
Java8: Stream Style

Sergey Kuksenko

sergey.kuksenko@oracle.com, @kuksenk0

The following is intended to outline our general product direction. It
is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing
of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Slide 2/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

Slide 3/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

Everything is well. Why do we need any Streams?

public void printGroups(List <People > people) {

Set <Group > groups = new HashSet <>();

for (People p : people) {

if (p.getAge () >= 65)

groups.add(p.getGroup ());

}

List <Group > sorted = new ArrayList <>(groups);

Collections.sort(sorted , new Comparator <Group >() {

public int compare(Group a, Group b) {

return Integer.compare(a.getSize(), b.getSize ())

}

});

for (Group g : sorted)

System.out.println(g.getName ());

}

Slide 4/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

Everything is well. Why do we need any Streams?

public void printGroups(List <People > people) {

Set <Group > groups = new HashSet <>();

for (People p : people) {

if (p.getAge () >= 65)

groups.add(p.getGroup ());

}

List <Group > sorted = new ArrayList <>(groups);

Collections.sort(sorted , new Comparator <Group >() {

public int compare(Group a, Group b) {

return Integer.compare(a.getSize(), b.getSize ())

}

});

for (Group g : sorted)

System.out.println(g.getName ());

}

Slide 4/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

It would be awesome to omit miles and miles of duplicated code.

public void printGroups(List <People > people) {

people.stream ()

.filter(p -> p.getAge () > 65)

.map(p -> p.getGroup ())

.distinct ()

.sorted(comparing(g -> g.getSize ()))

.map(g -> g.getName ())

.forEach(n -> System.out.println(n));

}

Slide 5/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

It would be awesome to do less work, and do it later (laziness).

public void printGroups(List <People > people) {

people.stream ()

.filter(p -> p.getAge () > 65)

.map(p -> p.getGroup ())

.distinct ()

.sorted(comparing(g -> g.getSize ()))

.map(g -> g.getName ())

.forEach(n -> System.out.println(n));//⇐ ACTIONS!

}

Slide 6/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

Parallelism?

Collection <Item > data;

...

for(int i=0; i < data.size (); i++) {

processItem(data.get(i));

}

Slide 7/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

Parallelism?

Collection <Item > data;

...

for(Item item : data) {

processItem(item);

}

Slide 8/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

Parallelism?

Collection <Item > data;

...

#pragma omg parallel

for(Item item : data) {

processItem(item);

}

Slide 9/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

Parallelism?

Collection <Item > data;

...

#pragma omp parallel

for(Item item : data) {

processItem(item);

}

Slide 10/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

Parallelism?

Collection <Item > data;

...

parallel_for(Item item : data) {

processItem(item);

}

Slide 11/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Motivation

Parallelism!

Collection <Item > data;

...

data.parallelStream ()

.forEach(item -> processItem(item));

}

Slide 12/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Design

Slide 13/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Design

Most of the code fits the same simple pattern

𝑠𝑜𝑢𝑟𝑐𝑒

→ 𝑜𝑝 → 𝑜𝑝 → 𝑜𝑝 →

“sources”: collections, iterators, channels, ...

“operations”: filter, map, reduce, ...

“sinks”: collections, locals, ...

Slide 14/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Design

Most of the code fits the same simple pattern

𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑜𝑝

→ 𝑜𝑝 → 𝑜𝑝 →

“sources”: collections, iterators, channels, ...

“operations”: filter, map, reduce, ...

“sinks”: collections, locals, ...

Slide 14/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Design

Most of the code fits the same simple pattern

𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑜𝑝 → 𝑜𝑝

→ 𝑜𝑝 →

“sources”: collections, iterators, channels, ...

“operations”: filter, map, reduce, ...

“sinks”: collections, locals, ...

Slide 14/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Design

Most of the code fits the same simple pattern

𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑜𝑝 → 𝑜𝑝 → 𝑜𝑝

→

“sources”: collections, iterators, channels, ...

“operations”: filter, map, reduce, ...

“sinks”: collections, locals, ...

Slide 14/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Design

Most of the code fits the same simple pattern

𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑜𝑝 → 𝑜𝑝 → 𝑜𝑝 →

“sources”: collections, iterators, channels, ...

“operations”: filter, map, reduce, ...

“sinks”: collections, locals, ...

