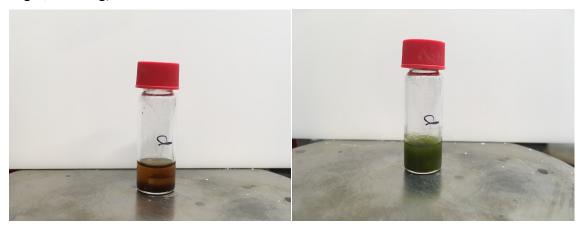
Supporting Information for

Diastereo- and Enantioselective Formal [3+2] Cycloaddition of Cyclopropyl Ketones and Alkenes via Ti-catalyzed Radical Redox Relay

Wei Hao, Johannes H. Harenberg, Xiangyu Wu, Samantha N. MacMillan, Song Lin*

Table of Contents

Section 1.	General information.	2
Section 2.	General procedures for Ti-catalyzed [3+2] cycloaddition and characterization.	_
Section 3.	Preparation and characterization of catalysts and substrates	16
Section 4.	Mechanistic studies	18
Section 5.	X-ray crystallographic data	21
Section 6.	References.	24
Section 7.	Spectral data for products	25


Section 1. General information

All reactions were conducted under a nitrogen atmosphere, unless otherwise noted. Flash chromatography was performed using silica gel 60(230-400 mesh) from SiliCycle. Commercial reagents were purchased from Sigma-Aldrich, Alfa Aesar, Acros, TCI, AK Scientific, and Oakwood and used as received with the following exceptions: toluene, dichloromethane, tetrahydrofuran, diethyl ether, and acetonitrile were dried by passing through columns of activated alumina; dimethylformamide was dried by passing through columns of activated molecular sieves. Triethylamine, ethyl acetate and 1,2dichloroethane were distilled from CaH₂ at 760 torr. Mn powder used in this study was purchased from Alfa Aesar (catalog #10238, ~325 mesh, 99.3% metal basis, apparent density 2.6-3.5 g/cm). Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (13C NMR) spectra were recorded on Mercury-300 (300 MHz), Inova-400 (400 MHz), Inova-500 (500 MHz) and Inova-600 (600M) spectrometers. Chemical shifts for protons are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26). Chemical shifts for carbon are referenced to the carbon resonances of the solvent (CDCl₃ = δ 77.0). Data are represented as follows: chemical shift, multiplicity (br. s = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = singletmultiplet), coupling constants in Hertz (Hz), integration. Yields determined with ¹H NMR used 1,3,5-trimethylbenzene as the internal standard. Infrared (IR) spectra were obtained using a Bruker Hyperion Tensor 27 FTIR spectrometer. The mass spectral data were obtained on a Thermo Fisher Scientific Exactive series DART Mass Spectrometer. Enantiomeric excesses were determined by chiral HPLC of isolated material using a SHIMADZU system with CHIRALPAK® columns and. Optical rotations were measured using a PERKIN-ELMER polarimeter at room temperature in CHCl₃.

Abbreviations: 'Bu—*tert*-butyl, DMAP—4-dimethylaminopyridine, DCM—dichloromethane, EtOAc—ethyl acetate, MeCN—acetonitrile, Et₃N—triethylamine, TEMPO—(2,2,6,6-tetramethylpiperidin-1-yl)oxyl, THF—tetrahydrofuran, Ts—*p*-toluenesulfonyl.

Section 2. General procedures for Ti-catalyzed [3+2] cycloaddition and product characterization

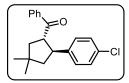
Method A. Substrate scope (0.1 mmol scale): In a N₂-filled glovebox, an ovendried 1.5 dr vial equipped with a magnetic stir bar was charged with Mn (11 mg, 0.2 mmol, 2.0 equiv), Et₃N·HCl (27.4 mg, 0.2 mmol, 2.0 equiv) and **3** (8.3 mg, 0.01 mmol, 10 mol %) in 1 mL of EtOAc. The mixture was stirred vigorously for 10 min to allow reduction of the pre-catalyst (Figure S1). Subsequently, the alkene substrate (0.12 mmol, 1.2 equiv) and cyclopropyl ketones (0.10 mmol, 1 equiv) were added, and the resulting mixture was removed from the glovebox and stirred at room temperature (22 ± 1 °C) for 12 h. The reaction mixture was then transferred onto a short Celite column (1-1.5 cm in length, ca. 0.5 g) and flushed through with a mixture of hexanes and ethyl acetate (3:2, 5 mL in total) to remove the inorganic salts and other insoluble solids. The product solution was concentration in vacuo and dissolved in CDCl₃ to analyze the dr using ¹H NMR. The pure final product was obtained using flash chromatography on silica gel (5-6 cm in length, ca. 1.5 g).

Figure S1. Preactivation of the catalyst. Left: before preactivation, showing red color from catalyst **3**. Right: after preactivation, showing green color of the Ti^{III} active catalyst.

Method B. Scale-up synthesis (1 mmol scale): In a N_2 -filled glovebox, an ovendried 20 mL scintillation vial equipped with a magnetic stir bar was charged with Mn (110 mg, 2.0 mmol, 2.0 equiv), Et₃N·HCl (274 mg, 2 mmol, 2.0 equiv) and **3** (42 mg, 0.025 mmol, 2.5 mol %) and EtOAc (10 mL). The mixture was stirred vigorously for 10 min to allow reduction of the pre-catalyst. Subsequently, 3-vinyl-*N*-tosylindole (312 mg, 1.05 mmol, 1.05 equiv) and cyclopropyl ketones **1** (174 mg, 1.0 mmol, 1 equiv) were added, and the resulting mixture stirred at room temperature (22 ± 1 °C) for 60 h. The reaction mixture was then transferred onto a short Celite column (1-1.5 cm in length, ca. 0.5 g) and flushed through with a mixture of hexanes and ethyl acetate (3:2, 5 mL in total) to remove the inorganic salts and other insoluble solids. The product solution was concentration in vacuo and dissolved in CDCl₃ to analyze the dr using ¹H NMR. The pure final product was obtained using flash chromatography on silica gel (10 cm in length, ca. 5 g) to obtained the final product **15** (391 mg, 83% yield) as effectively a single diastereomer (dr > 19:1) in 92% ee.

Method C. Low temperature procedure (0.1 mmol scale): In a N₂-filled glovebox, an oven-dried 1.5 dr vial equipped with a magnetic stir bar was charged with Zn (11 mg, 0.2 mmol, 2.0 equiv), Et₃N·HCl (27.4 mg, 0.2 mmol, 2.0 equiv) and **3** (8.3 mg, 0.01 mmol, 10 mol %) in 1 mL of EtOAc. The mixture was stirred vigorously at room temperature for 10 min to allow reduction of the pre-catalyst. Then keep this solution under low temperature (in a cold well cooled with isopropanol/dry ice) for 5 min. Subsequently, the alkene substrate (0.12 mmol, 1.2 equiv) and cyclopropyl ketones (0.10 mmol, 1 equiv) were added, and the resulting mixture was removed from the glovebox and stirred at low temperature for 48-50 h. The reaction mixture was then transferred onto a short Celite column (1-1.5 cm in length, ca. 0.5 g) and flushed through with a mixture of hexanes and ethyl acetate (3:2, 5 mL in total) to remove the inorganic salts and other insoluble solids. The product solution was concentration in vacuo and dissolved in CDCl₃ to analyze the dr using ¹H NMR. The pure final product was obtained using flash chromatography on silica gel (5-6 cm in length, ca. 1.5 g) to obtained the final product.

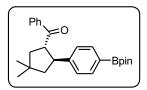
*Although all data presented in this work were set up in a glovebox, we have also tested the reaction with standard Schlenk technique using a Schlenk tube as the reaction vessel under air-free conditions and obtained comparable results.


((1S,2S)-4,4-dimethyl-2-phenylcyclopentyl)(phenyl)methanone (2). Followed Method

A, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 27.2 mg (98% yield) of **2** as a white solid. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 97% ee [AS, hexanes, 0.5 mL/min, 223 nm; t1 = 13.95 min, t2 = 15.24 min]. $[\alpha]_D^{22}$ 0.167 (c0.28, CHCl₃). IR (Film): 3058, 3029, 2945, 2924, 2861, 1678, 1598, 1559, 1495,

1447, 1364, 1350, 1282, 1246, 1224, 1204, 1182, 1028, 927, 832, 752, 701; 1 H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.3, 1.2 Hz, 2H), 7.53 – 7.50 (m, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.30-7.24 (m, 4H), 7.17-7.14 (m, 1H), 4.02– 3.94 (m, 2H), 2.15 (dd, J = 13.0, 9.5 Hz, 1H), 2.07 (dd, J = 12.8, 7.1 Hz, 1H), 1.91-1.86(m, 1H), 1.79-1.74 (m, 1H), 1.24 (s, 3H), 1.17 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 201.71, 144.04, 136.97, 132.76, 128.40, 128.39, 128.34, 127.35, 126.12, 54.84, 49.39, 46.77, 46.73, 38.98, 30.56, 29.51; MS (DART) exact mass calculated for [C₂₀H₂₃O]: 279.1743, found 279.1751. The characterization data are consistent with literature report. $^{[1]}$

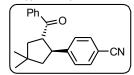
((1S,2S)-2-(4-chlorophenyl)-4,4-dimethylcyclopentyl)(phenyl)methanone (8).



Followed Method A with 5% of catalyst **3**, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 23.4 mg (75% yield) of **8** as a white solid. The dr was determined to be 12:1 trans/cis. <u>trans diastereoisomer:</u> 96% ee [AD, 0.5% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 7.53 min, t2 = 12.71 min].

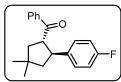
[α]_D²² 0.344 (c0.54, CHCl₃). IR (Film): 3083, 3062, 2957, 2927, 2863, 1670, 1596, 1579, 1494, 1446, 1364, 1291, 1242, 1223, 1205, 1180, 1089, 1074, 1012, 836, 825, 793, 758, 701, 663; ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 8.3, 1.1 Hz, 2H), 7.53-7.49 (m, 1H), 7.42-7.38 (m, 2H), 7.19 (s, 4H), 3.97-3.84 (m, 2H), 2.13 (dd, J = 13.0, 9.9 Hz, 1H), 2.02 (dd, J = 12.7, 7.4 Hz, 1H), 1.81 (dd, J = 12.6, 11.7 Hz, 1H), 1.71 (dd, J = 13.0, 8.2

Hz, 1H), 1.21 (s, 3H), 1.13 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 201.38, 142.48, 136.80, 132.94, 131.74, 128.72, 128.49, 128.42, 128.36, 54.90, 49.21, 46.70, 46.00, 38.94, 30.56, 29.53; MS (DART) exact mass calculated for [C₂₀H₂₂ClO]: 313.1354, found 313.1361.


((1S,2S)-4,4-dimethyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)cyclopentyl)(phenyl)methanone (9). Followed Method C, at -25 °C, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 36.8 mg (91% yield) of 9 as a white solid. The dr was determined to be >19:1 dr. trans diastereoisomer: 97% ee [OD, 0.5% iPrOH in hexanes, 1.0]

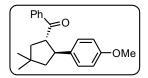
mL/min, 223 nm; t1 = 8.21 min, t2 = 9.53 min]. $[\alpha]_D^{22}$ 0.610 (c1.23, CHCl₃). IR (Film): 2980, 2952, 2929, 2864, 1676, 1610, 1447, 1398, 1358, 1321, 1270, 1213, 1202, 1141, 1089, 1013, 962, 859, 927, 757, 707, 676, 637; ¹H NMR (500 MHz, CDCl₃) δ 7.80 – 7.78 (m, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.7 Hz, 2H), 7.26 – 7.23 (m, 2H), 3.99-3.89 (m, 2H), 2.10 (dd, J = 13.0, 9.5 Hz, 1H), 2.00 (dd, J = 12.3, 7.2 Hz, 1H), 1.83 (t, J = 11.9 Hz, 1H), 1.70 (dd, J = 12.7, 7.6 Hz, 1H), 1.28 (s, 12H), 1.18 (s, 3H), 1.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.61, 147.47, 136.93, 134.91, 132.76, 128.40, 128.35, 126.82, 83.59, 54.71, 49.32, 46.95, 46.76, 39.09, 30.50, 29.47, 24.82, 24.79.MS (DART) exact mass calculated for $[C_{26}H_{34}BO_{3}]$: 405.2596, found 405.2609.


4-((1S,2S)-2-benzoyl-4,4-dimethylcyclopentyl)benzonitrile (10). Followed Method C,

at -25 °C, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 16.1 mg (53% yield) of **10** as a yellow solid. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 89% ee [AD, 5% iPrOH in hexanes, 1.0 mL/min,

223 nm; t1 = 6.40 min, t2 = 9.75 min]. $[\alpha]_D^{22}$ 0.499 (c0.97, CHCl₃). IR (Film): 2952, 2865, 2226, 1678, 1608, 1596, 1580, 1504, 1463, 1447, 1360, 1319, 1272, 1248, 1205, 1178, 1159, 1090, 1013, 896, 858, 754, 699, 658; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 7.2 Hz, 2H), 7.52 (d, J = 8.4 Hz, 3H), 7.41 (t, J = 7.7 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 4.04 (dd, J = 18.4, 10.8 Hz, 1H), 3.92 – 3.86 (m, 1H), 2.17 (dd, J = 13.1, 10.2 Hz, 1H), 2.05 (dd, J = 12.6, 7.5 Hz, 1H), 1.83 (t, J = 12.2 Hz, 1H), 1.72 (dd, J = 13.1, 8.3 Hz, 1H), 1.23 (s, 3H), 1.13 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 200.79, 149.74, 136.48, 133.15, 132.20, 128.58, 128.37, 128.23, 118.99, 109.95, 54.74, 48.84, 46.67, 46.35, 39.10, 30.47, 29.45. MS (DART) exact mass calculated for $[C_{21}H_{22}NO]$: 304.1696, found 304.1704.

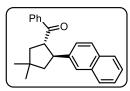
((1S,2S)-2-(4-fluorophenyl)-4,4-dimethylcyclopentyl)(phenyl)methanone (11).



Followed Method A, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 25.2 mg (85% yield) of **11** as a yellow solid. The dr was determined to be 12:1 trans/cis. trans diastereoisomer: 94% ee [AS, hexanes, 0.3 mL/min, 223 nm; t1 = 24.23 min, t2 = 26.05 min]. $[\alpha]_D^{22}$ 0.538 (c0.91, CHCl₃). IR (Film):

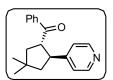
2952, 2929, 2864, 1676, 1597, 1580, 1509, 1447, 1366, 1285, 1222, 1158, 1014, 832, 792, 699, 661; 1 H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 8.3, 1.2 Hz, 2H), 7.52-7.49 (m, 1H), 7.41-7.38 (m, 2H), 7.23-7.20 (m, 2H), 6.91 (t, J = 8.7 Hz, 2H), 3.97-3.85 (m, 2H), 2.12 (dd, J = 13.0, 9.8 Hz, 1H), 2.02 (dd, J = 12.9, 7.1 Hz, 1H), 1.84-1.79 (m, 1H), 1.72

(dd, J = 12.8, 8.4 Hz, 1H), 1.22 (s, 3H), 1.13 (s, 3H).13C NMR (126 MHz, CDCl₃) δ 201.55, 162.27, 160.33, 139.58 (d, J = 3.2 Hz), 136.88, 132.88, 128.70 (d, J = 7.8 Hz), 128.41 (d, J = 13.0 Hz), 115.05 (d, J = 21.0 Hz), 55.04, 49.41, 46.66, 46.01, 38.86, 30.60, 29.56.MS (DART) exact mass calculated for [C₂₀H₂₂FO]: 297.1649, found 297.1659.


((1S,2S)-2-(4-methoxyphenyl)-4,4-dimethylcyclopentyl)(phenyl)methanone (12).

Followed Method A, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 27.4 mg (89% yield) of **12** as a white solid. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 96% ee [AD, 0.5% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 10.77 min, t2 = 23.35 min]. $[\alpha]_D^{22}$ 0.982

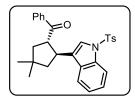
(c1.91, CHCl₃). IR (Film): 2950, 2932, 2863, 2834, 1677, 1611, 1580, 1512, 1462, 1447, 1365, 1282, 1244, 1204, 1177, 1035, 1012, 827, 775, 699, 659; 1 H NMR (500 MHz, CDCl₃) δ 7.84-7.82 (m, 2H), 7.51-7.47 (m, 1H), 7.40-7.37 (m, 2H), 7.18 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 3.94-3.86 (m, 2H), 3.74 (s, 3H), 2.10 (dd, J = 13.0, 9.4 Hz, 1H), 2.01 (dd, J = 12.7, 6.7 Hz, 1H), 1.85-1.80 (m, 1H), 1.73 (dd, J = 12.8, 7.5 Hz, 1H), 1.21 (s, 3H), 1.14 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 201.88, 157.89, 137.03, 136.05, 132.72, 128.38, 128.37, 128.23, 113.72, 55.19, 55.03, 49.49, 46.69, 46.11, 38.81, 30.62, 29.58. MS (DART) exact mass calculated for [C₂₁H₂₅O₂]: 309.1849, found 309.8157.


((1S,2S)-4,4-dimethyl-2-(naphthalen-2-yl)cyclopentyl)(phenyl)methanone (13).

Followed Method A, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 30.2 mg (92% yield) of **13** as a white solid. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 94% ee [IA, 2.0% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 7.47 min, t2 = 11.99 min]. $\lceil \alpha \rceil_D^{22}$ 0.46 (c0.97, CHCl₃).

IR (Film): 3057, 3021, 2948, 2928, 2862, 1670, 1598, 1579, 1508, 1447, 1363, 1298, 1242, 1212, 1022, 1002, 902, 865, 828, 746, 700; 1 H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.4, 1.3 Hz, 2H), 7.75 (t, J = 7.9 Hz, 3H), 7.70 (d, J = 1.7 Hz, 1H), 7.49-7.35 (m, 6H), 4.20-4.14 (m, 1H), 4.09-4.03 (m, 1H), 2.19 (dd, J = 13.0, 10.1 Hz, 1H), 2.12 (dd, J = 12.8, 7.4 Hz, 1H), 2.02-1.97 (m, 1H), 1.79 (dd, J = 13.3, 8.4 Hz, 1H), 1.27 (s, 3H), 1.19 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 201.69, 141.44, 136.94, 133.44, 132.78, 132.16, 128.40, 128.37, 127.99, 127.58, 127.45, 125.93, 125.82, 125.67, 125.19, 54.78, 49.35, 46.83, 39.12, 30.57, 29.52. MS (DART) exact mass calculated for [C₂₄H₂₅O]: 329.1900, found 329.1912.

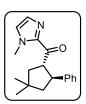
((1S,2S)-4,4-dimethyl-2-(pyridin-4-yl)cyclopentyl)(phenyl)methanone (14). Followed



Method A, the crude product was purified by column chromatography (2:3, EtOAc/hexanes) to give 24.3 mg (87% yield) of **14** as a yellow solid. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 79% ee [IA, 12% iPrOH in hexanes, 1.2 mL/min, 223 nm; t1 = 7.29 min, t2 = 13.45 min]. $[\alpha]_D^{22}$ 0.010 (c0.49, CHCl₃). IR (Film): 3057, 3025, 2952,

2865, 1680, 1597, 1580, 1448, 1366, 1251, 1208, 1013, 818, 748, 702; 1 H NMR (500 MHz, CDCl₃) δ 8.43 (d, J = 6.1 Hz, 2H), 7.86 (d, J = 7.1 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.16 (d, J = 6.2 Hz, 2H), 3.99 (dd, J = 18.2, 10.6 Hz, 1H), 3.93-3.87 (m, 1H), 2.16 (dd, J = 13.1, 10.1 Hz, 1H), 2.05 (ddd, J = 12.7, 7.5, 1.0 Hz, 1H), 1.83

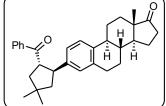
(t, J = 12.1 Hz, 1H), 1.72 (ddd, J = 13.0, 8.2, 1.0 Hz, 1H), 1.22 (s, 3H), 1.13 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 200.82, 153.06, 149.77, 136.50, 133.12, 128.58, 128.38, 122.72, 54.20, 48.26, 46.68, 45.42, 39.16, 30.37, 29.36. MS (DART) exact mass calculated for [C₁₉H₂₂NO]: 280.1696, found 280.1698.


((1S,2S)-4,4-dimethyl-2-(1-tosyl-1*H*-indol-3-yl)cyclopentyl)(phenyl)methanone (15).

Followed Method A, the crude product was purified by column chromatography (1:5, EtOAc/hexanes) to give 42.9 mg (91% yield) of **15** as a white solid. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 98% ee [AD, 6.0% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 6.74 min, t2 = 10.01 min]. [α]D²² 0.509 (c1.98, CHCl₃). IR (Film): 2952, 2933, 2866, 1677, 1597, 1580, 1447, 1367, 1306,

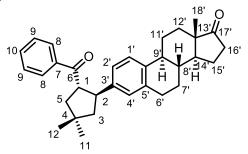
1280, 1253, 1207, 1187, 1173, 1124, 1095, 1019, 977, 909, 812, 745, 733, 703, 676; 1 H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 1H), 7.84 (dd, J = 8.3, 1.1 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 7.9 Hz, 1H), 7.52-7.49 (m, 1H), 7.38 (t, J = 7.8 Hz, 2H), 7.34 (s, 1H), 7.23 (d, J = 8.3 Hz, 1H), 7.18-7.15 (m, 1H), 7.12 (d, J = 8.0 Hz, 2H), 4.19-4.13 (m, 1H), 4.05-4.00 (m, 1H), 2.30 (s, 3H), 2.18 – 2.08 (m, 2H), 1.92-1.87 (m, 1H), 1.75 (dd, J = 13.0, 7.9 Hz, 1H), 1.21 (s, 3H), 1.15 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 201.73, 144.60, 136.84, 135.45, 135.13, 132.94, 130.53, 129.71, 128.49, 128.35, 126.66, 126.25, 124.55, 122.99, 121.87, 120.39, 113.61, 53.09, 48.03, 46.65, 39.43, 37.67, 30.39, 29.17, 21.52. MS (DART) exact mass calculated for [C₂₉H₃₀NO₃S]: 472.1941, found 472.1958.

