: println );

Convert to old style iterator1:

Iterator <Integer > =

Stream.iterate(0, i -> i + 1)

.limit (100)

.iterator ();

1for compatibility
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Example

How to compute a sum over Stream<Integer>?

public int getSum(Stream <Integer > s){

int sum;

s.forEach( i -> sum += i);

return sum;

}
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Example

How to compute a sum over Stream<Integer>?

public int getSum(Stream <Integer > s){

int sum;

s.forEach( i -> sum += i); // Compile error

return sum;

}
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Example

How to compute a sum over Stream<Integer>?

public int getSum(Stream <Integer > s){

int[] sum = new int [1];

s.forEach( i -> sum[0] += i);

return sum [0];

}
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Example

Result?

Stream <Integer > s = IntStream.range(0, 100)

.mapToObj(i -> 1);

System.out.println(getSum(s));

100

Stream <Integer > s = IntStream.range(0, 100)

.mapToObj(i -> 1)

.parallel ();

System.out.println(getSum(s));

79, 63, 100, ...
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Reduction

Take a stream and make a scalar value:

Stream <Integer > s;

Integer sum = s.reduce(0, (x, y) -> x + y);

Some operations return Optional<T>:

Stream <Integer > s;

Optional <Integer > sum = s.reduce ((x, y) -> x + y);
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Reduction

Stream <T> {

...

<U> U reduce(U identity ,

BiFunction <U,T,U> accumulator ,

BinaryOperator <U> combiner)

...

}
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Collectors

A.k.a. mutable reduction operations
Accumulate elements into a mutable result container:

List <Integer > list = IntStream.range(0, 100)

.boxed ()

.collect(Collectors.toList ());

int[] ints = IntStream.range(0, 100). toArray ();

Complex collections:

Map <Integer ,Integer > map = IntStream.range(0, 100)

.boxed (). collect(

Collectors.toConcurrentMap(

k -> k % 42, v -> v, (a, b) -> b

)

);
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java.util.stream.Collectors

More than 30 predefined collectors, e.g.:

collector => result of Stream<T>.collect(collector)

toList () => List

toSet() => Set

toCollection(Supplier <Collection <T>>) => Collection <T>

partitioningBy(Predicate <T>) => Map <Boolean , List <T>>

groupingBy(Function <T,K>) => Map <K, List <T>>>

toMap(Function <T,K>,

Function <T,U>) => Map <K,U>

Slide 38/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



Collectors

String [] a = new String []{"a", "b", "c"};

Hot to get "a,b,c"?

Arrays.stream(a). collect(Collectors.joining(","));

FYI: java.util.StringJoiner
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Collectors

Stream <T> {

...

<R> R collect(Supplier <R> supplier ,

BiConsumer <R, T> accumulator ,

BiConsumer <R, R> combiner)

...

}
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Collectors

Stream <T> s;

List <T> l = s.collect(Collectors.toList ());

⇓

l = collect( () -> new ArrayList <>(),

(list , t) -> list.add(t),

(l1 , l2) -> l1.addAll(l2));

⇓

l = collect( ArrayList ::new , List::add , List:: addAll );

a
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Parallelism
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Parallelism

Lots of sources are naturally splittable

Lots of operations are well parallelizable

Streams will do it for us

“ForkJoinPool inside”

Have to ask for the parallelism explicitly

int v = list.parallelStream ()

.reduce(Math::max)

.get();
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Explicit parallelism

Q: Why not implicit?
A: Final speedup depends on:

𝑁 – number of source elements

𝑄 – cost of operation

𝑃 – available HW parallelism

𝐶 – number of concurrent clients

We know 𝑁 .
We can estimate 𝑃 .

We can somehow cope with 𝐶
𝑄 is almost not predictable.
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Thank you!
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Q & A ?
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Appendix
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Spliterator
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Spliterator

interface Spliterator <T> {

...

long estimateSize (); // Long.MAX_VALUE if unknown

boolean tryAdvance(Consumer <T> action );

Spliterator <T> trySplit ();

int characteristics ();

...

}
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Spliterator’s characteristic

ORDERED

DISTINCT

SORTED

SIZED

SUBSIZED

NONNULL

IMMUTABLE

CONCURRENT
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Stream design

I like to look at this as having chosen a design center that recognizes
that sequential is a degenerate case of parallel, rather than treating
parallel as the “weird bonus mode”. I realize that this choice was
controversial and definitely caused some compromises, but eventually
people will have to start to unlearn their sequential biases, and
there’s no time like the present.

(c) Brian Goetz

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-February/011870.html
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