Slide 14/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Design

Most of the code fits the same simple pattern

𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑜𝑝 → 𝑜𝑝 → 𝑜𝑝 → 𝑔𝑎𝑛𝑔𝑛𝑎𝑚𝑠𝑡𝑦𝑙𝑒

“sources”: collections, iterators, channels, ...

“operations”: filter, map, reduce, ...

“sinks”: collections, locals, ...

Slide 14/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Design

Most of the code fits the same simple pattern

𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑜𝑝 → 𝑜𝑝 → 𝑜𝑝 → 𝑠𝑖𝑛𝑘

“sources”: collections, iterators, channels, ...

“operations”: filter, map, reduce, ...

“sinks”: collections, locals, ...

Slide 14/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Design

Most of the code fits the same simple pattern

𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑜𝑝 → 𝑜𝑝 → 𝑜𝑝 → 𝑠𝑖𝑛𝑘

“sources”: collections, iterators, channels, ...

“operations”: filter, map, reduce, ...

“sinks”: collections, locals, ...

Slide 14/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Sources

Standard classes?
not-yet-created classes?
3𝑟𝑑 party classes?

Collection?
should we put everything into collection?

Iterable?
“Iterator Hell” (inherently sequential)
interface pollution

Stream!
new (just invented) interface with required semantic
inject the only stream() method into existing classes

Slide 15/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Sources

Standard classes?
not-yet-created classes?
3𝑟𝑑 party classes?

Collection?
should we put everything into collection?

Iterable?
“Iterator Hell” (inherently sequential)
interface pollution

Stream!
new (just invented) interface with required semantic
inject the only stream() method into existing classes

Slide 15/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Sources

Standard classes?
not-yet-created classes?
3𝑟𝑑 party classes?

Collection?
should we put everything into collection?

Iterable?
“Iterator Hell” (inherently sequential)
interface pollution

Stream!
new (just invented) interface with required semantic
inject the only stream() method into existing classes

Slide 15/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Sources

Standard classes?
not-yet-created classes?
3𝑟𝑑 party classes?

Collection?
should we put everything into collection?

Iterable?
“Iterator Hell” (inherently sequential)
interface pollution

Stream!
new (just invented) interface with required semantic
inject the only stream() method into existing classes

Slide 15/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream

Slide 16/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream

“A multiplicity of values”

Not a collection (no storage)

Operations are deferred as long as possible

May be infinite

Source is unmodifiable

Can be used only once

Ordered/Unordered

Parallel/Sequential

Primitive specializations:
IntStream, LongStream, DoubleStream

Slide 17/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream pipeline

𝑎 𝑠𝑜𝑢𝑟𝑐𝑒: Source → Stream

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: Stream → Stream

𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛: Stream → PROFIT!

public void printGroups(List <People > people) {

people.stream()

.filter(p -> p.getAge () > 65)

.map(p -> p.getGroup ())

.distinct()

.sorted(comparing(g -> g.getSize ()))

.map(g -> g.getName ())

.forEach(n -> System.out.println(n));

}

Slide 18/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream pipeline

𝑎 𝑠𝑜𝑢𝑟𝑐𝑒: Source → Stream

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: Stream → Stream

𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛: Stream → PROFIT!

public void printGroups(List <People > people) {

people.stream()

.filter(p -> p.getAge () > 65)

.map(p -> p.getGroup ())

.distinct()

.sorted(comparing(g -> g.getSize ()))

.map(g -> g.getName ())

.forEach(n -> System.out.println(n));

}

Slide 18/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream pipeline

𝑎 𝑠𝑜𝑢𝑟𝑐𝑒: Source → Stream

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: Stream → Stream

𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛: Stream → PROFIT!

public void printGroups(List <People > people) {

people.stream()

.filter(p -> p.getAge () > 65)

.map(p -> p.getGroup ())

.distinct()

.sorted(comparing(g -> g.getSize ()))

.map(g -> g.getName ())

.forEach(n -> System.out.println(n));

}

Slide 18/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream pipeline

𝑎 𝑠𝑜𝑢𝑟𝑐𝑒: Source → Stream

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: Stream → Stream

𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛: Stream → PROFIT!

public void printGroups(List <People > people) {

Stream <People > s1 = people.stream ();

Stream <People > s2 = s1.filter(p -> p.getAge () > 65);

Stream <Group > s3 = s2.map(p -> p.getGroup ());

Stream <Group > s4 = s3.distinct ();