((1S,2S)-4,4-dimethyl-2-phenylcyclopentyl)(1-methyl-1*H*-imidazol-2-yl)methanone



(16). Followed Method A, the crude product was purified by column chromatography (1:9, EtOAc/Hexanes) to give 25.9 mg (92% yield) of 16 as a white solid. The dr was determined to be 6:1 trans/cis. trans diastereoisomer: 88% ee [IA, 0.5% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 19.15 min, t2 = 22.66 min]. $[\alpha]_D^{22}$ 0.801 (c2.49, CHCl₃). IR (Film): 3028, 2951, 2865, 1669, 1494, 1462, 1406, 1365, 1289, 1222, 1154, 1078,

1019, 906, 890, 821, 760, 689; 1 H NMR (500 MHz, CDCl₃) δ 7.31-7.29 (m, 2H), 7.22 (t, J = 7.7 Hz, 2H), 7.13-7.09 (m, 2H), 6.94 (s, 1H), 4.49-4.43 (m, 1H), 3.93 (s, 3H), 3.83 (dd, J = 22.6, 7.5 Hz, 1H), 2.25 (dd, J = 12.9, 9.7 Hz, 1H), 2.01 (dd, J = 12.6, 7.5 Hz, 1H), 1.78 (t, J = 12.3 Hz, 1H), 1.66 (dd, J = 12.9, 9.2 Hz, 1H), 1.20 (s, 3H), 1.14 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 194.24, 143.71, 143.14, 129.02, 128.23, 127.46, 126.85, 125.99, 54.28, 50.33, 47.05, 46.69, 38.48, 36.16, 30.69, 30.21.MS (DART) exact mass calculated for [C₂₀H₂₃N₂O]: 283.1805, found 283.1814.


Assignment based on 1D 1H supported by COSY. Major product assigned as trans based on: ROE between H1, H3' (top), H5' (top), and Me17 defines "top". ROE from H2, H3'' (bottom), and H5'' (bottom) to Me16 gives "bottom".

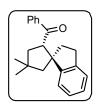
(8*R*,9*S*,13*S*,14*S*)-3-((1*S*,2*S*)-2-benzoyl-4,4-dimethylcyclopentyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-

cyclopenta[a]phenanthren-17-one (17). Followed Method A, the crude product was purified by column chromatography (1:5, EtOAc/hexanes) to give 41.8 mg (92% yield) of 17 as a white solid. The dr was determined to be >19:1 trans/cis. trans diastereoisomer: 95% de [AD, 3.0% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 8.11 min, t2 = 9.65 min]. $[\alpha]_D^{22}$

0.322 (c0.32, CHCl₃). IR (Film): 2930, 2864, 1738, 1681, 1490, 1448, 1369, 1254, 1207, 1083, 1053, 1038, 1008, 822, 757, 702; 1 H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.4, 1.4 Hz, 2H), 7.50 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.17 (dd, J = 8.1, 1.0 Hz, 1H), 7.07 (dd, J = 8.1, 2.0 Hz, 1H), 6.98 (d, J = 1.9 Hz, 1H), 3.98-3.88 (m, 2H), 2.84 (dd, J = 9.9, 4.9 Hz, 2H), 2.51-2.46 (m, 1H), 2.39-2.35 (m, 1H), 2.24-2.21 (m, 1H), 2.16-2.11 (m, 2H), 2.06-1.92 (m, 4H), 1.86 – 1.81 (m, 1H), 1.69 (dd, J = 13.3, 7.6 Hz, 1H), 1.63-1.56 (m, 2H), 1.51-1.36 (m, 4H), 1.21 (s, 3H), 1.11 (s, 3H), 0.88 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 201.58, 141.56, 137.48, 136.97, 136.26, 132.72, 128.44, 128.38, 128.28, 125.35, 124.55, 54.74, 50.48, 49.46, 47.98, 46.81, 45.83, 44.28, 38.98, 38.15, 35.84, 31.57, 30.53, 29.45, 29.38, 26.52, 25.64, 21.55, 13.82.MS (DART) exact mass calculated for [C₃₂H₃₉O₂]: 455.2945, found 455.2957.

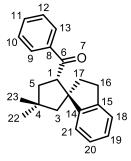
Assignments were based on 1D 1H supported by COSY and HSQC. Major product trans: ROE from H1, H3' (top), H5' (top) to H12 defines "top". ROE from H11 to H3'' (bottom), H5'' (bottom) and H2 defines "bottom" and shows that H2 is trans to H1.

phenyl((1S,2S)-2,4,4-trimethyl-2-phenylcyclopentyl)methanone (19). Followed

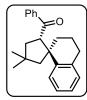

Method A, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 28.0 mg (96% yield) of **18** as a yellow oil. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 96% ee [AD, 0.5% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 5.16 min, t2 = 5.99 min]. $[\alpha]_D^{22}$ 0.745 (c2.12, CHCl₃). IR (Film): 057, 3025, 2952, 2867, 1673, 1597,

1580, 1496, 1464, 1446, 1380, 1367, 1311, 1246, 1206, 1180, 1009, 830, 759, 728, 691; 1 H NMR (500 MHz, CDCl₃) δ 7.47 (dd, J = 8.4, 1.2 Hz, 2H), 7.39-7.35 (m, 1H), 7.28 – 7.26 (m, 2H), 7.22-7.16 (m, 4H), 7.14-7.11 (m, 1H), 4.20 (dd, J = 12.4, 6.3 Hz, 1H), 2.45 (t, J = 12.7 Hz, 1H), 2.30 (d, J = 13.8 Hz, 1H), 1.92 (d, J = 13.9 Hz, 1H), 1.81 (dd, J = 13.1, 6.2 Hz, 1H), 1.39 (s, 3H), 1.29 (d, J = 1.7 Hz, 6H). 13 C NMR (126 MHz, CDCl₃) δ

201.94, 149.02, 138.04, 132.14, 128.18, 128.09, 127.90, 126.26, 125.72, 58.54, 57.55, 51.09, 44.39, 36.38, 31.91, 31.79, 24.13. MS (DART) exact mass calculated for $[C_{21}H_{25}O]$: 293.1900, found 293.1906.


Assignments were based on 1D 1H supported by COSY and HSQC. Major product trans: ROE from H1, H3' (top), H5' (top) to H22 defines "top". ROE from H20 to H3'' (bottom), H5'' (bottom) and H21 defines "bottom" and shows that H1 is cis to Me20.

((1S,5S)-3,3-dimethyl-2',3'-dihydrospiro[cyclopentane-1,1'-inden]-5-


yl)(phenyl)methanone (20). Followed Method A, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 24.9 mg (82% yield) of **19** as a yellow oil. The dr was determined to be >19:1 dr. <u>trans diastereoisomer:</u> 96% ee [AD, 0.2% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 6.09 min, t2 = 7.07 min]. $[\alpha]_D^{22}$ 1.805 (c1.78, CHCl₃). IR (Film): 2950, 2930, 2863, 1669, 1596, 1580, 1478, 1457,

1447, 1365, 1291, 1244, 1226, 1209, 1026, 1003, 982, 754, 730, 718, 689; 1 H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 7.6 Hz, 1H), 7.38 (dd, J = 8.4, 1.2 Hz, 2H), 7.31-7.28 (m, 1H), 7.25-7.22 (m, 1H), 7.10-7.07 (m, 2H), 7.01 (td, J = 7.4, 1.0 Hz, 1H), 6.80 (d, J = 7.5 Hz, 1H), 3.97 (dd, J = 12.1, 6.4 Hz, 1H), 2.64 (ddd, J = 13.0, 7.9, 1.8 Hz, 1H), 2.57 (dd, J = 16.5, 9.1 Hz, 1H), 2.43 (t, J = 12.6 Hz, 1H), 2.33 (d, J = 13.7 Hz, 1H), 2.27-2.20 (m, 1H), 1.88-1.78 (m, 2H), 1.70 (dd, J = 13.1, 6.4 Hz, 1H), 1.27 (s, 3H), 1.25 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 201.62, 148.79, 143.78, 137.37, 132.17, 128.00, 127.66, 126.83, 126.45, 124.50, 122.54, 60.66, 57.86, 56.94, 44.43, 36.97, 36.45, 31.50, 31.24, 31.04. MS (DART) exact mass calculated for [C₂₂H₂₅O]: 305.1900, found 305.1907.

Assignments were based on 1D 1H supported by COSY and HSQC. Major product trans: ROE from H1, H3' (top), H5' (top) to H23 defines "top". ROE from H22 to H3'' (bottom), H5'' (bottom) and H17'' defines "bottom" and shows that Ph14 is trans to H1.

((1S,5S)-3,3-dimethyl-3',4'-dihydro-2'H-spiro[cyclopentane-1,1'-naphthalen]-5-

yl)(phenyl)methanone (20). Followed Method A, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 25.8 mg (81% yield) of 20 as a yellow oil. The dr was determined to be >19:1.

trans diastereoisomer: 90% ee [AD, 0.5% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 6.14 min, t2 = 7.10 min]. [α]_D²² 1.378 (c3.12, CH₂Cl₂). IR (Film): 2949, 2932, 2866, 1671, 1597, 1579, 1488, 1446, 1365, 1314, 1280, 1236, 1205, 1181, 1008, 993,973, 861, 831, 754, 732, 718, 690; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 7.9 Hz, 1H), 7.40 (dd, J = 8.4, 1.2 Hz, 2H), 7.30-7.24 (m, 2H), 7.10-7.06 (m, 2H), 7.02-6.99 (m, 1H), 6.77 (d, J = 8.2 Hz, 1H), 4.28 (dd, J = 12.5, 6.2 Hz, 1H), 2.56 – 2.45 (m, 2H), 2.26 – 2.20 (m, 1H), 2.11 (d, J = 14.1 Hz, 1H), 2.00 (d, J = 14.1 Hz, 1H), 1.87 (dd, J = 16.8, 9.3 Hz, 1H), 1.78 – 1.68 (m, 2H), 1.53-1.44 (m, 2H), 1.31 (s, 3H), 1.24 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 202.75, 142.99, 138.11, 138.05, 131.92, 128.97, 128.27, 127.83, 127.67, 126.14, 125.41, 61.34, 59.27, 51.27, 43.57, 36.26, 33.94, 31.96, 31.92, 30.42, 20.14.MS (DART) exact mass calculated for [C₂₃H₂₇O]: 319.2056, found 319.2068.

ethyl (1R,2S)-2-benzoyl-4,4-dimethyl-1-phenylcyclopentane-1-carboxylate (21).

Followed Method A, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 30.5 mg (87% yield) of **21** as a white solid. The dr was determined to be 9:1 cis/trans. <u>cis</u> <u>diastereoisomer:</u> 80% ee [AD, 2.0% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 9.13 min, t2 = 16.87 min]. $[\alpha]_D^{22}$ 0.512 (c2.54, CHCl₃). IR

(Film): 2955, 2903, 2868, 1728, 1683, 1596, 1580, 1498, 1447, 1365, 1244, 1219, 1171, 1120, 1058, 1011, 756, 737, 696; 1 H NMR (500 MHz, CDCl₃) δ 7.99 (dd, J = 8.3, 1.2 Hz, 2H), 7.56 (dd, J = 7.5, 2.1 Hz, 3H), 7.48 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.28-7.24 (m, 1H), 4.74 (dd, J = 9.1, 3.6 Hz, 1H), 4.06-3.93 (m, 2H), 2.94 (d, J = 13.8 Hz, 1H), 2.42 (dd, J = 13.8, 1.0 Hz, 1H), 2.13 (dd, J = 13.7, 9.1 Hz, 1H), 1.94 (dd, J = 13.7, 3.7 Hz, 1H), 1.04-1.01 (m, 6H), 0.79 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 201.32, 174.84, 142.05, 136.48, 132.80, 128.56, 128.50, 128.43, 126.96, 126.50, 61.04, 60.61, 54.19, 50.32, 44.63, 38.00, 32.10, 31.82, 13.80.MS (DART) exact mass calculated for [C₂₃H₂₇O₃]: 351.1955, found 351.1966.

Assignment of aliphatics based on 1D 1H supported by COSY. Assignment of aromatics based on COSY. Assignment of Me's based on ROESY. Major product assigned as cis based on: ROE between H1, H3' (top), H5' (top) and a single Me (19) defines "top". ROE from H3" (bottom) and H5" (bottom) to Me (18) gives "bottom". Strong ROE from H15 to H1, H3' and H5' indicate C-2 phenyl is on top.

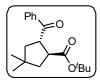
phenyl((1S,2S)-2,4,4-trimethyl-2-(prop-1-en-2-yl)cyclopentyl)methanone (22).

Followed Method A, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 23.0 mg (90% yield) of **22** as a yellow oil. The dr was determined to be 4:1 dr. <u>trans diastereoisomer:</u> 96% ee [AS, 0.1% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 6.09 min, t2 = 7.08 min]. $[\alpha]_D^{22}$ 0.111 (c1.26, CHCl₃). IR (Film): 3085, 3060, 2953,

2867, 1678, 1636, 1597, 1462, 1447, 1370, 1225, 1207, 1180, 1015, 1003, 974, 889, 833, 729, 711, 691, 669; 1 H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 8.3, 1.2 Hz, 2H), 7.53 – 7.49 (m, 1H), 7.45 – 7.40 (m, 2H), 4.61 – 4.59 (m, 2H), 4.04 (dd, J = 12.1, 6.5 Hz, 1H), 2.24 (t, J = 12.5 Hz, 1H), 1.90 (d, J = 13.6 Hz, 1H), 1.78 (d, J = 1.2 Hz, 3H), 1.73 (dd, J = 13.0, 6.4 Hz, 1H), 1.50 (d, J = 13.6 Hz, 1H), 1.19 (d, J = 5.8 Hz, 6H), 1.14 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 202.56, 150.72, 139.01, 132.43, 128.28, 127.95, 110.38, 54.46, 52.49, 52.25, 44.59, 36.26, 31.89, 31.63, 23.35, 20.50. MS (DART) exact mass calculated for [C₁₈H₂₅O]: 257.1900, found 257.1906.

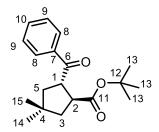
Assignments were based on COSY and ROESY. In major diasteromer ROE observed between H1 and H19 and very weak ROE between H1 and H14. In minor, strong ROE H1 to H14 and very weak H1 to H19. This indicates C14 is syn to carbonyl in the major isomer. In major, ROE H1 to H3' and H19 to H3', so H3' is "top" and H3'' is "bottom". Strong ROE from H3'' (bottom) to H14. ROE from H1 to H16. Minor: H1 to H14; H1 to H19 (weak), H5' (top) to H19 and H14, H5'' (bottom) to H18 and H16 so the vinyl group is bottom.

(1S,2S)-2-benzoyl-N,N,4,4-tetramethylcyclopentane-1-carboxamide (23). Followed

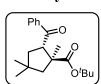

Ph O NMe₂

Method A, the crude product was purified by column chromatography (1:9, methanol/DCM) to give 24.8 mg (91% yield) of **23** as a yellow oil. The dr was determined to be 11:1. <u>trans diastereoisomer:</u> 96% ee [AD, 12% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 4.04 min, t2 = 5.20 min]. $[\alpha]_D^{22}$ 0.051 (c0.28, CHCl₃). IR (Film): 2952,2931,2866, 1677,

1639, 1580, 1496, 1463, 1448, 1416, 1367, 1255, 1220, 1139, 1016, 884, 826, 776, 701; 1 H NMR (500 MHz, CDCl₃) δ 7.98 (dd, J = 8.3, 1.4 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.7 Hz, 2H), 4.52-4.46 (m, 1H), 3.87-3.81 (m, 1H), 3.09 (s, 3H), 2.91 (s, 3H), 2.07 (dd, J = 12.7, 9.8 Hz, 1H), 1.89 (dd, J = 12.4, 8.7 Hz, 1H), 1.68 (dd, J = 12.5, 9.9 Hz, 1H), 1.59-1.57 (m, 1H), 1.15 (s, 3H), 1.04 (s, 3H). CNMR (126 MHz, CDCl₃) δ 202.15, 174.52, 136.63, 132.95, 128.69, 128.48, 50.33, 45.98, 45.13, 42.65, 40.06, 37.26, 35.75, 29.47, 29.22. MS (DART) exact mass calculated for [$C_{17}H_{23}NO_{2}$]: 274.1802, found 274.1803.


Assignments were based on 1D 1H supported by COSY and HSQC. Major product trans: ROE from H1, H3' (top), H5' (top) to H15 defines "top". ROE from H14 to H3'' (bottom), H5'' (bottom) and H2 defines "bottom" and shows that H2 is trans to H1.

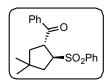
tert-butyl (1S,2S)-2-benzoyl-4,4-dimethylcyclopentane-1-carboxylate (24). Followed


Method C, at -35 °C for 50 h, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 27.5 mg (91% yield) of **24** as a yellow oil. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 73% ee [IA, 0.5% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 7.44 min, t2 = 8.06 min]. $[\alpha]_D^{22}$ 0.305 (c1.89, CH₂Cl₂). IR

(Film): 2955, 2933, 2868, 1721, 1682, 1597, 1581, 1559, 1448, 1391, 1367, 1315, 1293, 1252, 1232, 1208, 1151, 1014, 981, 849, 773, 700, 659; 1 H NMR (500 MHz, CDCl₃) δ 7.99-7.97 (m, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 4.22 (q, J = 8.7 Hz, 1H), 3.55 (q, J = 8.8 Hz, 1H), 2.00-1.90 (m, 2H), 1.78 (dd, J = 12.7, 8.9 Hz, 1H), 1.62-1.57 (m, 1H), 1.36 (s, 9H), 1.10 (s, 3H), 1.03 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 201.45, 174.63, 136.78, 132.92, 128.56, 128.51, 80.34, 48.99, 46.58, 45.94, 44.61, 39.94, 29.07, 28.78, 27.98.MS (DART) exact mass calculated for [C₁₉H₂₇O₃]: 303.1955, found 303.1964.

Assignments were based on 1D 1H supported by COSY and HSQC. Major product trans: ROE from H1, H3' (top), H5' (top) to H15 defines "top". ROE from H14 to H3'' (bottom), H5'' (bottom) and H2 defines "bottom" and shows that H2 is trans to H1.

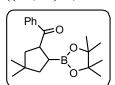
tert-butyl (1S,2S)-2-benzoyl-1,4,4-trimethylcyclopentane-1-carboxylate (25).



Followed Method A, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 30.0 mg (95% yield) of **25** as a yellow oil. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 65% ee [AD, 0.5% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 3.70 min, t2 = 4.29 min]. $[\alpha]_D^{22}$ 0.978 (c3.23, CHCl₃). IR

(Film): 2954, 2934, 2868, 1715, 1677, 1597, 1581, 1457, 1448, 1367, 1325, 1245, 1219, 1147, 1012, 978, 849, 738, 706, 690, 667; 1 H NMR (500 MHz, CDCl₃) δ 8.02 (dd, J = 8.4, 1.3 Hz, 2H), 7.54 – 7.50 (m, 1H), 7.42 (t, J = 7.6 Hz, 2H), 4.65 (dd, J = 11.4, 6.8 Hz, 1H), 2.22 (dd, J = 12.8, 11.5 Hz, 1H), 2.12 (dd, J = 13.4, 1.7 Hz, 1H), 1.66 (ddd, J = 12.9, 6.9, 1.7 Hz, 1H), 1.53 (d, J = 13.4 Hz, 1H), 1.38 (s, 9H), 1.14 (s, 3H), 1.10 (s, 3H), 1.02 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 201.81, 176.84, 138.26, 132.76, 128.58, 128.42, 80.62, 54.95, 53.35, 50.71, 43.67, 37.76, 30.29, 28.95, 27.80, 22.48.MS (DART) exact mass calculated for [$C_{20}H_{29}O_3$]: 317.2111, found 317.2120.

Assignment of rings and tBu from 1D 1H supported by COSY. Assignment of Me's from ROESY. Water overlapped with one line in H3", doublet confirmed by HSQC. Assigned as trans based on: H1, H3' (top) and H5' (top) to Me18; H5'' (bottom) and H3'' (bottom) to two methyls (Me16 and 17). In COSY Me17 showed weak correlations to both H3' and H5', Me16 couples to only H3'.


((1R,2S)-4,4-dimethyl-2-(phenylsulfonyl)cyclopentyl)(phenyl)methanone (26).

Followed Method C, at -25 °C, the crude product was purified by column chromatography (2:3, EtOAc/hexanes) to give 28.6 mg (81% yield) of **26** as a white solid. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 51% ee [AD, 6% iPrOH in hexanes, 1.0 mL/min, 250 nm; t1 = 10.92 min, t2 = 14.14 min]. $[\alpha]_D^{22}$ 0.036 (c0.48, CHCl₃). IR

(Film): 3060, 2958, 2869, 1683, 1596, 1582, 1559, 1447, 1306, 1238, 1147, 1087, 1010, 974, 768, 744, 721, 700, 688, 646; 1 H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 16.5, 8.3 Hz, 4H), 7.57-7.50 (m, 2H), 7.45-7.39 (m, 4H), 4.65-4.60 (m, 1H), 4.38-4.33 (m, 1H), 2.21-2.15 (m, 2H), 1.90 (dd, J = 13.0, 8.8 Hz, 1H), 1.58 (dd, J = 13.4, 7.3 Hz, 1H), 1.18 (s, 3H), 0.96 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 198.31, 138.67, 135.36, 133.52, 133.37, 129.07, 128.57, 128.47, 128.32, 64.53, 47.09, 46.33, 40.81, 40.48, 28.70, 28.02. MS (DART) exact mass calculated for [C₂₀H₂₃O₃S]: 343.1362, found 343.1374.

((1S,2S)-4,4-dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)cyclopentyl)(phenyl)methanone (27). Followed Method C, at -25 °C, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 25.9 mg (79% yield) of **27** as a yellow oil. The dr was determined to be >19:1. <u>trans diastereoisomer:</u> 46% ee [AD, 0.5% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 5.36 min, t2 = 7.56

min]. [α] $_D^{22}$ 0.211 (c1.16, CHCl₃). IR (Film): 2976, 2951, 2932, 2865, 1681, 1597, 1581, 1466, 1448, 1379, 1315, 1232, 1213, 1142, 1009, 971, 911, 589, 770, 698, 669; 1 H NMR (500 MHz, CDCl₃) δ 8.02–8.00 (m, 2H), 7.54-7.50 (m, 1H), 7.43 (t, J = 7.6 Hz, 2H), 3.97 (q, J = 8.9 Hz, 1H), 2.03 (q, J = 9.1 Hz, 1H), 1.83 (dd, J = 12.7, 9.2 Hz, 1H), 1.75 (dd, J = 12.3, 9.2 Hz, 1H), 1.67 (dd, J = 12.7, 8.6 Hz, 1H), 1.52 (dd, J = 12.3, 9.2 Hz, 1H), 1.19 (d, J = 2.9 Hz, 12H), 1.07 (s, 3H), 1.02 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 202.95, 137.33, 132.49, 128.62, 128.30, 83.20, 48.86, 46.06, 43.66, 40.69, 29.01, 28.76, 24.73, 24.63.MS (DART) exact mass calculated for [C_{20} H₃₀BO₃]: 329.2283, found 329.2294.

Assignments were based on 1D 1H supported by COSY and HSQC. Major product trans: ROE from H1, H3' (top), H5' (top) to H14 defines "top". ROE from H13 to H3'' (bottom), H5'' (bottom) and H2 defines "bottom" and shows that H2 is trans to H1.

(4,4-dimethyl-2,2-diphenylcyclopentyl)(phenyl)methanone (28). Followed Method C,

at -25 °C, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 31.9 mg (90% yield) of **28** as a white solid: 45% ee [AD, 1.0% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 3.82 min, t2 = 4.72 min]. [α]_D²² 0.898 (c3.27, CHCl₃). IR (Film): 3058, 3025, 2935, 2866, 2097, 1677, 1596, 1580, 1492, 1446, 1362, 1265, 1218, 1173, 1118, 1034,

974, 915, 769, 748, 696, 644; ¹H NMR (500 MHz, CDCl₃) δ 7.74-7.72 (m, 2H), 7.45 (dd, J = 7.4, 3.7 Hz, 3H), 7.35 (t, J = 7.7 Hz, 2H), 7.30 (t, J = 7.8 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 7.09 (d, J = 7.3 Hz, 2H), 7.01 (t, J = 7.7 Hz, 2H), 6.92 (t, J = 7.3 Hz, 1H), 5.17 (d, J = 8.8 Hz, 1H), 3.28 (d, J = 12.6 Hz, 1H), 2.44 (dd, J = 12.7, 1.4 Hz, 1H), 2.23 (dd, J = 13.9, 8.8 Hz, 1H), 1.98 (dd, J = 13.9, 1.7 Hz, 1H), 1.22 (s, 3H), 0.67 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 202.92, 148.59, 147.12, 138.45, 132.16, 128.30, 128.22, 127.96, 127.74, 127.30, 126.74, 125.70, 125.33, 59.74, 53.37, 51.84, 44.07, 38.11, 32.22, 31.81.MS (DART) exact mass calculated for [C₂₆H₂₇O]: 355.2056, found 355.2067.

1-((1S,2S)-4,4-dimethyl-2-phenylcyclopentyl)ethan-1-one (29). Followed Method A,

the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 17.7 mg (82% yield) of **29** as a yellow oil. The dr was determined to be 5:1. <u>trans diastereoisomer</u>: 13% ee [AD, 0.3% iPrOH in hexanes, 1.0 mL/min, 220 nm; t1 = 6.19 min, t2 = 6.82 min]. [α]_D²² 0.025 (c0.49, CHCl₃). IR (Film): 2951, 2930, 2903, 2864, 1707, 1584, 1494, 1452,

1365, 1356, 1235, 1166, 859, 761, 747, 699; 1 H NMR (500 MHz, CDCl₃) δ 7.30-7.24 (m, 5H), 3.52-3.46 (m, 1H), 3.16 (q, J = 9.3 Hz, 1H), 1.98-1.95 (m, 4H), 1.92-1.90 (m, 1H), 1.79-1.76 (m, 1H), 1.72-1.68 (m, 1H), 1.16 (s, 3H), 1.10 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 210.23, 143.89, 128.51, 127.25, 126.33, 60.14, 50.32, 47.94, 44.34, 38.39, 30.53, 29.96, 29.71. MS (DART) exact mass calculated for [C₁₅H₂₁O]: 217.1587, found 217.1593.

((1S,2S,4S)-2,4-diphenylcyclopentyl)(phenyl)methanone (30). Followed Method C, at

0 °C for 48 h, the crude product was purified by column chromatography (1:9, EtOAc/hexanes) to give 30.3 mg (93% yield) of **30** as a yellow oil. The dr was determined to be 2:1 dr. Only two diasteremers were observed with crude ¹H NMR. <u>major diastereoisomer:</u> 79% ee [AD, 1.0% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 13.54 min, t2 = 24.87 min]. minor

diastereoisomer: 93% ee [AD, 1.0% iPrOH in hexanes, 1.0 mL/min, 223 nm; t1 = 12.49

min, t2 = 17.04 min]. $[\alpha]_D^{22}$ 0.288 (c0.93, CHCl₃). IR (Film): 3060, 3027, 2950, 2868, 1678, 1598, 1580, 1494, 1448, 1368, 1347, 1262, 1218, 1180, 1030, 1004, 754, 698; Major: ¹H NMR (599 MHz, CDCl₃) δ 4.09-4.05 (m, 1H), 3.96 (q, J = 8.3 Hz, 1H), 3.62-3.56 (m, 1H), 2.61 (dq, J = 13.5, 6.8 Hz, 1H), 2.43 – 2.33 (m, 2H), 2.21-2.13 (m,1H). ¹³C NMR (126 MHz, CDCl₃) δ 201.41, 145.27, 144.65, 136.95, 128.58, 128.47, 128.46, 128.46, 128.41, 127.26, 127.11, 126.27, 126.25, 55.62, 47.43, 45.45, 42.30, 40.56. MS (DART) exact mass calculated for [C₂₄H₂₃O]: 327.1743, found 327.1752.

In major, H-1 gives ROEs to H4 and H5' (top), whereas H2 gives ROE to H5'' (H3' and H3'' are overlapped so ROEs are unclear) indicating that H1 is on the same face as H4 and opposite to H2. In minor, a strong ROE is observed between H2 and H4 while no ROE is present between H1 and H4 indicating that the C4 stereogenic center is inverted relative to major. ROE correlations to H-5s and H-3s are obscured by TOCSY artifacts.

Section 3. Preparation and characterization of catalysts and substrates

$$\begin{array}{c|c}
 & PhMgBr \\
\hline
 & THF \\
 & 0 \text{ °C to r.t}
\end{array}$$

$$\begin{array}{c|c}
 & MnO_2 \\
\hline
 & Et_2O
\end{array}$$

$$\begin{array}{c}
 & PhMgBr \\
\hline
 & Ph
\end{array}$$

Method D. Representative procedure:^[1] To a solution of 3-methyl-2-butenal (2.52 g, 30 mmol, 1.0 equiv) in THF (50 mL), PhMgBr (11 mL, 33 mmol, 1.1 equiv) was added at 0 °C. The mixture was then stirred for 2 h at room temperature. Subsequently, the reaction was quenched with water (100 mL) and extracted with EtOAc (3 times). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (20% EtOAc in hexanes) to afford 4.37 g of 3-methyl-1-phenylbut-2-en-1-ol (90% yield).

To a solution of 3-methyl-1-phenylbut-2-en-1-ol (3.24 g, 20 mmol, 1 equiv) in Et₂O (120 mL) was added MnO₂ (activated, 17.4 g, 200 mmol, 10 equiv). The mixture was then stirred for 12 h at room temperature. Subsequently, the reaction was filtered and the solvent was removed. The crude product was purified by column chromatography on silica gel (10% EtOAc in hexanes) to afford 2.56 g of 3-methyl-1-phenylbut-2-en-1-one (80% yield).

A flame-dried 100 mL flask was charged with KO'Bu (1.34 g, 12 mmol, 1.2 equiv) and trimethylsulfoxonium iodide (2.64 g, 12 mmol, 1.2 equiv), DMSO (40 mL) was then added dropwise to the flask, the reaction mixture was stirred for an additional 15 min, during which the solution became clear. 3-Methyl-1-phenylbut-2-en-1-one (1.6 g, 10 mmol, 1.0 equiv) in 20 mL of DMSO was added in one portion via syringe. The reaction mixture was allowed to stir for 4 h at room temperature, then quenched by addition of water and the mixture extracted three times with Et₂O. The combined organic layers were dried over Na₂SO₄, and volatiles were removed under reduced pressure to yield the crude product. The crude product was purified by column chromatograph on silica gel (10% EtOAc in hexanes) to afford 1.65 g of 2,2-dimethylcyclopropyl(phenyl)methanone (95% yield).

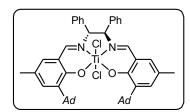
(2,2-dimethylcyclopropyl)(phenyl)methanone (1). [1] ¹H NMR (300 MHz, CDCl₃) δ 7.96-7.93 (m, 2H), 7.58-7.52 (m, 1H), 7.47 (t, J = 7.2 Hz, 2H), 2.48 (dd, J = 7.5, 5.6 Hz, 1H), 1.52 (dd, J = 5.6, 4.1 Hz, 1H), 1.36 (s, 3H), 1.09 (s, 3H), 0.96 (dd, J = 7.5, 4.1 Hz, 1H). Characterization data consistent with literature. [1]

(2,2-dimethylcyclopropyl)(1-methyl-1*H*-imidazol-2-yl)methanone.

The synthesis of the precursor prior to oxidation, 3-methyl-1-(1-methyl-1*H*-imidazol-2-yl)but-2-en-1-ol, was conducted using a modified literature procedure from 3-methyl-2-butenal and 1-methylimidazole.^[2]

Subsequent MnO₂ oxidation followed by cyclopropanation (see Method D) furnished the desired substrate. ¹H NMR (300 MHz, CDCl₃) δ 7.15 (d, J = 1.0 Hz, 1H), 7.00 (d, J = 1.0Hz, 1H), 3.99 (s, 3H), 3.16 (dd, J = 7.8, 5.7 Hz, 1H), 1.39 (dd, J = 5.7, 3.7 Hz, 1H), 1.30 (s, 3H), 1.19 (s, 3H), 1.02 (dd, J = 7.8, 3.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 190.58, 144.61, 128.86, 126.46, 36.28, 32.07, 28.37, 27.31, 24.22, 18.19.

trans-phenyl(2-phenylcyclopropyl)methanone. [3] 1H NMR (300 MHz, CDCl₃) δ 8.01-7.98 (m, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 7.32 (t, J = 7.1 Hz, 2H), 7.23-7.17 (m, 3H), 2.94-2.88 (m, 1H), 2.74-2.67 (m, 1H), 1.96-1.90 (m, 1H), 1.59-1.53 (m, 1H). Characterization data consistent with



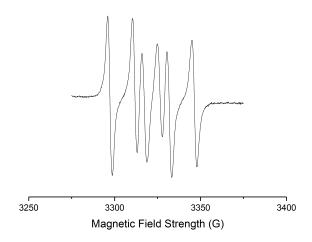
literature.[3]

1-(2,2-dimethylcyclopropyl)ethan-1-one. ¹H NMR (300 MHz, CDCl₃) δ 2.24 (s, 3H), 1.86 (dd, J = 7.6, 5.5 Hz, 1H), 1.24 (dd, J = 5.6, 4.1 Hz, 1H), 1.20 (s, 3H), 1.09 (s, 3H), 0.82 (dd, J = 7.6, 4.0 Hz, 1H).

Method E. Synthesis of salen ligand for catalyst 3: In an oven-dried round bottom flask, 3-(adamantan-1-yl)-5-methylsalicylaldehyde (540 mg, 2.0 mmol, 2.0 equiv; synthesized according to ref. [4]) and (1R,2R)-1,2-diphenylethane-1,2-diamine (212 mg, 1.0 mmol, 1 equiv) were dissolved in EtOH (5.0 mL). The reaction was refluxed overnight (ca. 10 h) and then cooled to room temperature. The precipitate was collected via vacuum filtration and washed with hexanes to yield the desired salen ligand (614 mg, 86% yield) as a yellow solid.

Synthesis of catalyst 3 (this procedure was conducted on a bench top using standard Schlenk technique):^[5] In an oven-dried round bottom flask, the salen ligand (358 mg, 0.5 mmol, 1 equiv) was dissolved in THF (5 mL) to afford a yellow solution, which was cooled to -78 °C under N₂. Then TiCl₄ solution (1.0 M in toluene; 0.5 mL, 0.5 mmol, 1.0 equiv) was added carefully into the above solution at -78 °C. This red suspension was heated under reflux for 3 h. After the reaction was cooled to room temperature, the dark red solid was filtered off and washed with diethyl ether to afford catalyst 3.

Catalyst 3. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 0.9Hz, 2H), 7.33 (d, J = 2.2 Hz, 2H), 7.28-7.27 (m, 6H), 7.12-7.11 (m, 4H), 6.80 (d, J = 2.1 Hz, 2H), 5.55 (s, 2H), 2.25-2.22 (m, 18H), 2.13-2.11 (m, 6H), 1.84-1.81 (m, 6H), 1.77-1.74 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 164.81, 160.82, 137.60, 136.15, 135.97, 133.72, 131.34, 129.23, 128.95,


126.24, 41.67, 37.80, 36.93, 28.90, 20.48. MS (DART) exact mass calculated for [C₅₀H₅₄N₂O₂TiCl]: 797.3348, found 797.3359.

Section 4. Mechanistic studies

General information: ESR spectra were recorded on a Bruker ELEXYS-II E500 spectrometer at National Biomedical Center for Advanced Electron Spin Resonance Technology(ACERT) at a microwave frequency of 9.32 GHz, microwave power of 0.63 mW, and modulation amplitude of 2 G (0.4 G for the experiment described in Section 5). Samples were prepared in a N₂-filled glovebox.

Spin trapping with DMPO^[6]

In a N₂-filled glovebox, an oven-dried 1.5 dr vial equipped with a magnetic stir bar was charged with Mn (5.5 mg, 0.10 mmol, 2.0 equiv), **3** (8.3 mg, 0.01, 20 mol%), Et₃N·HCl (13.7 mg, 0.1 mmol, 2.0 equiv) and EtOAc (0.5 mL). The mixture was stirred vigorously for 10 min to allow reduction of the pre-catalyst. Subsequently, **1** (8.7 mg, 0.050 mmol, 1 equiv), and DMPO (2.8 mg, 0.025 mmol, 50 mol%) were added, and the resulting mixture was stirred at room temperature (22 ± 1 °C) for 0.5 h. Subsequently, the supernatant was analyzed by ESR and mass spectrometry (DART). ESR spectrum showed an average g value of 2.0061 with two hyperfine splittings of 17.2 G (assigned to the nitroxide nitrogen) and 14.5 G (assigned to the α -hydrogen). High-resolution mass spectrum showed a molecular weight (M_w) of 288.19664 (1.04%), corresponding to nitroxide product **31** (calculated for M⁺: M_w = 289.19635; ionization by losing an electron to form the oxoammonium ion).

Figure S1. ESR spectrum of the reaction mixture in the presence of DMPO. Data are consistent with structurally analogous nitroxyl radicals in ref. [6].

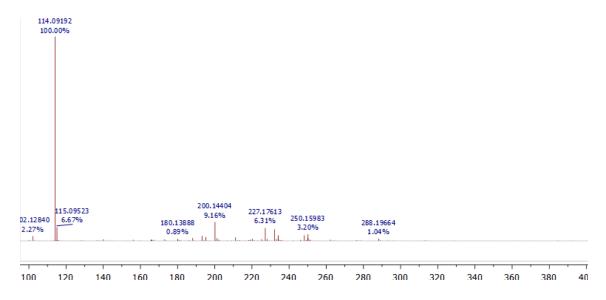


Figure S2. MS data of the reaction mixture in the presence of DMPO.

ESR spectral data of catalysts

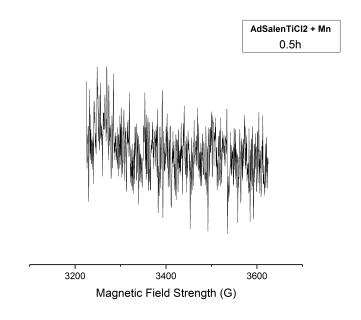
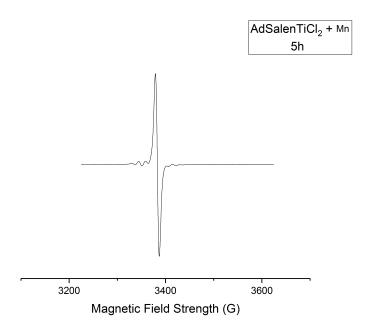



Figure S3. ESR spectrum of 3 (20 mM) and Mn (10 equiv) in EtOAc for 0.5 h

Figure S4. ESR spectrum of **3** (20 mM) and Mn (10 equiv) in EtOAc for **5 h**. Data are consistent with our previous analysis of Ti(III) complexes.^[7]

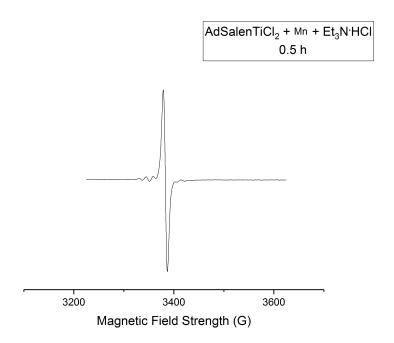


Figure S5. ESR spectrum of 3 (20 mM), $Et_3N\cdot HCl$ (200 mM) and Mn (10 equiv) in EtOAc for 0.5 h

Section 5. X-ray crystallographic data

General information: Low-temperature X-ray diffraction data for 2 (CCDC-1589640) and 17 (CCDC-1589641) were collected on a Rigaku XtaLAB Synergy diffractometer coupled to a RigakuHypix detector with Cu Kα radiation (λ =1.54184 Å), from a PhotonJet micro-focus X-ray source at 100 K. The diffraction images were processed and scaled using the CrysAlisPro software.^[8] The structures were solved through intrinsic phasing using SHELXT^[9] and refined against F² on all data by full-matrix least squares with SHELXL^[10] following established refinement strategies.^[11] All non-hydrogen atoms were refined anisotropically. All hydrogen atoms bound to carbon were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the Ueq value of the atoms they are linked to (1.5 times for methyl groups). Details of the data quality and a summary of the residual values of the refinements are listed in Tables S1-S2.

The crystals of both 2 and 17 were obtained via slow evaporation of a concentrated Et₂O solution of the corresponding compound at 4 °C.

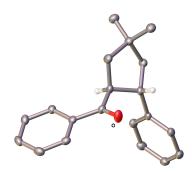
Table S1. Crystal data and structure refinement for 2.

Table S1. Crystal data and structure refinement for 2.				
Identification code	rwh10_abs			
Empirical formula	C20 H22 O			
Formula weight	278.37			
Temperature	100.00(10) K			
Wavelength	1.54184 Å			
Crystal system	Monoclinic			
Space group	P 1 21 1			
Unit cell dimensions	a = 5.84080(10) Å	α= 90°.		
	b = 16.7324(4) Å	β = 92.485(2)°.		
	c = 7.8935(2) Å	$\gamma = 90^{\circ}$.		
Volume	$770.71(3) \text{ Å}^3$			
Z	2			
Density (calculated)	1.200 Mg/m^3			
Absorption coefficient	0.549 mm ⁻¹			
F(000)	300			
Crystal size	$0.236 \times 0.179 \times 0.127 \text{ mm}^3$			
Theta range for data collection	5.287 to 70.012°.			
Index ranges	-7<=h<=7, -20<=k<=20, -9<=l<=9			
Reflections collected	31128			
Independent reflections	2923 [R(int) = 0.0252]			

Completeness to theta = 67.684° 100.0 % Absorption correction Gaussian

Max. and min. transmission 1.000 and 0.563

Refinement method Full-matrix least-squares on F²


Data / restraints / parameters 2923 / 1 / 192

Goodness-of-fit on F^2 1.069

Final R indices [I>2sigma(I)] R1 = 0.0265, wR2 = 0.0706 R indices (all data) R1 = 0.0266, wR2 = 0.0715

Absolute structure parameter -0.04(5)
Extinction coefficient n/a

Largest diff. peak and hole 0.161 and -0.168 e.Å-3

Figure S6. ORTEP drawing of **2** with 30% probability thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

Table S2. Crystal data and structure refinement for 17.

Identification code rwh11_abs
Empirical formula C32 H38 O2

Formula weight 454.62

Temperature 100.00(10) K
Wavelength 1.54184 Å
Crystal system Monoclinic
Space group P 1 21 1

Unit cell dimensions a = 13.24067(7) Å $\alpha = 90^{\circ}$.

b = 7.76255(4) Å $\beta = 91.3423(5)^{\circ}.$

c = 24.83830(13) Å $\gamma = 90^{\circ}$.

Volume 2552.21(2) Å³

 \mathbf{Z}

Density (calculated) 1.183 Mg/m³
Absorption coefficient 0.550 mm⁻¹

F(000) 984

Crystal size $0.168 \times 0.099 \times 0.05 \text{ mm}^3$

Theta range for data collection 1.779 to 70.065°.