Stream <Group > s5 = s4.sorted(comparing(g->g.getSize ()));

Stream <String > s6 = s5.map(g -> g.getName ());

s6.forEach(n -> System.out.println(n));

}

Slide 19/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources

Slide 20/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: collections

ArrayList <T> list;

Stream <T> s = list.stream (); // sized , ordered

HashSet <T> set;

Stream <T> s = set.stream (); // sized , distinct

TreeSet <T> set;

Stream <T> s = set.stream (); // sized , distinct

// sorted , ordered

Slide 21/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: collections

ArrayList <T> list;

Stream <T> s = list.stream (); // sized , ordered

HashSet <T> set;

Stream <T> s = set.stream (); // sized , distinct

TreeSet <T> set;

Stream <T> s = set.stream (); // sized , distinct

// sorted , ordered

Slide 21/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: collections

ArrayList <T> list;

Stream <T> s = list.stream (); // sized , ordered

HashSet <T> set;

Stream <T> s = set.stream (); // sized , distinct

TreeSet <T> set;

Stream <T> s = set.stream (); // sized , distinct

// sorted , ordered

Slide 21/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: factories, builders

T[] arr;

Stream <T> s = Arrays.stream(arr);

Stream <T> s = Stream.of(v0, v1, v2);

Stream <T> s = Stream.builder ()

.add(v0).add(v1).add(v2)

.build ();

IntStream s = IntStream.range(0, 100);

Slide 22/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: factories, builders

T[] arr;

Stream <T> s = Arrays.stream(arr);

Stream <T> s = Stream.of(v0, v1, v2);

Stream <T> s = Stream.builder ()

.add(v0).add(v1).add(v2)

.build ();

IntStream s = IntStream.range(0, 100);

Slide 22/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: factories, builders

T[] arr;

Stream <T> s = Arrays.stream(arr);

Stream <T> s = Stream.of(v0, v1, v2);

Stream <T> s = Stream.builder ()

.add(v0).add(v1).add(v2)

.build ();

IntStream s = IntStream.range(0, 100);

Slide 22/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: factories, builders

T[] arr;

Stream <T> s = Arrays.stream(arr);

Stream <T> s = Stream.of(v0, v1, v2);

Stream <T> s = Stream.builder ()

.add(v0).add(v1).add(v2)

.build ();

IntStream s = IntStream.range(0, 100);

Slide 22/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: generators

AtomicInteger init = new AtomicInteger (0);

Stream <Integer > s =

Stream.generate(init:: getAndIncrement);

Stream <Integer > s = Stream.iterate(0, i -> i+1);

Slide 23/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: generators

AtomicInteger init = new AtomicInteger (0);

Stream <Integer > s =

Stream.generate(init:: getAndIncrement);

Stream <Integer > s = Stream.iterate(0, i -> i+1);

Slide 23/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: others

Stream <String > s = bufferedReader.lines ();

Stream <String > s = Pattern.compile(myRegEx)

.splitAsStream(myStr);

DoubleStream s =

new SplittableRandom (). doubles ();

Slide 24/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: others

Stream <String > s = bufferedReader.lines ();

Stream <String > s = Pattern.compile(myRegEx)

.splitAsStream(myStr);

DoubleStream s =

new SplittableRandom (). doubles ();

Slide 24/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Sources: others

Stream <String > s = bufferedReader.lines ();

Stream <String > s = Pattern.compile(myRegEx)

.splitAsStream(myStr);

DoubleStream s =

new SplittableRandom (). doubles ();

Slide 24/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intermediate Operations

Slide 25/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intermediate Operations

Stream <S> s;

Stream <S> s.filter(Predicate <S>);

Stream <T> s.map(Function <S, T>);

Stream <T> s.flatMap(Function <S, Stream <T>>);

Stream <S> s.peek(Consumer <S>);

Stream <S> s.sorted ();

Stream <S> s.distinct ();

Stream <S> s.limit(long);

Stream <S> s.skip(long);

Stream <S> s.unordered ();

Stream <S> s.parallel ();

Stream <S> s.sequential ();

Slide 26/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Intermediate Operations

Stream <S> s;

Stream <S> s.filter(Predicate <S>);

Stream <T> s.map(Function <S, T>);

Stream <T> s.flatMap(Function <S, Stream <T>>);

Stream <S> s.peek(Consumer <S>);

Stream <S> s.sorted ();

Stream <S> s.distinct ();

Stream <S> s.limit(long);

Stream <S> s.skip(long);

Stream <S> s.unordered ();

Stream <S> s.parallel ();

Stream <S> s.sequential ();

Slide 26/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Terminal Operations a.k.a. PROFIT

Slide 27/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Terminal Operations

Terminal operations yield final result

Parallel or sequential execution

Terminal operations ’flavors’:
iteration: forEach, iterator
searching: findFirst, findAny
matching: allMatch, anyMatch, noneMatch
aggregation:

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟𝑠

Slide 28/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Short-circuiting

Do not consume the entire stream, drop it on the floor as
necessary

May operate infinite streams

find*, *Match, limit
e.g.:

int v = Stream.iterate(1, i -> i+1)

.filter(i % 2 == 0)

.findFirst (). get();

Slide 29/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Iteration

Process each stream element:

IntStream.range(0, 100)

.forEach(System.out:: println);

Convert to old style iterator1:

Iterator <Integer > =

Stream.iterate(0, i -> i + 1)

.limit (100)

.iterator ();

1for compatibility
Slide 30/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Example

How to compute a sum over Stream<Integer>?

public int getSum(Stream <Integer > s){

int sum;

s.forEach(i -> sum += i);

return sum;

}

Slide 31/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Example

How to compute a sum over Stream<Integer>?

public int getSum(Stream <Integer > s){

int sum;

s.forEach(i -> sum += i);

return sum;

}

Slide 31/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Example

How to compute a sum over Stream<Integer>?

public int getSum(Stream <Integer > s){

int sum;

s.forEach(i -> sum += i); // Compile error

return sum;

}

Slide 32/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Example

How to compute a sum over Stream<Integer>?

public int getSum(Stream <Integer > s){

int[] sum = new int [1];

s.forEach(i -> sum[0] += i);

return sum [0];

}

Slide 33/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Example

Result?

Stream <Integer > s = IntStream.range(0, 100)

.mapToObj(i -> 1);

System.out.println(getSum(s));

100

Stream <Integer > s = IntStream.range(0, 100)

.mapToObj(i -> 1)

.parallel ();

System.out.println(getSum(s));

79, 63, 100, ...

Slide 34/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Example

Result?

Stream <Integer > s = IntStream.range(0, 100)

.mapToObj(i -> 1);

System.out.println(getSum(s));

100

Stream <Integer > s = IntStream.range(0, 100)

.mapToObj(i -> 1)

.parallel ();

System.out.println(getSum(s));

79, 63, 100, ...

Slide 34/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Example

Result?

Stream <Integer > s = IntStream.range(0, 100)

.mapToObj(i -> 1);

System.out.println(getSum(s));

100

Stream <Integer > s = IntStream.range(0, 100)

.mapToObj(i -> 1)

.parallel ();

System.out.println(getSum(s));

79, 63, 100, ...

Slide 34/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Example

Result?

Stream <Integer > s = IntStream.range(0, 100)

.mapToObj(i -> 1);

System.out.println(getSum(s));

100

Stream <Integer > s = IntStream.range(0, 100)

.mapToObj(i -> 1)

.parallel ();

System.out.println(getSum(s));

79, 63, 100, ...
Slide 34/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Reduction

Take a stream and make a scalar value:

Stream <Integer > s;

Integer sum = s.reduce(0, (x, y) -> x + y);

Some operations return Optional<T>:

Stream <Integer > s;

Optional <Integer > sum = s.reduce ((x, y) -> x + y);

Slide 35/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Reduction

Take a stream and make a scalar value:

Stream <Integer > s;

Integer sum = s.reduce(0, (x, y) -> x + y);

Some operations return Optional<T>:

Stream <Integer > s;

Optional <Integer > sum = s.reduce ((x, y) -> x + y);

Slide 35/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Reduction

Stream <T> {

...

<U> U reduce(U identity ,

BiFunction <U,T,U> accumulator ,

BinaryOperator <U> combiner)

...