Index ranges -16 <= h <= 16, -9 <= k <= 9, -30 <= l <= 30

Reflections collected 94575

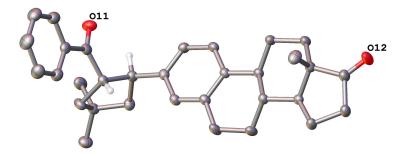
Independent reflections 9697 [R(int) = 0.0338]

Completeness to theta = 67.684° 100.0 %
Absorption correction Gaussian

Max. and min. transmission 1.000 and 0.851

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 9697 / 1 / 619

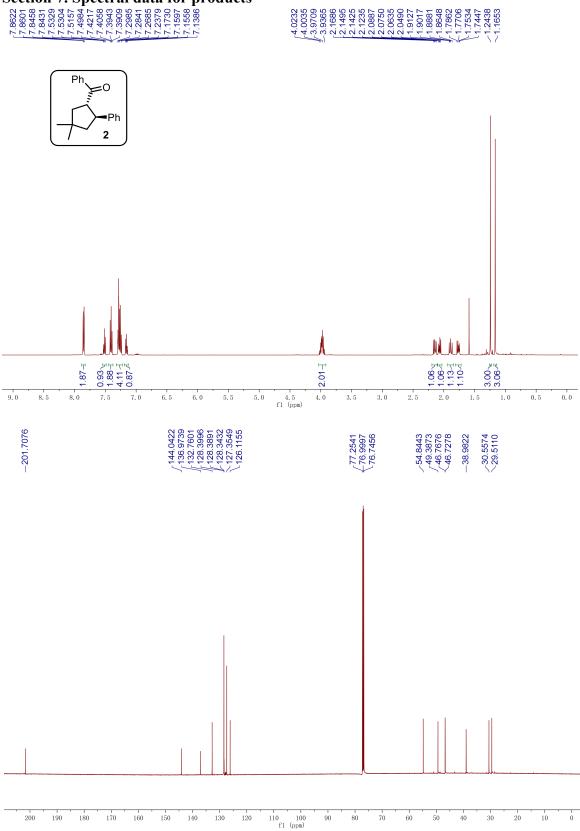

Goodness-of-fit on F^2 1.027

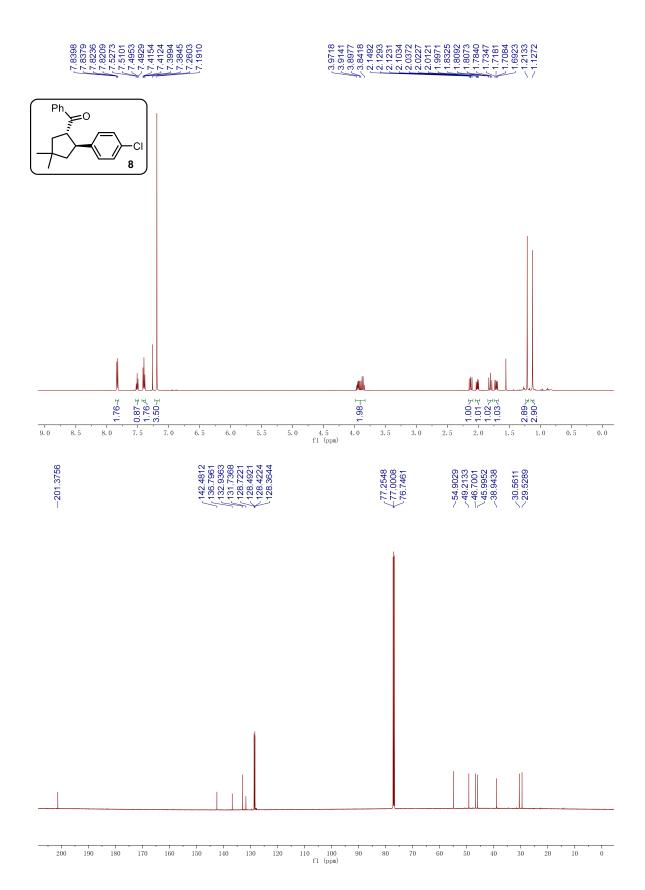
Final R indices [I>2sigma(I)] R1 = 0.0315, wR2 = 0.0822

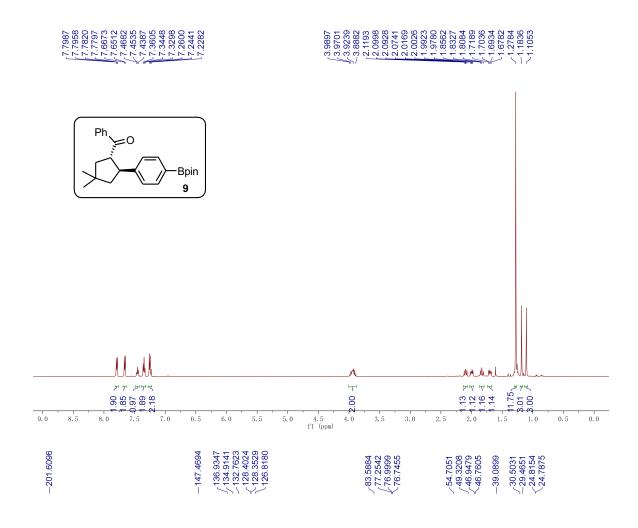
R indices (all data) R1 = 0.0318, wR2 = 0.0824

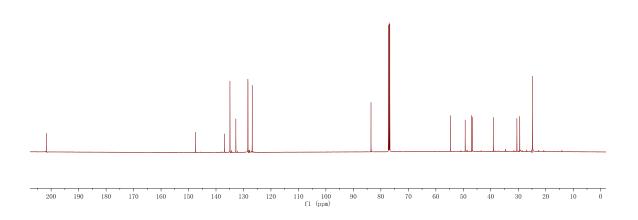
Absolute structure parameter 0.00(5)
Extinction coefficient n/a

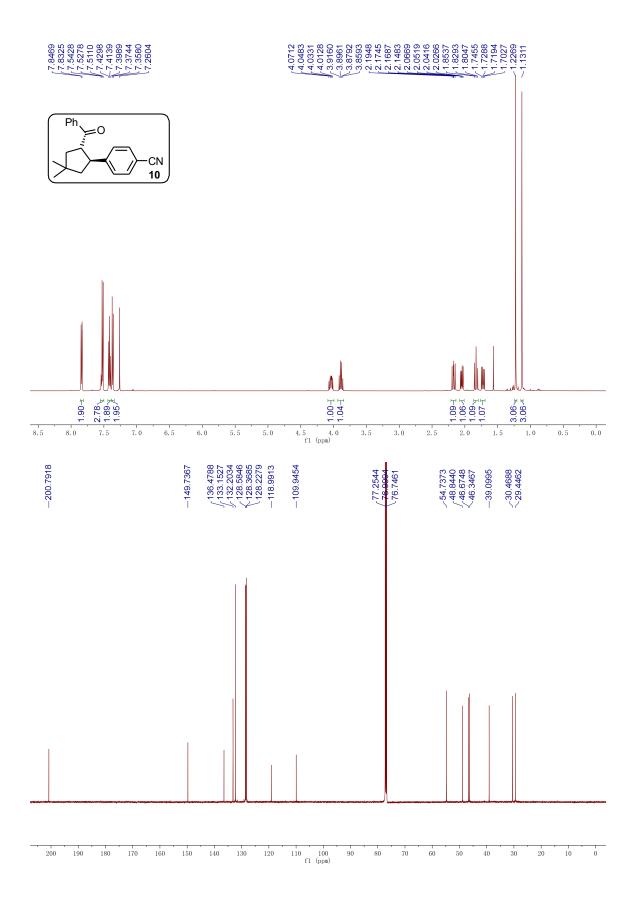
Largest diff. peak and hole 0.263 and -0.181 e.Å-3

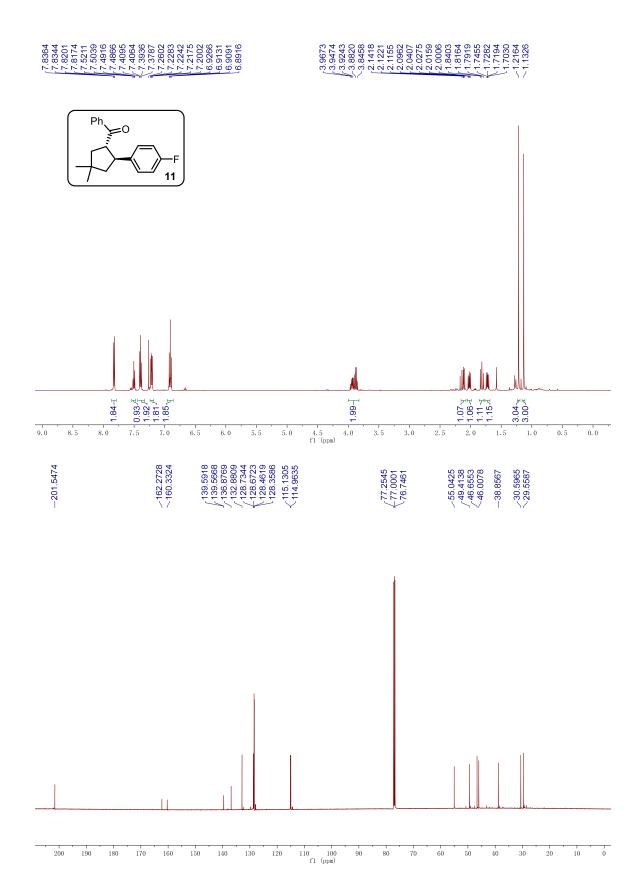


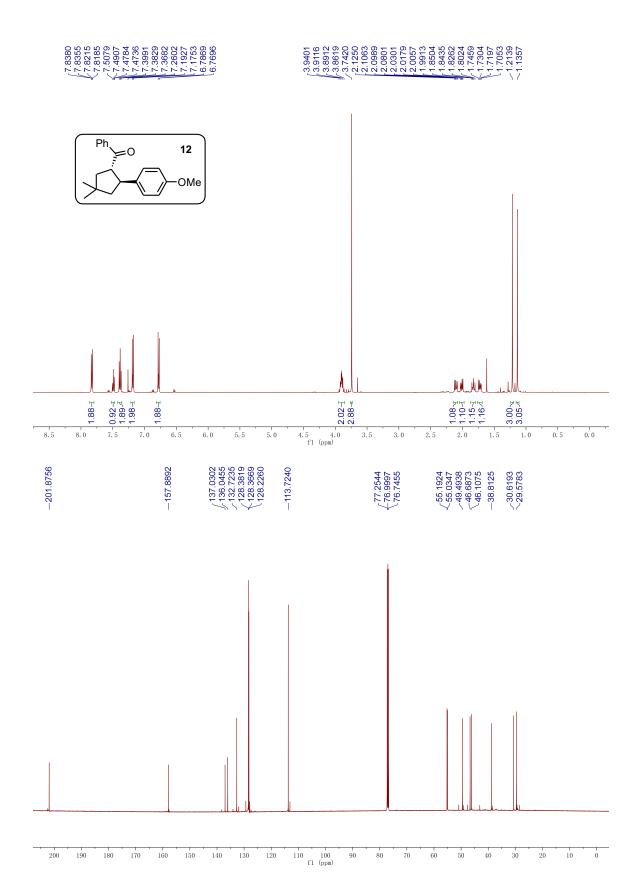

Figure S7. ORTEP drawing of **17** with 30% probability thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

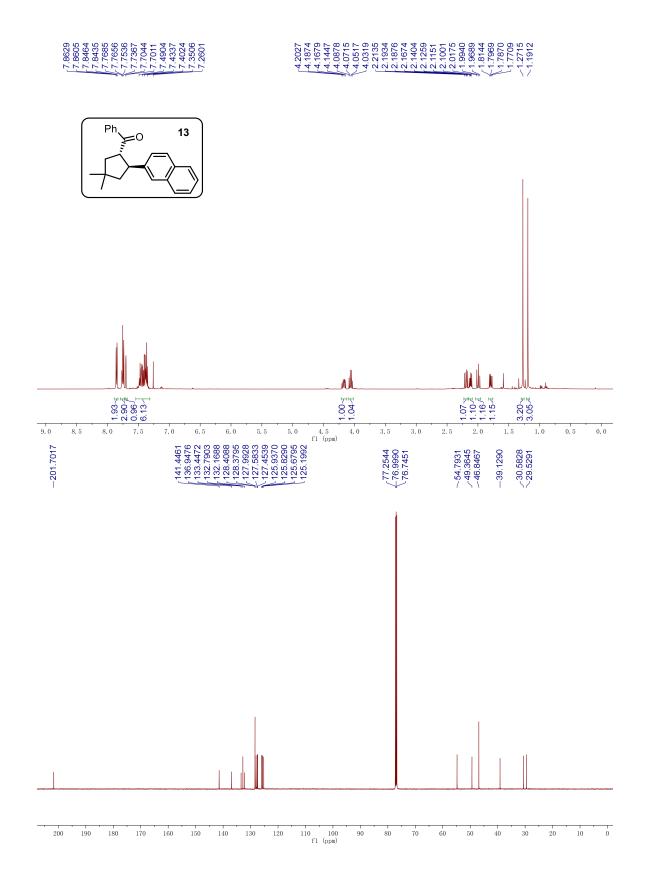

Section 6. References

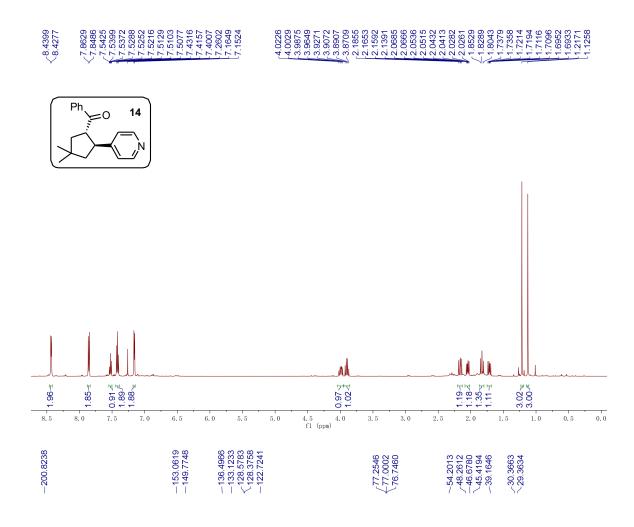

- 1. Amador, A. G.; Sherbrook, E. M.; Yoon, T. P. *J. Am. Chem. Soc.* **2016**, *138*, 4722–4725.
- 2. Coudray, L.; de Figueiredo, R. M.; Duez, S.; Cortial, S.; Dubois, J. *J. Enzyme Inhib. Med. Chem.* **2009**, *24*, 972–985.
- 3. Richmond, E.; Vuković, V. D.; Moran, J. Org. Lett. 2018, 20, 574–577.
- 4. Chavez, D. E.; Jacobsen, E. N. Org. Synth. 2005, 11, 498–505.
- 5. Choudhary, N. F.; Hitchcock, P. B.; Leigh, G. J. *Inorg. Chim. Acta* **2000**, *306*, 24–29.
- 6. Sono, M.; Hanamura, S.; Furumaki, M.; Murai, H.; Tori, M. *Org. Lett.* **2011**, *13*, 5720–5723.
- 7. Hao, W.; Wu, X.; Sun, J. Z.; Siu, J. C.; MacMillan, S. N.; Lin, S. *J. Am. Chem. Soc.* **2017**, *139*, 12141–12144.
- 8. CrysAlisPro; Rigaku OD, The Woodlands, TX, 2015.
- 9. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.
- 10. Sheldrick, G.M. Acta Crystallogr. 2008, A64, 112–122.
- 11. Müller, P. Crystallogr. Rev. 2009, 15, 57–83.