}

Slide 36/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collectors

A.k.a. mutable reduction operations
Accumulate elements into a mutable result container:

List <Integer > list = IntStream.range(0, 100)

.boxed ()

.collect(Collectors.toList ());

int[] ints = IntStream.range(0, 100). toArray ();

Complex collections:

Map <Integer ,Integer > map = IntStream.range(0, 100)

.boxed (). collect(

Collectors.toConcurrentMap(

k -> k % 42, v -> v, (a, b) -> b

)

);

Slide 37/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collectors

A.k.a. mutable reduction operations
Accumulate elements into a mutable result container:

List <Integer > list = IntStream.range(0, 100)

.boxed ()

.collect(Collectors.toList ());

int[] ints = IntStream.range(0, 100). toArray ();

Complex collections:

Map <Integer ,Integer > map = IntStream.range(0, 100)

.boxed (). collect(

Collectors.toConcurrentMap(

k -> k % 42, v -> v, (a, b) -> b

)

);
Slide 37/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

java.util.stream.Collectors

More than 30 predefined collectors, e.g.:

collector => result of Stream<T>.collect(collector)

toList () => List

toSet() => Set

toCollection(Supplier <Collection <T>>) => Collection <T>

partitioningBy(Predicate <T>) => Map <Boolean , List <T>>

groupingBy(Function <T,K>) => Map <K, List <T>>>

toMap(Function <T,K>,

Function <T,U>) => Map <K,U>

Slide 38/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collectors

String [] a = new String []{"a", "b", "c"};

Hot to get "a,b,c"?

Arrays.stream(a). collect(Collectors.joining(","));

FYI: java.util.StringJoiner

Slide 39/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collectors

String [] a = new String []{"a", "b", "c"};

Hot to get "a,b,c"?

Arrays.stream(a). collect(Collectors.joining(","));

FYI: java.util.StringJoiner

Slide 39/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collectors

String [] a = new String []{"a", "b", "c"};

Hot to get "a,b,c"?

Arrays.stream(a). collect(Collectors.joining(","));

FYI: java.util.StringJoiner

Slide 39/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collectors

Stream <T> {

...

<R> R collect(Supplier <R> supplier ,

BiConsumer <R, T> accumulator ,

BiConsumer <R, R> combiner)

...

}

Slide 40/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collectors

Stream <T> s;

List <T> l = s.collect(Collectors.toList ());

⇓

l = collect(() -> new ArrayList <>(),

(list , t) -> list.add(t),

(l1 , l2) -> l1.addAll(l2));

⇓

l = collect(ArrayList ::new , List::add , List:: addAll);

a

Slide 41/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Collectors

Stream <T> s;

List <T> l = s.collect(Collectors.toList ());

⇓

l = collect(() -> new ArrayList <>(),

(list , t) -> list.add(t),

(l1 , l2) -> l1.addAll(l2));

⇓

l = collect(ArrayList ::new , List::add , List:: addAll);

a

Slide 41/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Parallelism

Slide 42/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Parallelism

Lots of sources are naturally splittable

Lots of operations are well parallelizable

Streams will do it for us

“ForkJoinPool inside”

Have to ask for the parallelism explicitly

int v = list.parallelStream ()

.reduce(Math::max)

.get();

Slide 43/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Explicit parallelism

Q: Why not implicit?
A: Final speedup depends on:

𝑁 – number of source elements

𝑄 – cost of operation

𝑃 – available HW parallelism

𝐶 – number of concurrent clients

We know 𝑁 .
We can estimate 𝑃 .

We can somehow cope with 𝐶
𝑄 is almost not predictable.

Slide 44/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Thank you!

Slide 45/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Q & A ?

Slide 46/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Appendix

Slide 47/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Spliterator

Slide 48/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Spliterator

interface Spliterator <T> {

...

long estimateSize (); // Long.MAX_VALUE if unknown

boolean tryAdvance(Consumer <T> action);

Spliterator <T> trySplit ();

int characteristics ();

...

}

Slide 49/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Spliterator’s characteristic

ORDERED

DISTINCT

SORTED

SIZED

SUBSIZED

NONNULL

IMMUTABLE

CONCURRENT

Slide 50/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream design

I like to look at this as having chosen a design center that recognizes
that sequential is a degenerate case of parallel, rather than treating
parallel as the “weird bonus mode”. I realize that this choice was
controversial and definitely caused some compromises, but eventually
people will have to start to unlearn their sequential biases, and
there’s no time like the present.

(c) Brian Goetz

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-February/011870.html

Slide 51/51. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-February/011870.html

	Motivation
	Design
	Stream
	Stream Sources
	Intermediate Operations
	Terminal Operations a.k.a. PROFIT
	Parallelism
	Appendix
	Spliterator