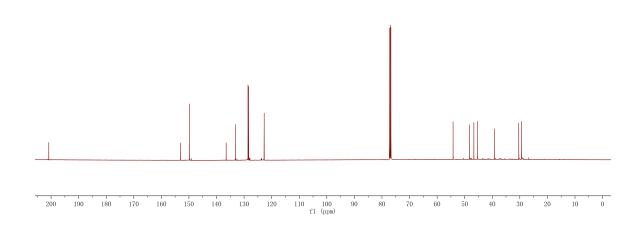

Section 7. Spectral data for products

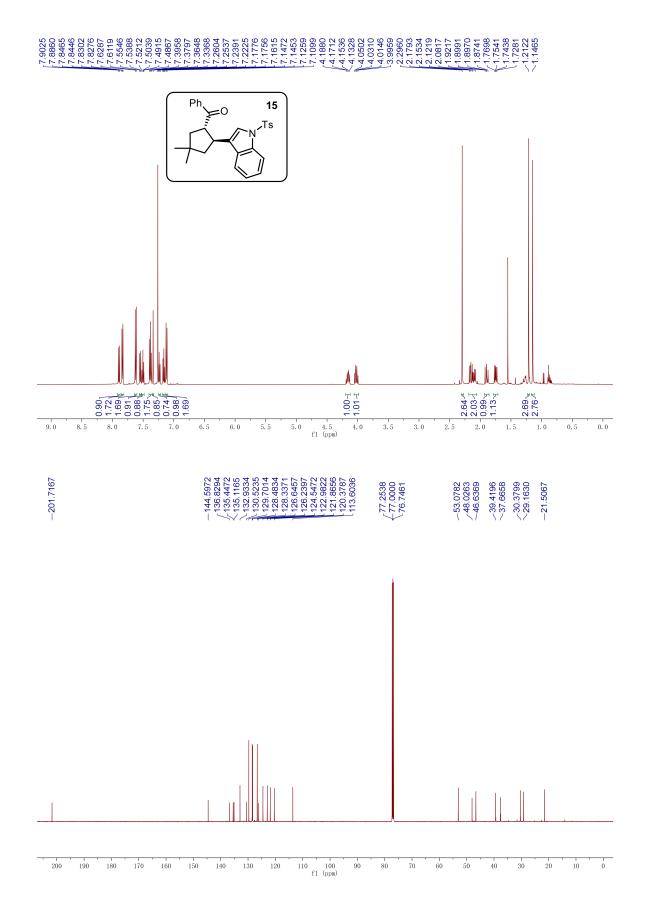


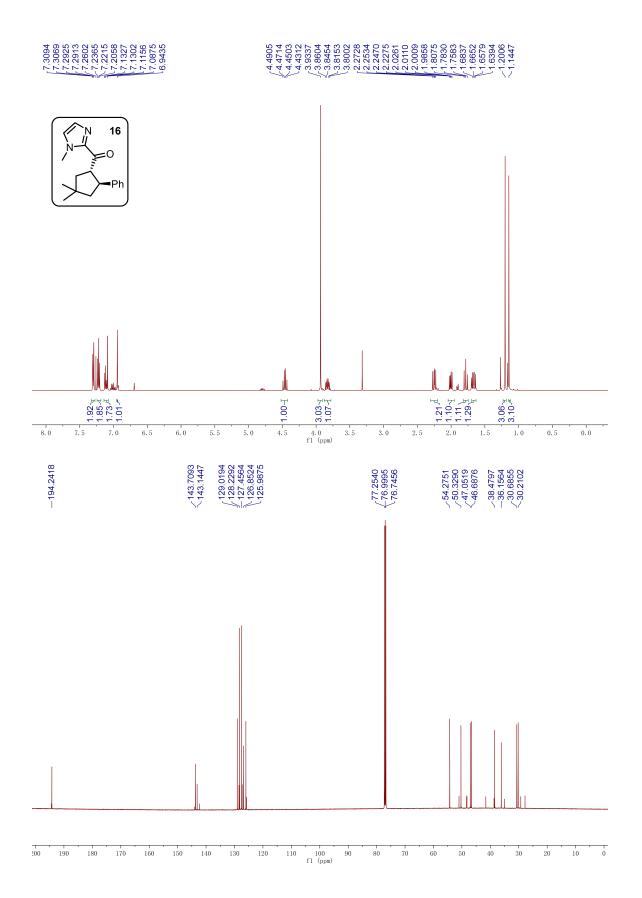


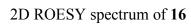


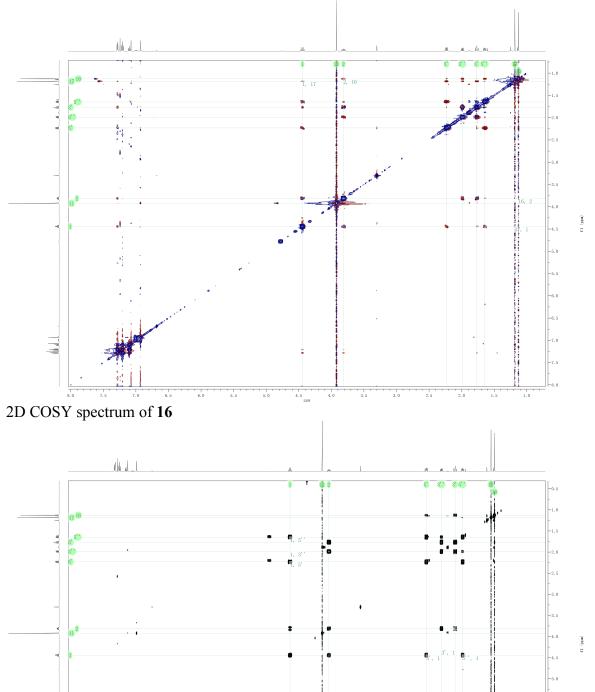


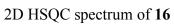


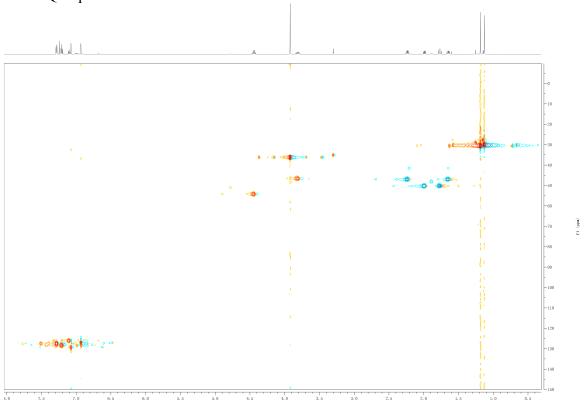


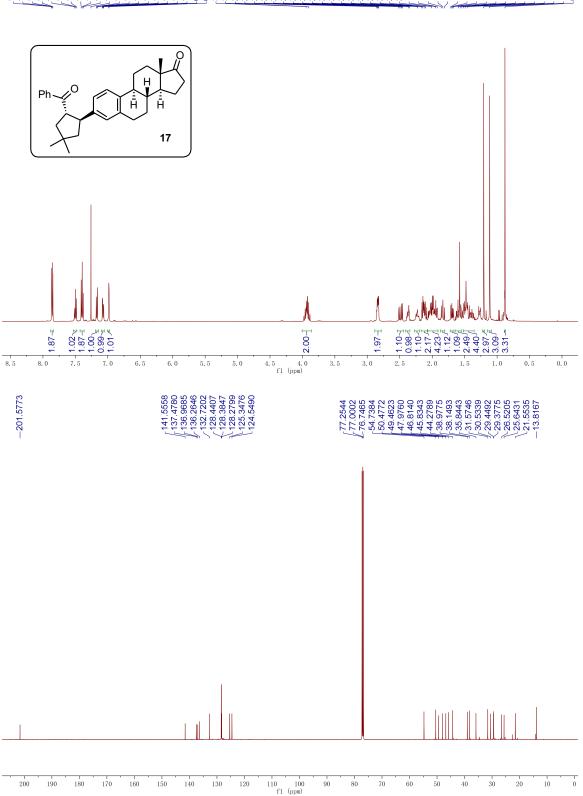


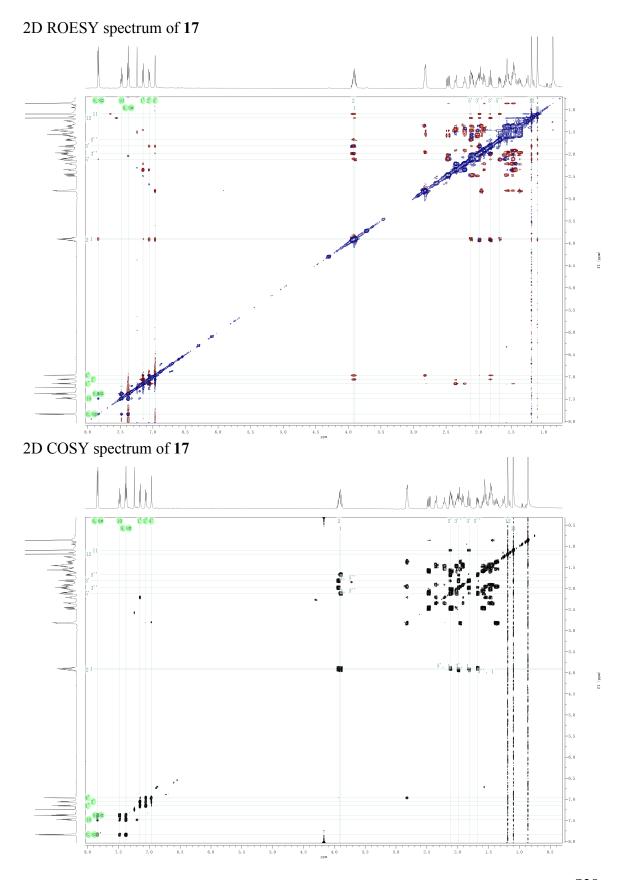


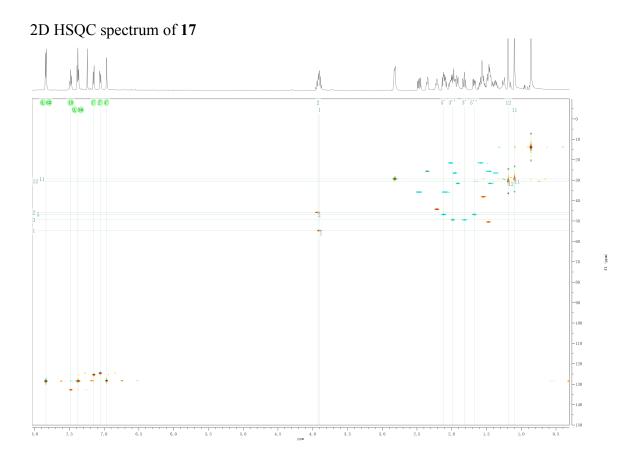


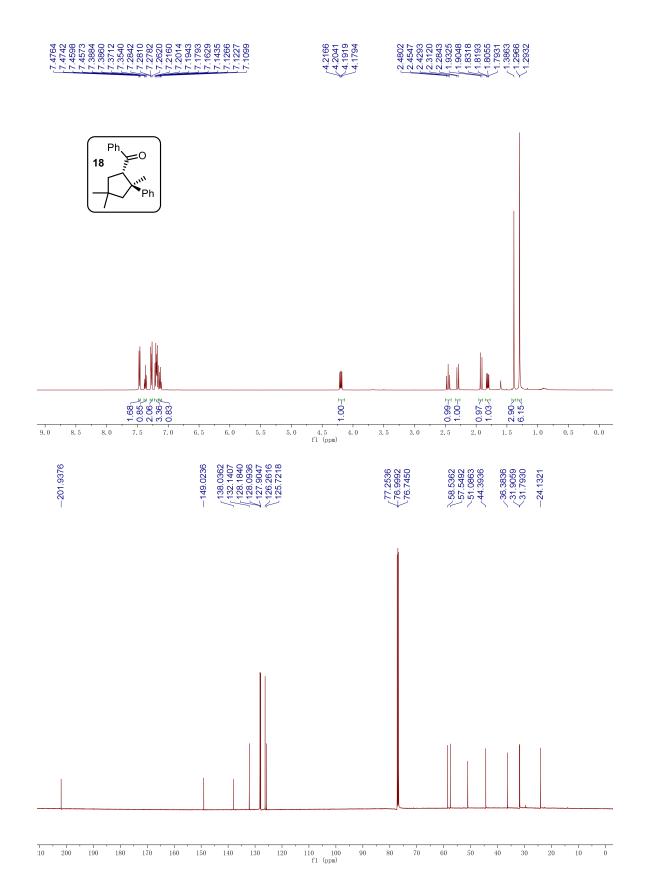


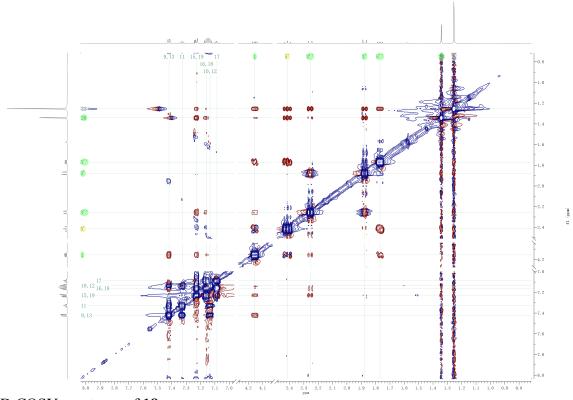


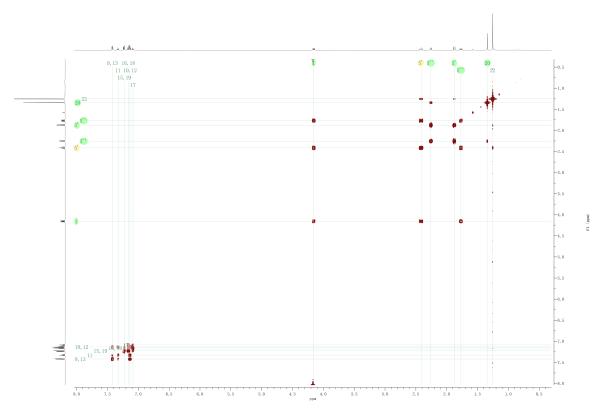


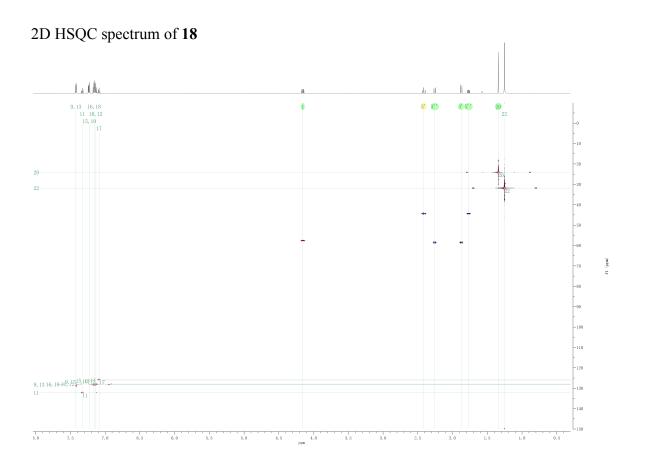


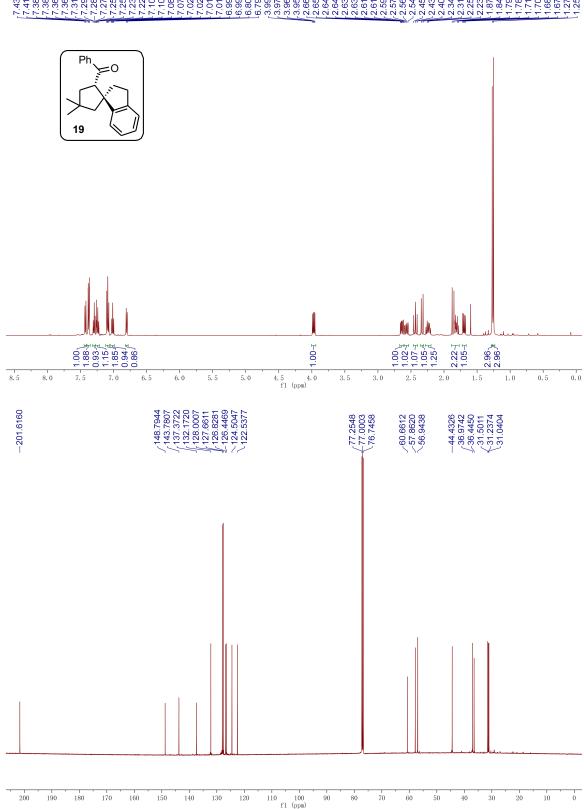


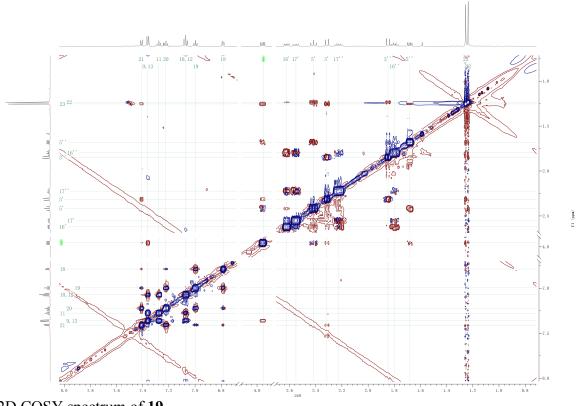




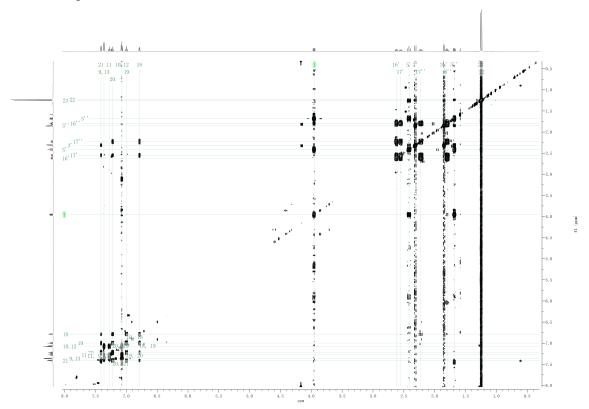


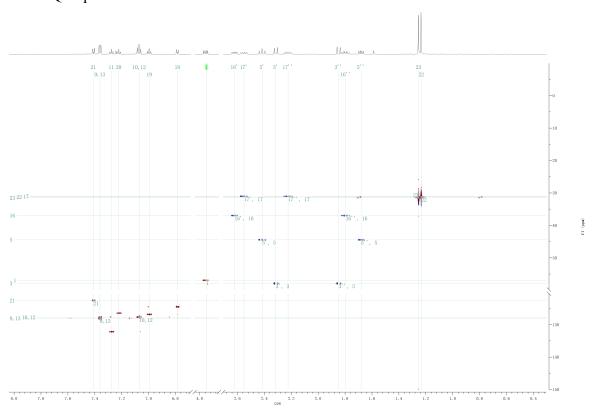


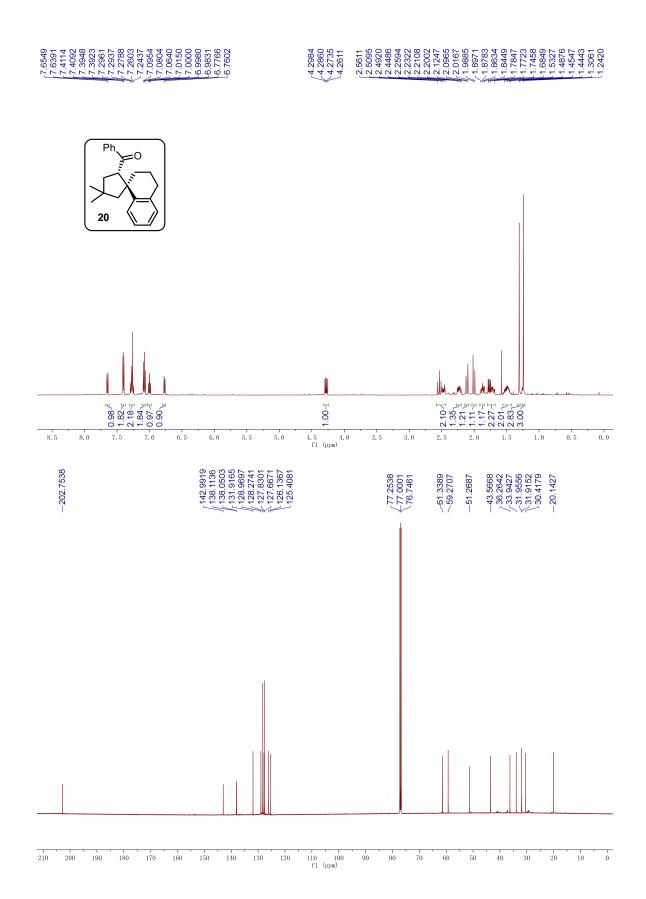


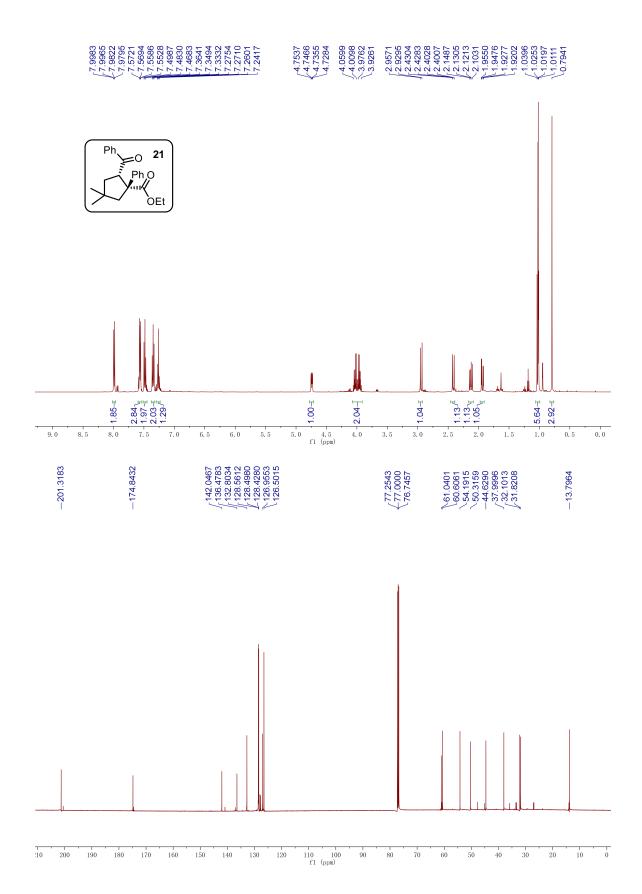


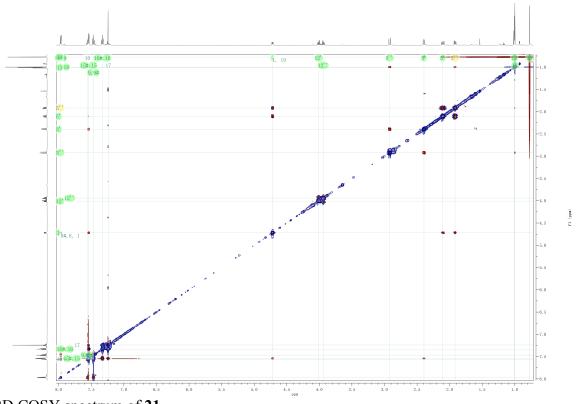
2D COSY spectrum of 18



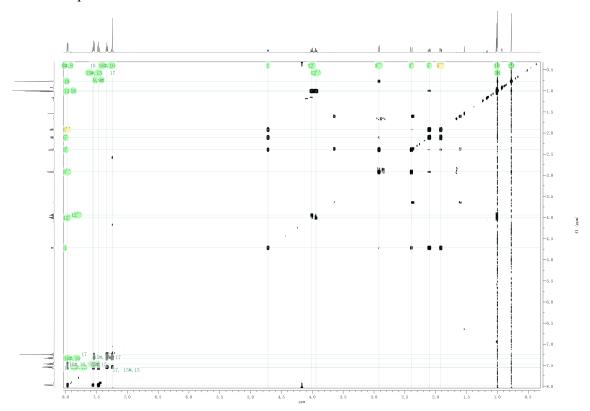


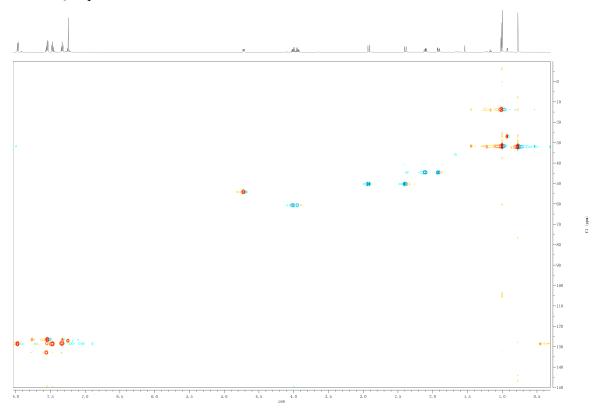


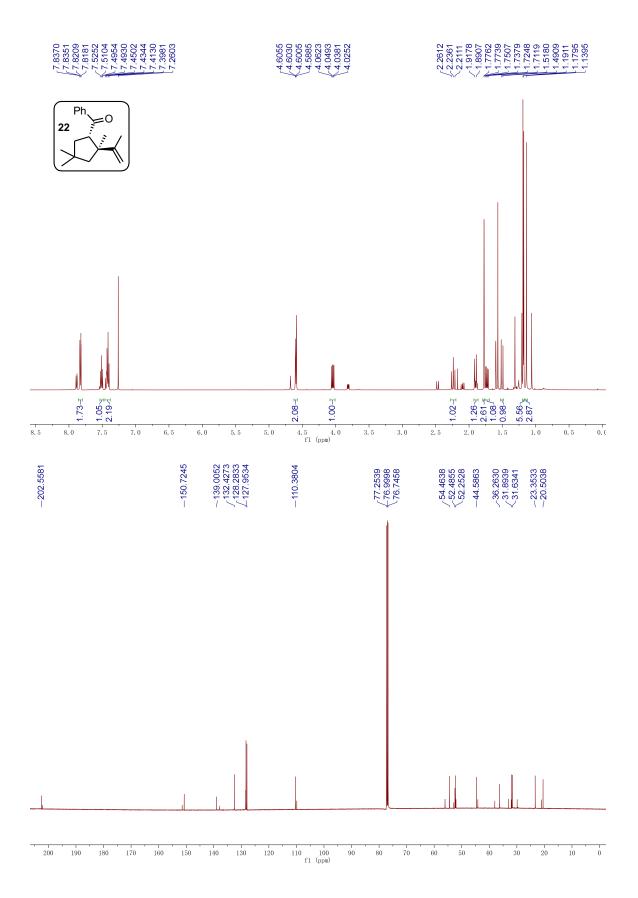

2D COSY spectrum of 19

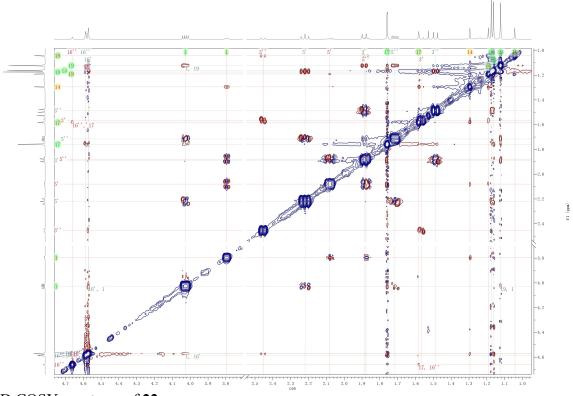


S44

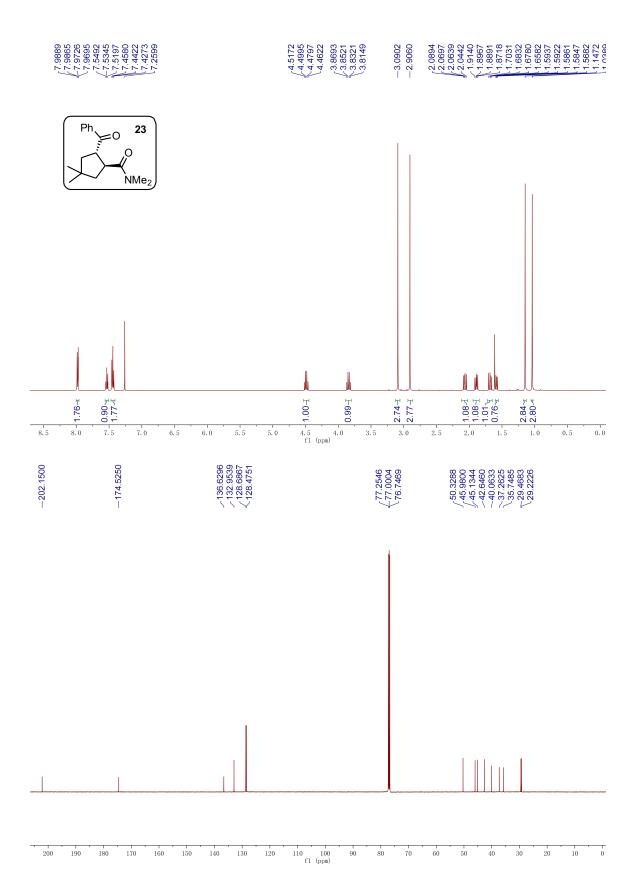


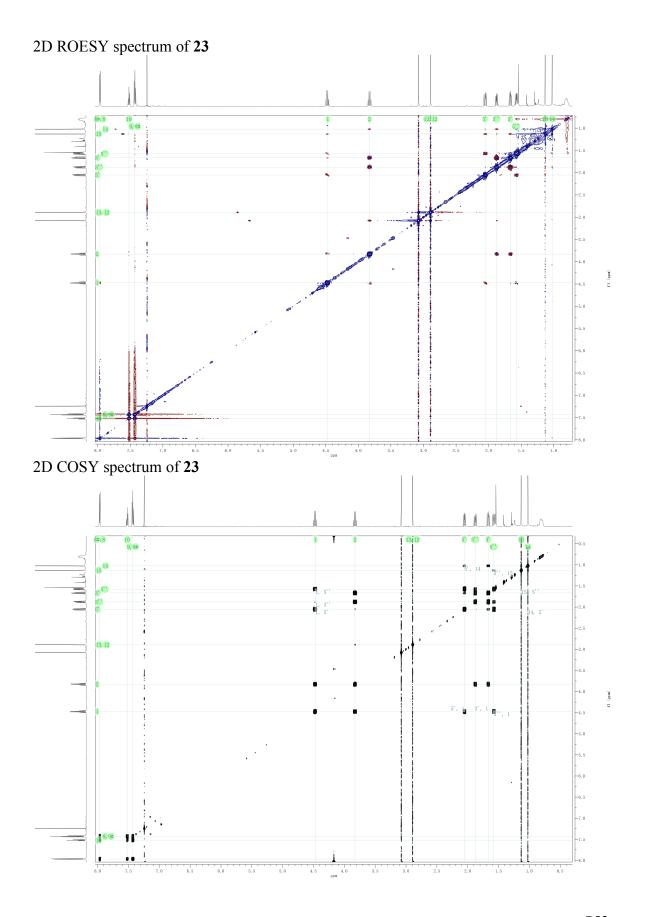


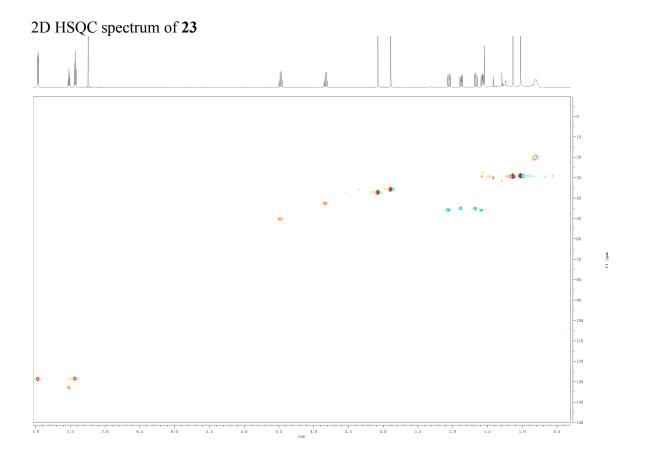


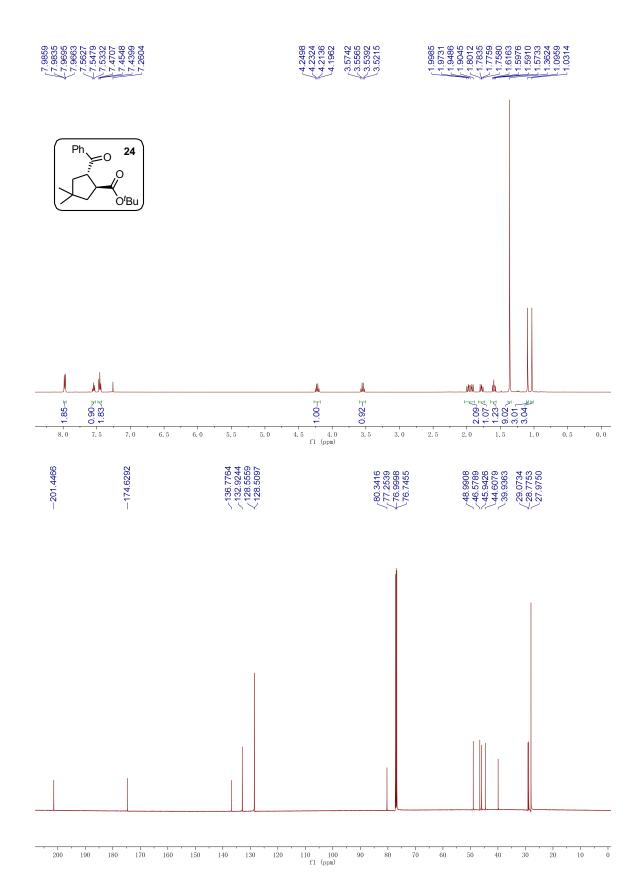


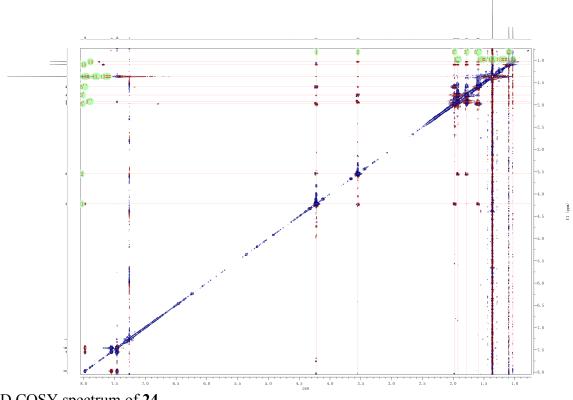
2D COSY spectrum of 21

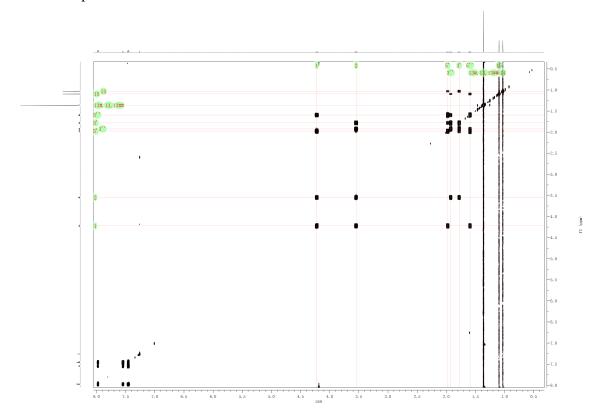


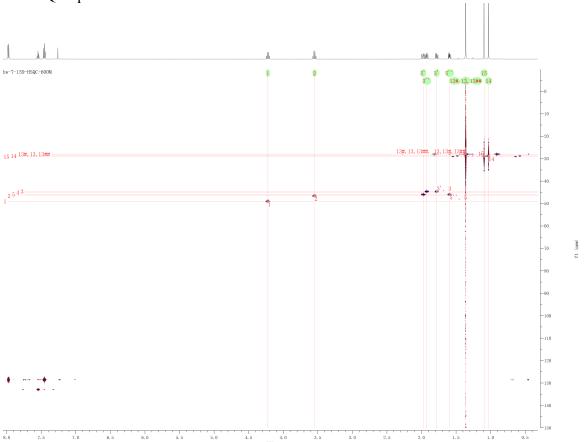


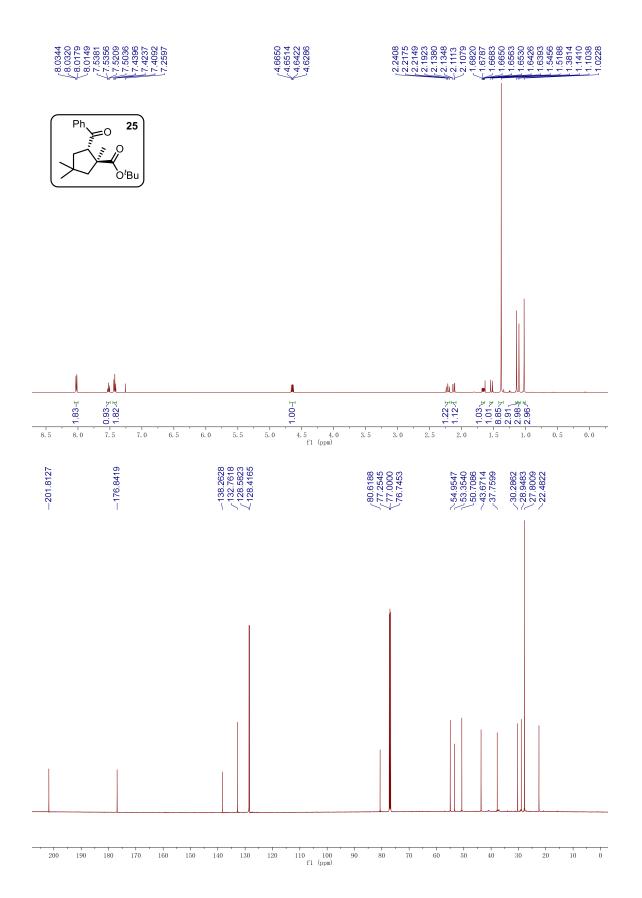


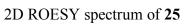

2D COSY spectrum of 22

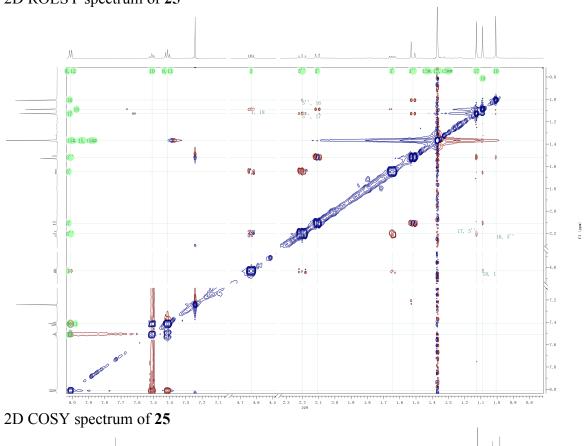


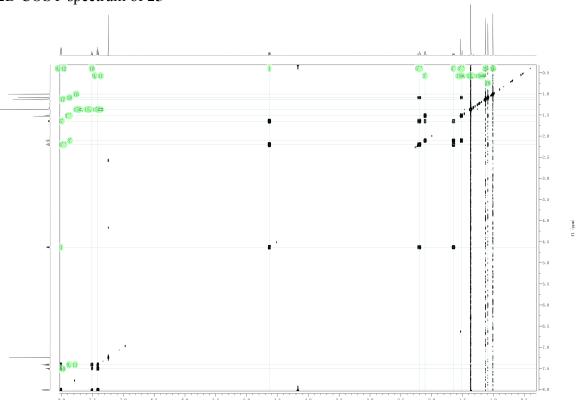


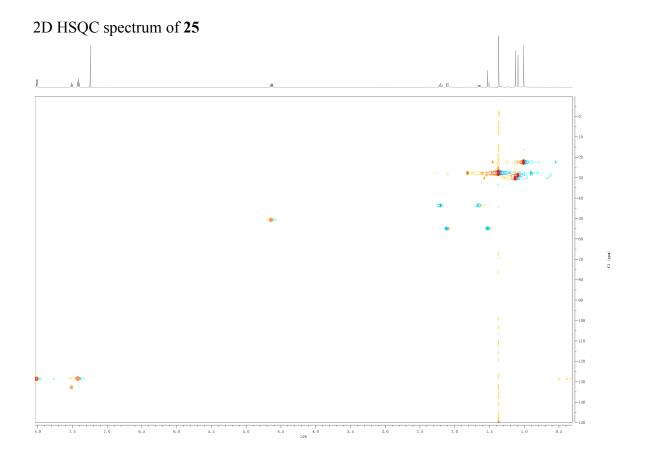


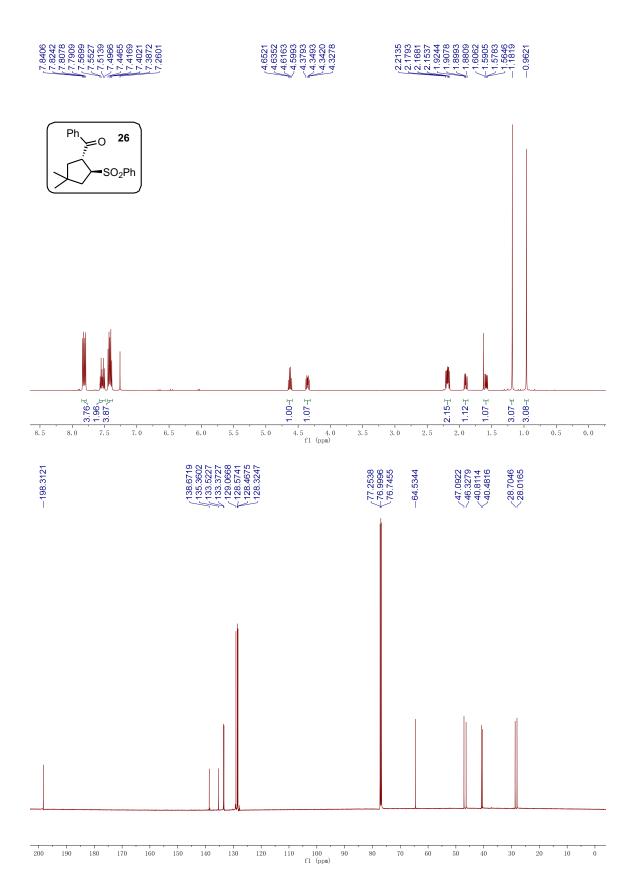


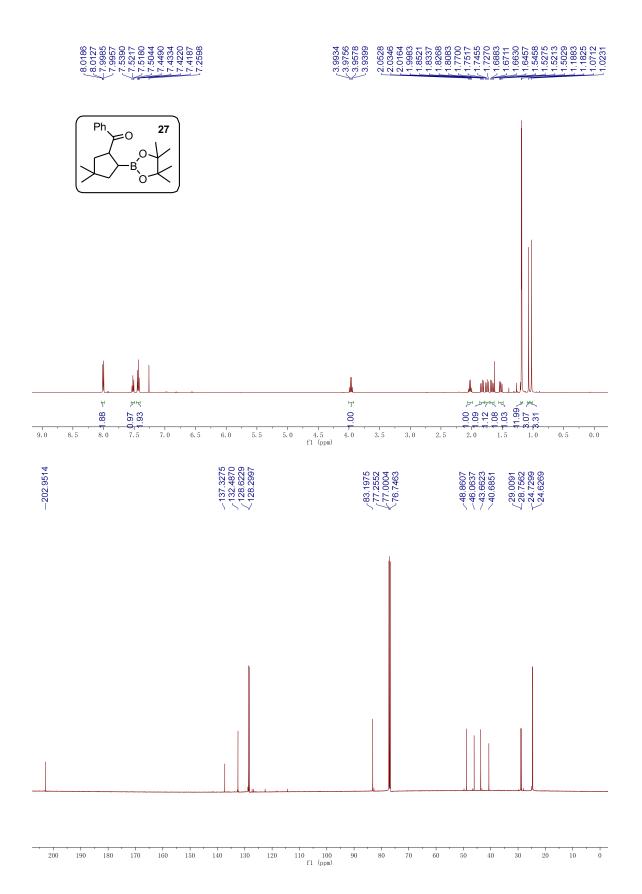


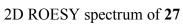

2D COSY spectrum of **24**

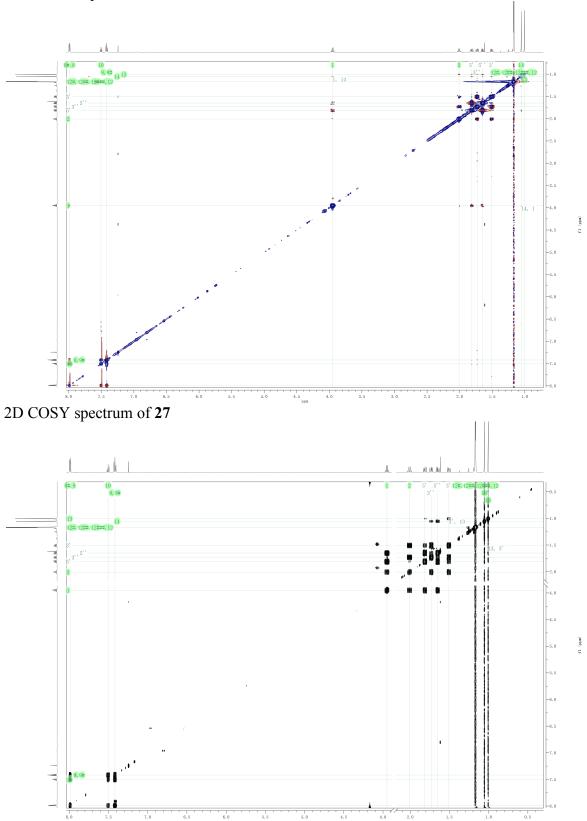


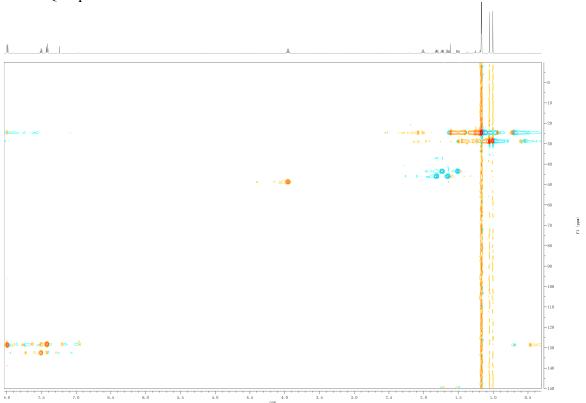


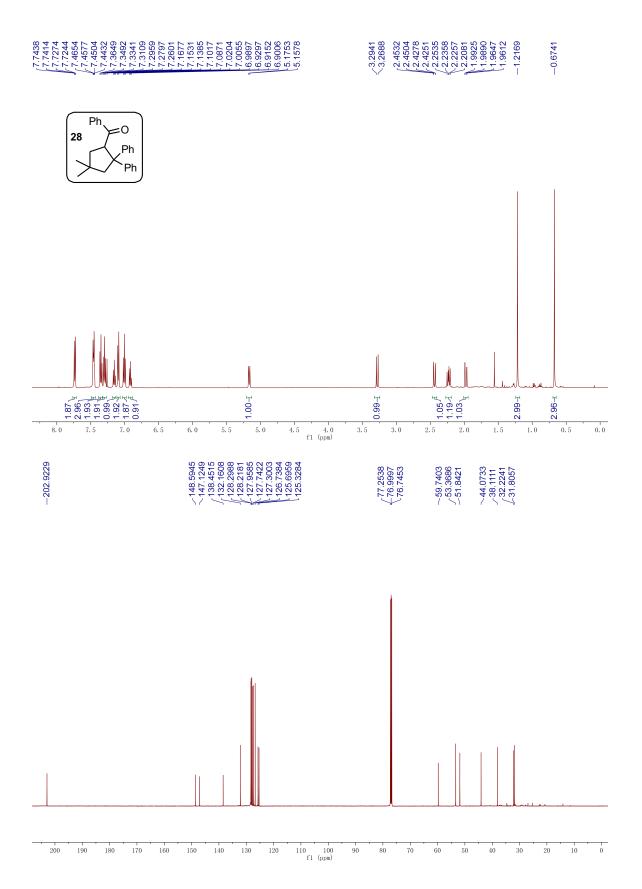


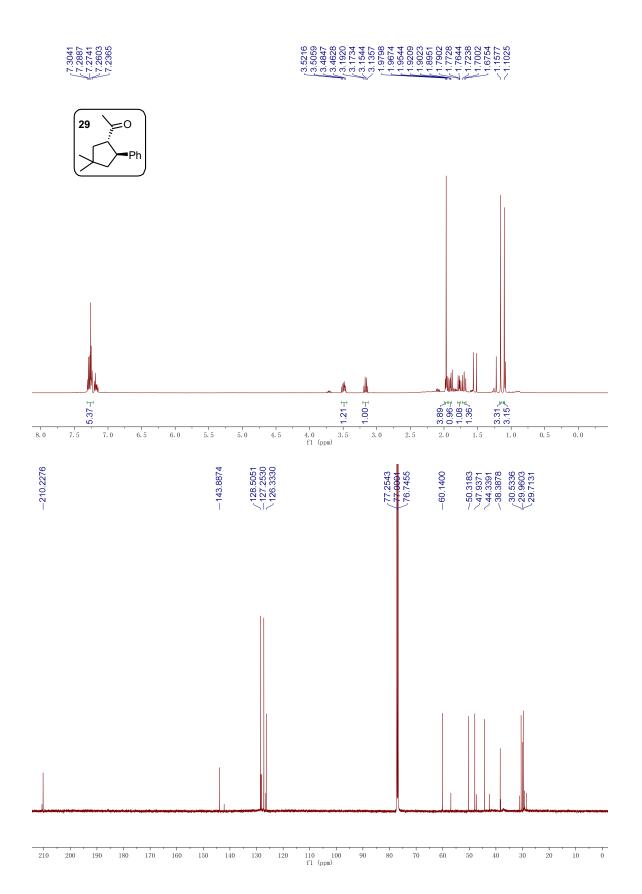


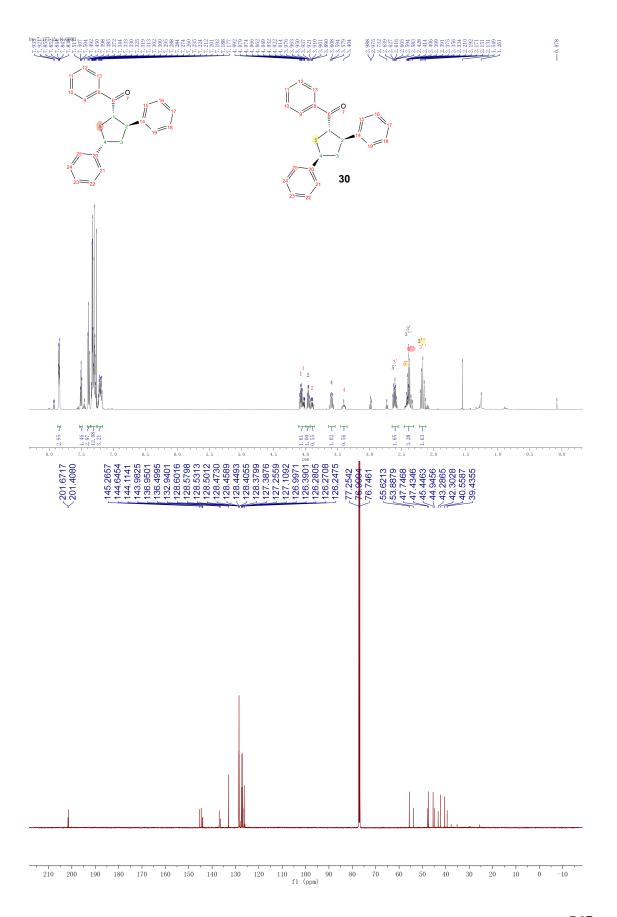


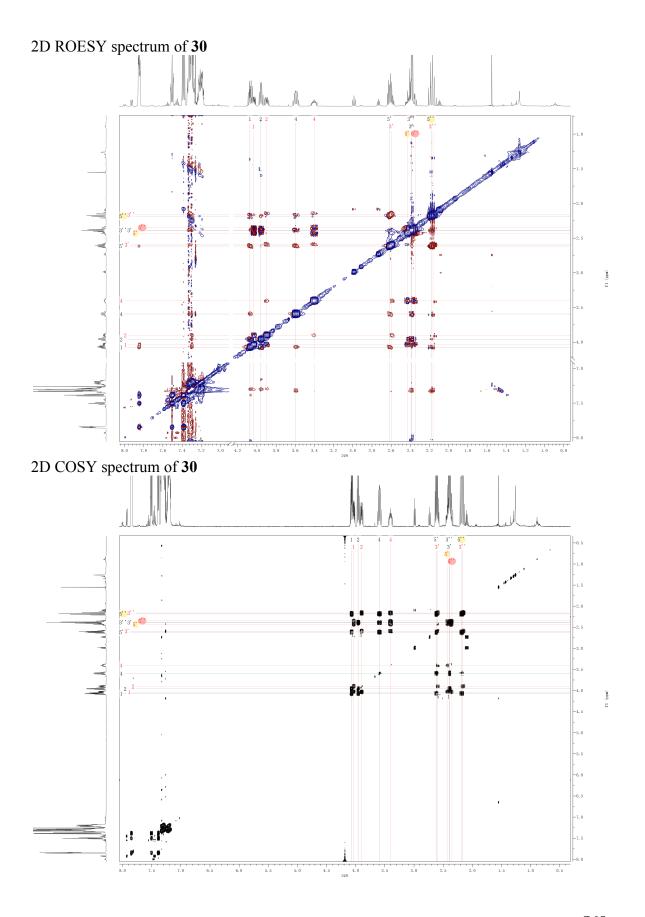


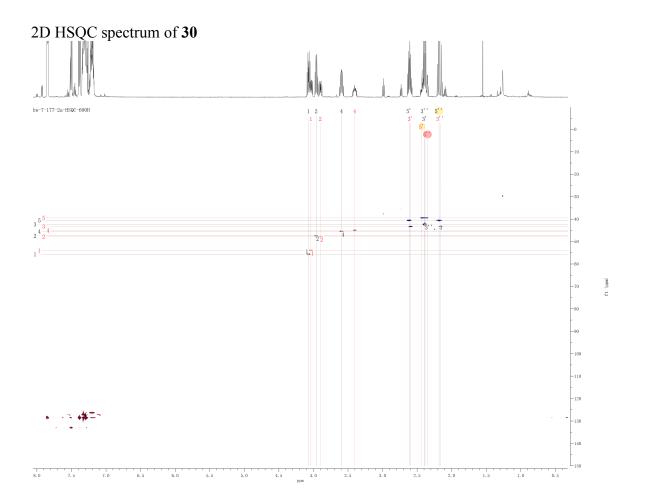


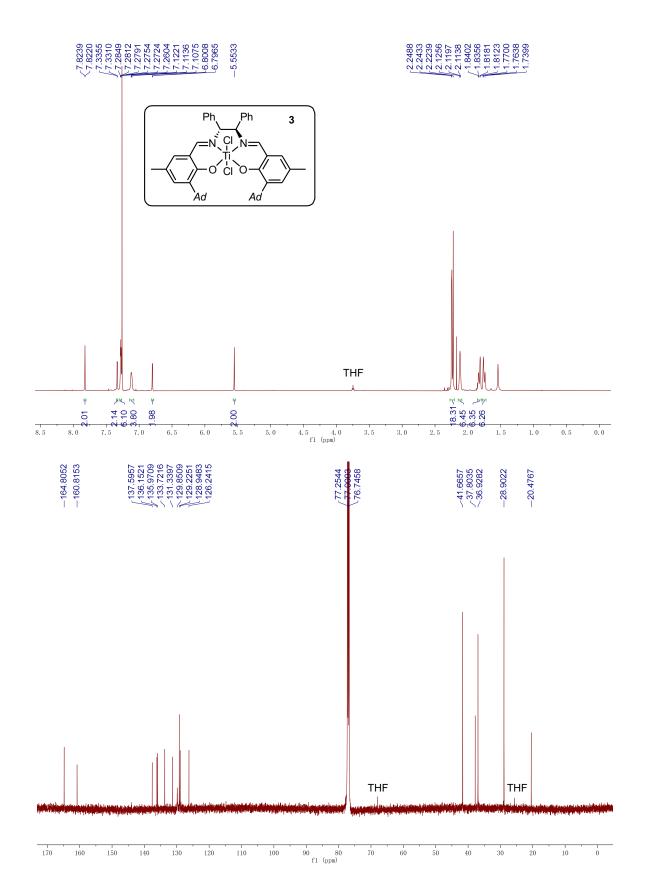


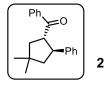


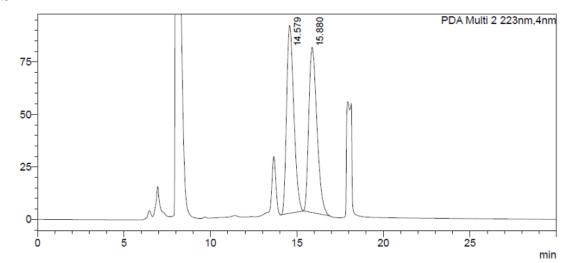








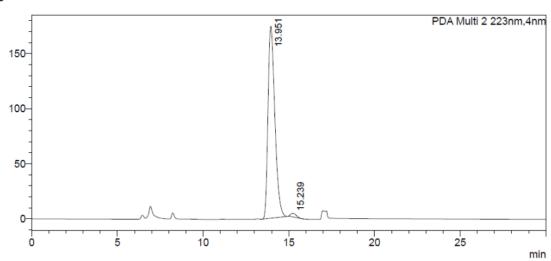


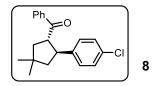

HPLC traces

Racemic: hw-6-160-trans-AS-0%-0.5 PDA Ch2 223nm

Peak#	Ret. Time	Area	Height	Area%
1	14.579	2600733	89457	50.095
2	15.880	2590915	78619	49.905
Total		5191649	168076	100.000

mAU

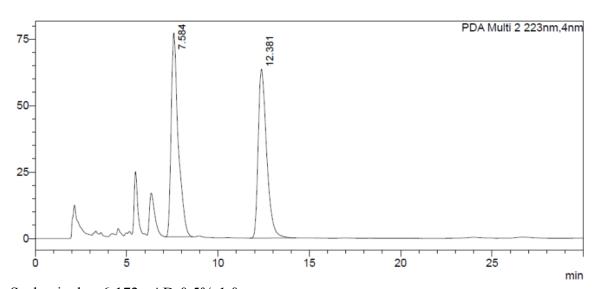



Scalemic: hw-6-148-2-AS-0%-0.5

PDA Ch2 223nm

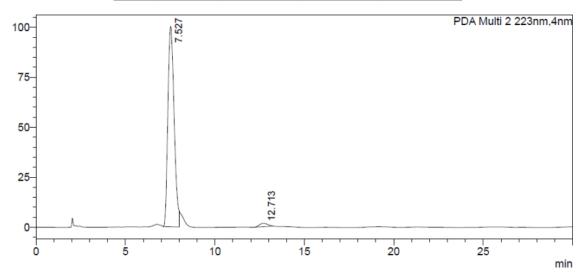
Peak#	Ret. Time	Area	Height	Area%
1	13.951	4830518	174363	98.502
2	15.239	73443	3289	1.498
Total		4903961	177652	100.000

mAU



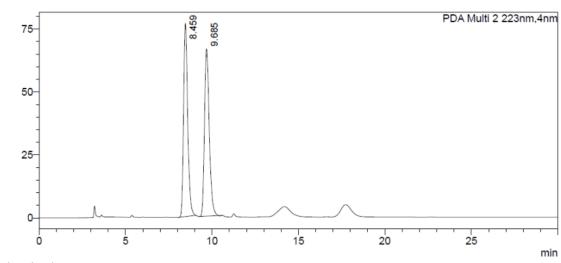
Racemic: hw-6-192a-AD-0.5%-1.0

PDA Ch2 223nm


DA ONZ ZZONIN				
Peak#	Ret. Time	Area	Height	Area%
1	7.584	2062884	76680	50.094
2	12.381	2055129	63516	49.906
Total		4118013	140196	100.000

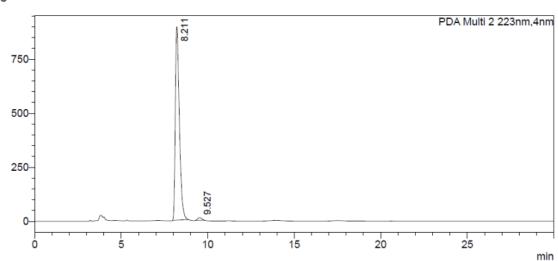
Scalemic: hw-6-172a-AD-0.5%-1.0

PDA Ch2 223nm


Peak#	Ret. Time	Area	Height	Area%
1	7.527	2434731	100165	97.891
2	12.713	52455	1662	2.109
Total		2487185	101828	100.000

Racemic: hw-7-12a-OD-0.5%-1.0 PDA Ch2 223nm

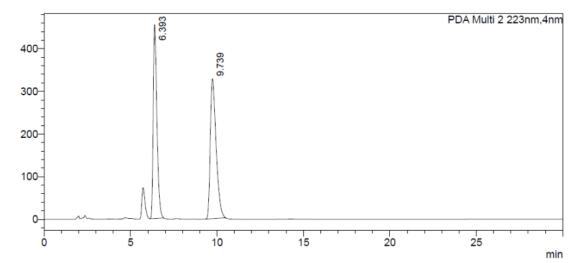
Peak#	Ret. Time	Area	Height	Area%
1	8.459	1267238	76697	49.901
2	9.685	1272285	66395	50.099
Total		2539523	143091	100.000


mAU

Scalemic: hw-7-67-OD-0.5%-1.0

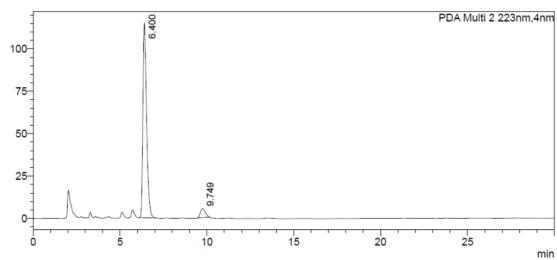
PDA Ch2 223nm

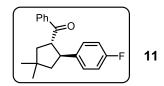
Peak#	Ret. Time	Area	Height	Area%
1	8.211	14561337	894754	98.650
2	9.527	199279	12459	1.350
Total		14760616	907213	100.000


Racemic: hw-6-192c-tlc-AD-5.0%-1.0

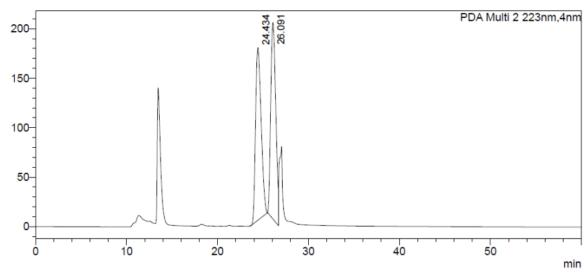
PDA Ch2 223nm

10

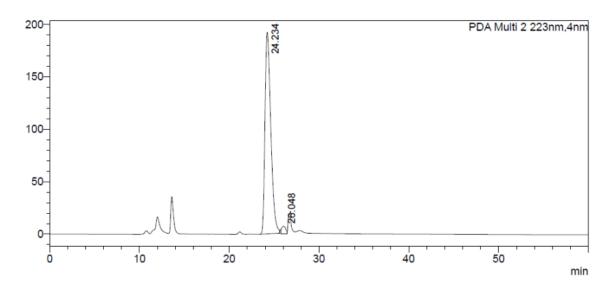

Peak#	Ret. Time	Area	Height	Area%
1	6.393	6731948	454317	46.839
2	9.739	7640540	327922	53.161
Total		14372488	782238	100.000


mAU

Scalemic: hw-7-87b-AD-5%-1.0 PDA Ch2 223nm


I DA ONZ ZZONIN				
Peak#	Ret. Time	Area	Height	Area%
1	6.400	1690800	114905	94.254
2	9.749	103078	5187	5.746
Total		1793878	120092	100.000

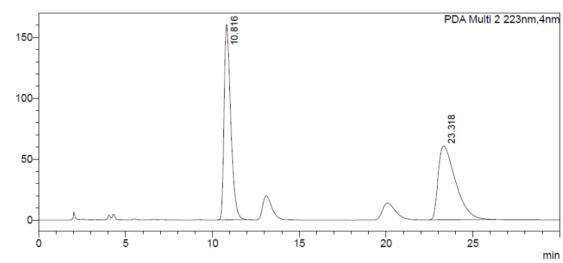
Racemic: hw-6-192b-AS-0%-0.3-60 min


PDA Ch2 223nm Peak# Ret. Time Height 174575 Area% Area 24.434 49.531 7506414 2 7648644 50.469 26.091 198619 Total 15155059 373194 100.000

Scalemic: hw-6-179-re-AS-0%-0.3

PDA Ch2 223nm

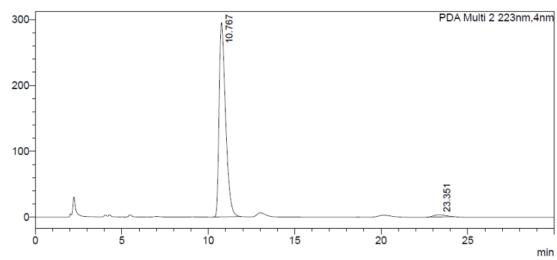
I DA ONE EEOIIII				
Peak#	Ret. Time	Area	Height	Area%
1	24.234	8638950	192210	97.223
2	26.048	246783	7686	2.777
Total		8885733	199896	100.000

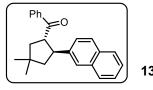


Racemic: hw-6-205b-AD-0.5%-1.0

PDA Ch2 223nm

Peak#	Ret. Time	Area	Height	Area%
1	10.816	4256596	160496	50.214
2	23.318	4220331	60477	49.786
Total		8476927	220974	100.000

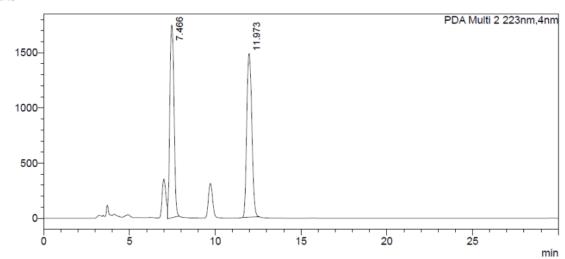

mAU



Scalemic: hw-6-203-AD-0.5%-1.0

PDA Ch2 223nm

Peak#	Ret. Time	Area	Height	Area%
1	10.767	7688800	295138	97.952
2	23.351	160786	3342	2.048
Total		7849586	298480	100.000

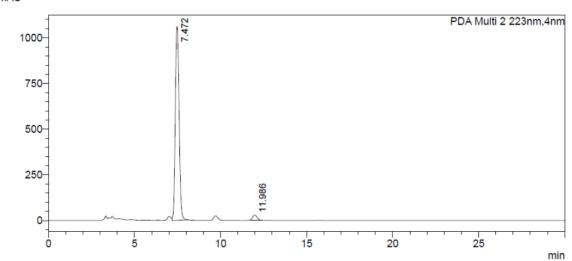


Racemic: hw-6-200-IA-2%-1.0-30 min

PDA Ch2 223nm

Peak#	Ret. Time	Area	Height	Area%
1	7.466	29790874	1745317	49.285
2	11.973	30654868	1482779	50.715
Total		60445743	3228096	100.000

mAU

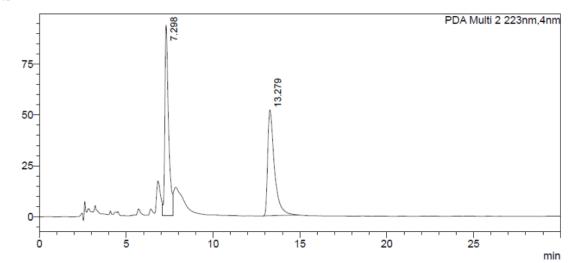


Scalemic: hw-6-193-re-IA-2%-1.0

PDA Ch2 223nm

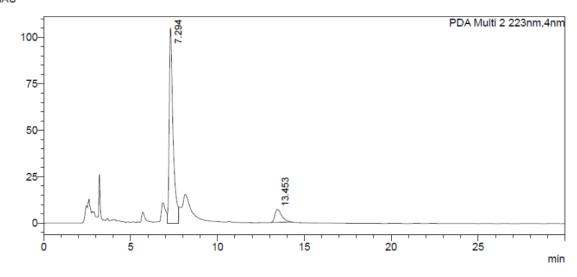
Peak#	Ret. Time	Area	Height	Area%
1	7.472	16356772	1061854	97.008
2	11.986	504549	27988	2.992
Total		16861320	1089841	100.000

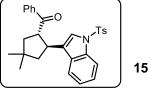
mAU


S77

14

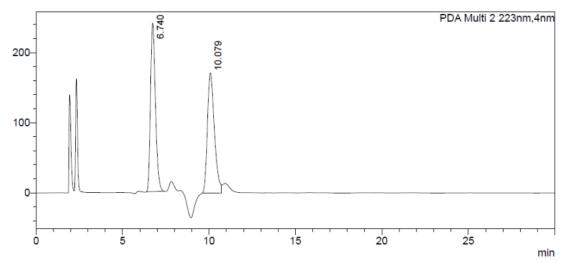
Racemic: hw-7-25a-IA-12%-1.2 PDA Ch2 223nm


Peak#	Ret. Time	Area	Height	Area%
1	7.298	1390235	93651	49.888
2	13.279	1396484	51991	50.112
Total		2786719	145641	100.000


mAU

Scalemic: hw-7-23-IA-12%-1.2 PDA Ch2 223nm

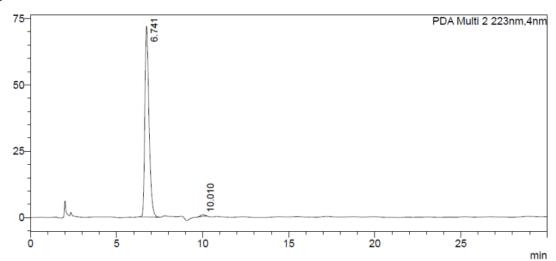
<u> </u>				
Peak#	Ret. Time	Area	Height	Area%
1	7.294	1624668	105271	89.553
2	13.453	189534	7005	10.447
Total		1814202	112277	100.000



Racemic: hw-6-201-AD-6%-1.0 PDA Ch2 223nm

Peak#	Ret. Time	Area	Height	Area%
1	6.740	4754081	240392	49.729
2	10.079	4805871	171629	50.271
Total		9559952	412021	100.000

mAU

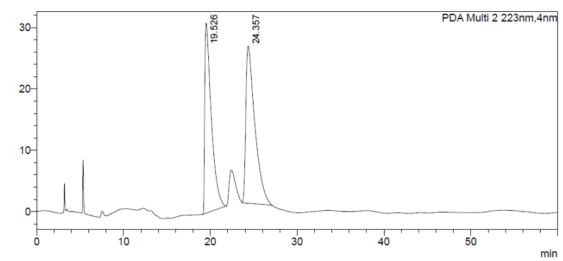


Scalemic: hw-6-199-AD-6%-1.0

PDA Ch2 223nm

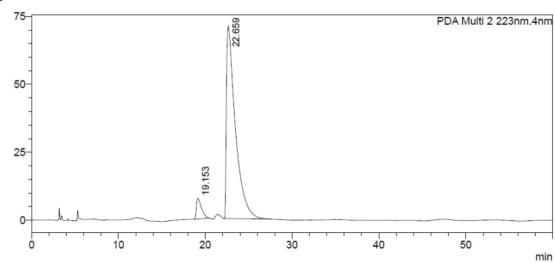
Peak#	Ret. Time	Area	Height	Area%
1	6.741	1204034	71914	99.176
2	10.010	10008	612	0.824
Total		1214043	72525	100.000

mAU


S79

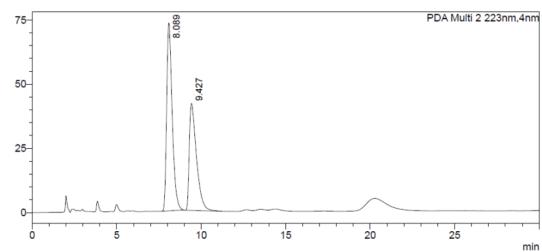
Racemic: hw-7-13-IA-0.5%-1.0

PDA Ch2 223nm

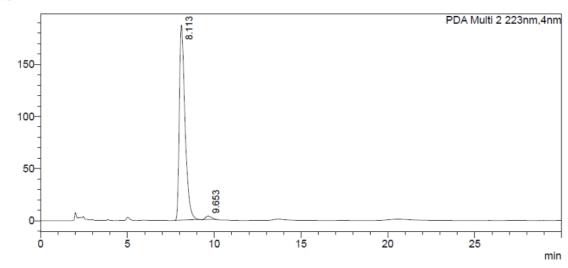

<u> </u>				
Peak#	Ret. Time	Area	Height	Area%
1	19.526	1630493	30997	46.799
2	24.357	1853552	25618	53.201
Total		3484046	56615	100.000

mAU

Scalemic: hw-7-3-IA-0.5%-1.0 PDA Ch2 223nm


FDA C	112 22311111			
Peak#	Ret. Time	Area	Height	Area%
1	19.153	310251	7674	5.757
2	22.659	5079095	70909	94.243
Total		5389346	78583	100.000

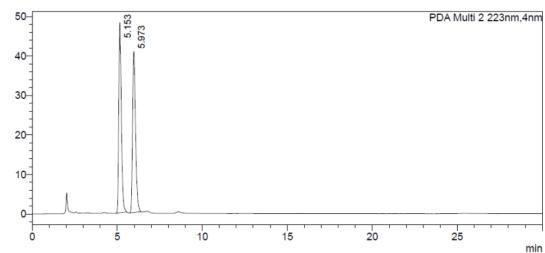
Racemic: hw-7-25b-AD-3%-1.0 PDA Ch2 223nm


Peak#	Ret. Time	Area	Height	Area%
1	8.089	1661435	73179	57.446
2	9.427	1230721	41594	42.554
Total		2892157	114772	100.000

mAU

Scalemic: hw-7-22-AD-3%-1.0 PDA Ch2 223nm

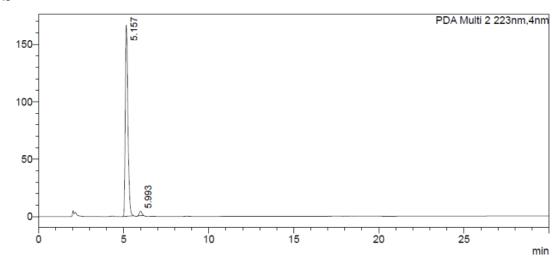
Peak#	Ret. Time	Area	Height	Area%
1	8.113	4260899	187205	98.207
2	9.653	77782	3261	1.793
Total		4338680	190466	100.000



Racemic: hw-6-196b-tlc-AD-0.5%-1.0

PDA Ch2 223nm

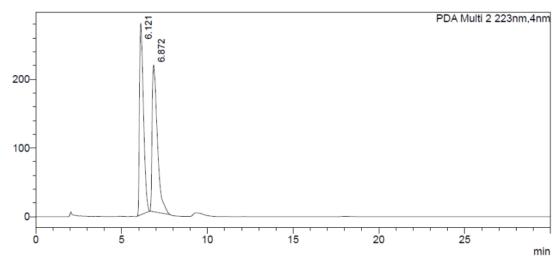
Peak#	Ret. Time	Area	Height	Area%
1	5.153	505350	48199	50.549
2	5.973	494371	40777	49.451
Total		999721	88976	100.000


mAU

Scalemic: hw-6-186-re-AD-0.5%-1.0

PDA Ch2 223nm

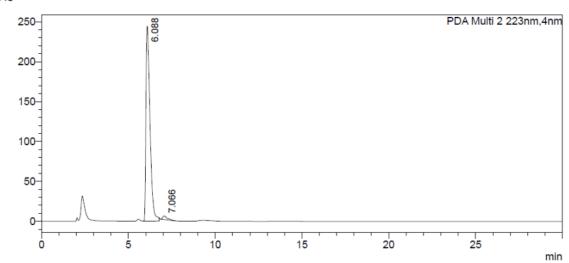
Peak#	Ret. Time	Area	Height	Area%
1	5.157	1787600	166507	97.758
2	5.993	40989	4033	2.242
Total		1828589	170540	100.000

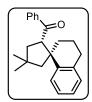


Racemic: hw-7-7-AD-0.2%-1.0

PDA Ch2 223nm

Peak#	Ret. Time	Area	Height	Area%
1	6.121	4532634	278692	49.732
2	6.872	4581552	213664	50.268
Total		9114187	492356	100.000

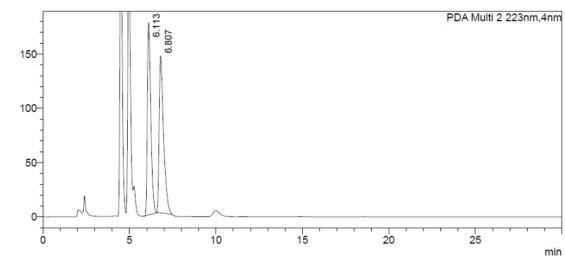

mAU



Scalemic: hw-7-6-AD-0.2%-1.0

PDA Ch2 223nm

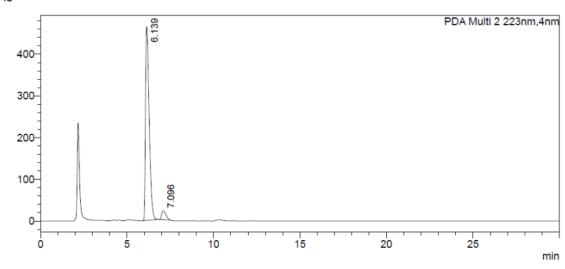
Peak#	Ret. Time	Area	Height	Area%
1	6.088	3960254	244445	97.868
2	7.066	86282	4575	2.132
Total		4046535	249020	100.000



Racemic: hw-6-208-AD-0.5%-1.0

PDA Ch2 223nm

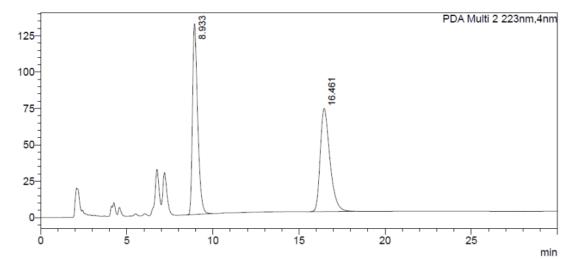
Peak#	Ret. Time	Area	Height	Area%
1	6.113	2457839	177291	49.032
2	6.807	2554892	144492	50.968
Total		5012731	321783	100.000


mAU

Scalemic: hw-7-36-AD-0.5%-1.0

PDA Ch2 223nm

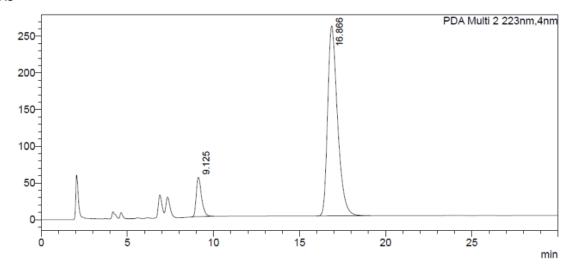
	7112 22011111			
Peak#	Ret. Time	Area	Height	Area%
1	6.139	6893107	464760	95.047
2	7.096	359204	21149	4.953
Tota	I	7252311	485909	100.000



Racemic: hw-7-37-AD-2%-1.0

PDA Ch2 223nm

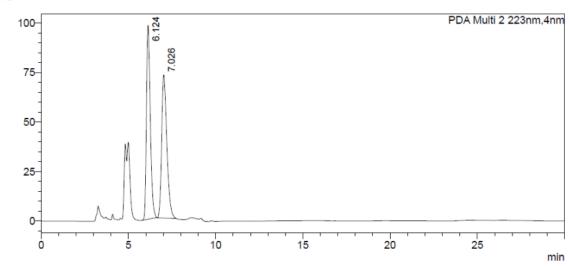
Peak#	Ret. Time	Area	Height	Area%
1	8.933	2746578	131089	49.896
2	16.461	2758013	70861	50.104
Total		5504591	201950	100.000


mAU

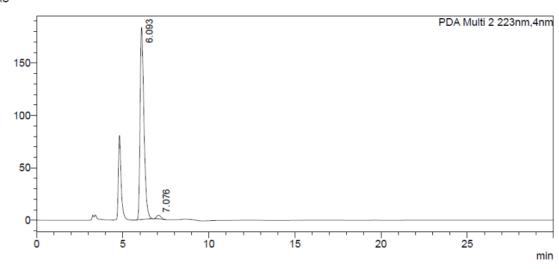
Scalemic: hw-7-27-AD-2%-1.0

PDA Ch2 223nm

	11 <u> </u>				
Peak#	Ret. Time	Area	Height	Area%	
1	9.125	1137252	53625	9.944	
2	16.866	10299583	258958	90.056	
Total		11436835	312583	100.000	



Racemic: hw-6-205c-tlc-AS-0.1%-1.0 PDA Ch2 223nm

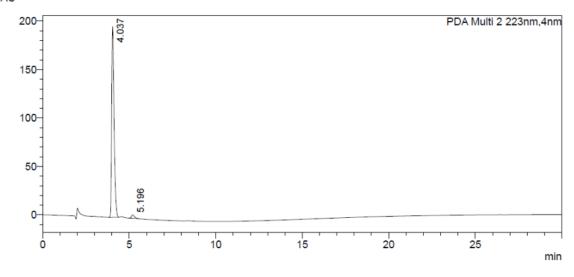

	112 22011111			
Peak#	Ret. Time	Area	Height	Area%
1	6.124	1500656	97902	50.134
2	7.026	1492615	72290	49.866
Total		2993270	170191	100.000

mAU

Scalemic: hw-6-204-AS-0.1%-1.0 PDA Ch2 223nm


Peak#	Ret. Time	Area	Height	Area%
1	6.093	2858284	183399	97.853
2	7.076	62705	3676	2.147
Total		2920989	187076	100.000

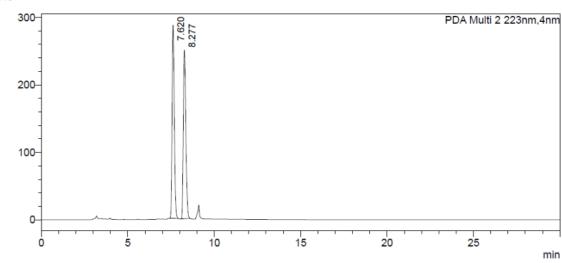
Racemic: hw-7-81-AD-12%-1.0 PDA Ch2 223nm


10/10	112 22011111				
Peak#	Ret. Time	Area	Height	Area%	
1	4.034	2752773	282731	49.766	
2	5.192	2778664	219906	50.234	
Total		5531437	502637	100.000	

mAU

Scalemic: hw-7-79-AD-12%-1.0 PDA Ch2 223nm

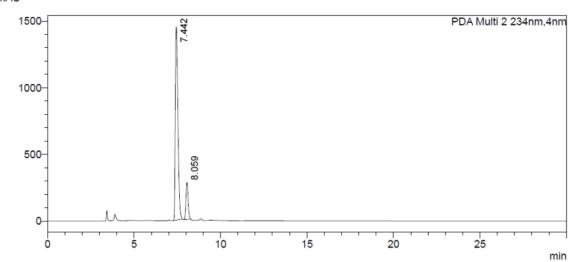
Peak#	Ret. Time	Area	Height	Area%
1	4.037	1903961	196839	97.935
2	5.196	40138	3402	2.065
Total		1944099	200241	100.000



Racemic: hw-6-36a-tlc-1-IA-0.5%-1.0

PDA Ch2 223nm

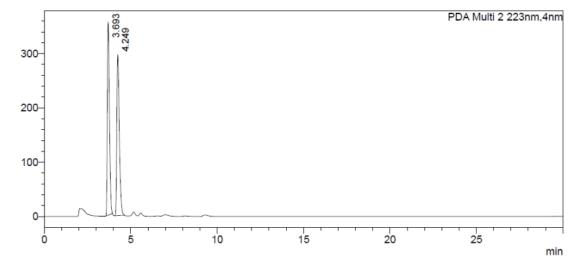
Peak#	Ret. Time	Area	Height	Area%
1	7.620	2543220	286463	50.183
2	8.277	2524709	249934	49.817
Total		5067929	536397	100.000


mAU

Scalemic: hw-6-157a-IA-0.5%-1.0 PDA Ch2 234nm

	112 20711111			
Peak#	Ret. Time	Area	Height	Area%
1	7.442	15252295	1451194	86.394
2	8.059	2402046	277662	13.606
Total		17654341	1728857	100.000

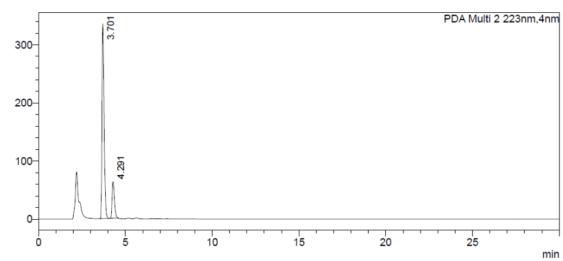
mAU


S88

Racemic: hw-7-35b-AD-0.5%-1.0

PDA Ch2 223nm

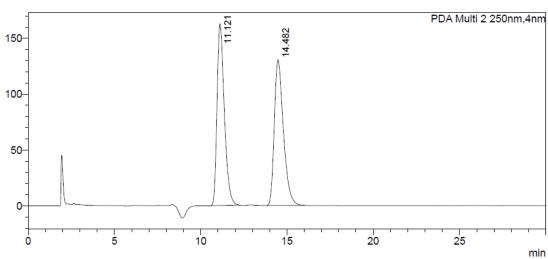
Peak#	Ret. Time	Area	Height	Area%
1	3.693	2960193	355948	49.589
2	4.249	3009206	297130	50.411
Total		5969399	653079	100.000


mAU

Scalemic: hw-7-30-AD-0.5%-1.0

PDA Ch2 223nm

FDA CIIZ ZZSIIII					
	Peak#	Ret. Time	Area	Height	Area%
	1	3.701	2815939	335156	82.569
	2	4.291	594483	62593	17.431
	Total		3410422	397749	100.000

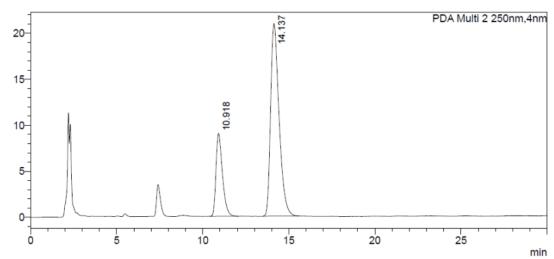

26

Racemic: hw-6-205a-AD-6%-1.0

PDA Ch2 250nm

	112 23011111			
Peak#	Ret. Time	Area	Height	Area%
1	11.121	4780492	162666	49.952
2	14.482	4789646	130416	50.048
Total		9570138	293082	100.000

mAU



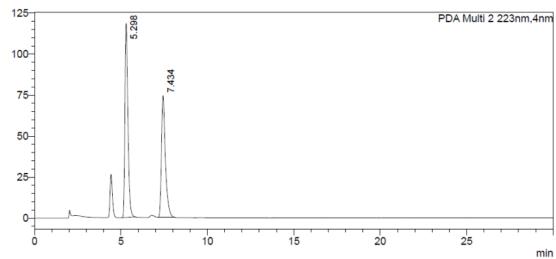
Scalemic: hw-7-167b-AD-6%-1.0

PDA Ch2 250nm

	112 20011111			
Peak#	Ret. Time	Area	Height	Area%
1	10.918	234425	9008	24.755
2	14.137	712547	20929	75.245
Total		946972	29937	100.000

mAU

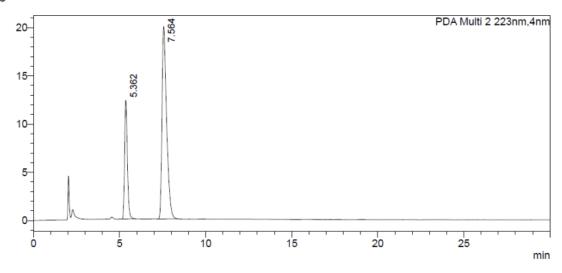
S90


27

Racemic: hw-7-35a-AD-0.5%-1.0

PDA Ch2 223nm

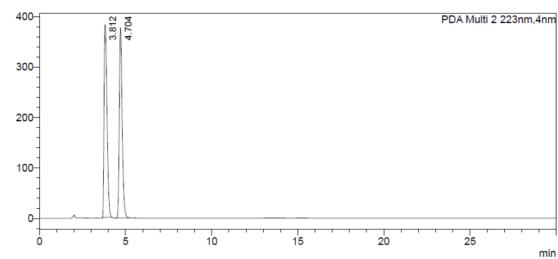
Peak#	Ret. Time	Area	Height	Area%
1	5.298	1426500	118271	54.759
2	7.434	1178573	74357	45.241
Total		2605073	192628	100.000


mAU

Scalemic: hw-7-161-AD-0.5%-1.0

PDA Ch2 223nm

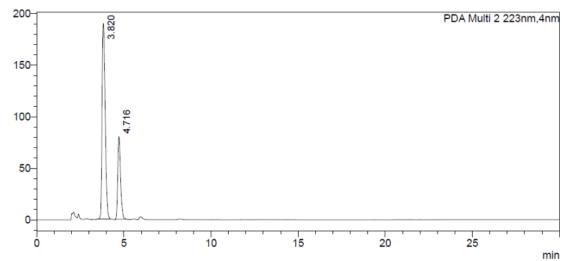
Peak#	Ret. Time	Area	Height	Area%
1	5.362	138086	12311	27.129
2	7.564	370912	19944	72.871
Total		508998	32255	100.000

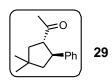


Racemic: hw-7-12b-tlc-AD-1%-1.0

PDA Ch2 223nm

Peak#	Ret. Time	Area	Height	Area%
1	3.812	4593506	382348	51.461
2	4.704	4332672	377255	48.539
Total		8926178	759603	100.000

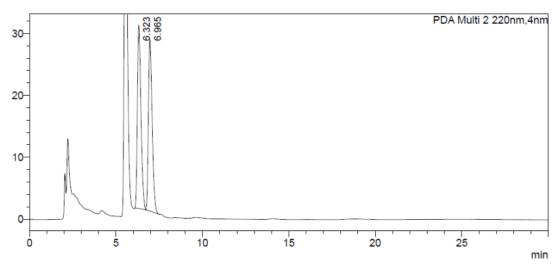

mAU



Scalemic: hw-7-155re-AD-1%-1.0

PDA Ch2 223nm

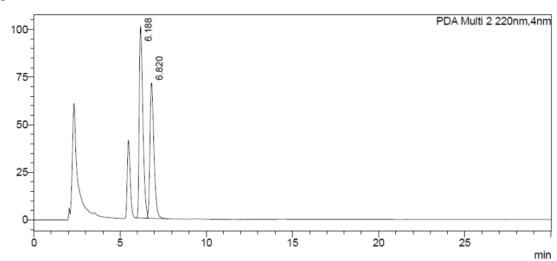
Peak#	Ret. Time	Area	Height	Area%
1	3.820	2340503	189498	72.400
2	4.716	892242	80246	27.600
Total		3232744	269744	100.000

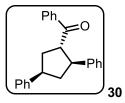


Racemic: hw-7-148-AD-0.3%-1.0

PDA Ch2 220nm

Peak#	Ret. Time	Area	Height	Area%
1	6.323	425444	29619	50.414
2	6.965	418455	27706	49.586
Total		843899	57325	100.000

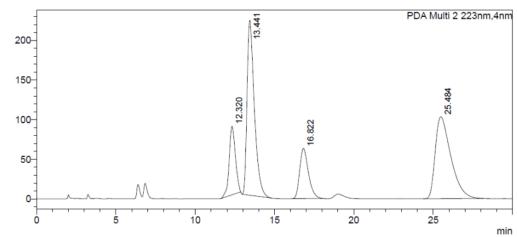

mAU



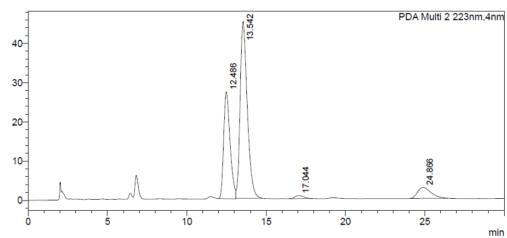
Scalemic: hw-7-147-AD-0.3%-1.0

PDA Ch2 220nm

Peak#	Ret. Time	Area	Height	Area%
1	6.188	1480824	100830	56.417
2	6.820	1143955	71174	43.583
Total		2624779	172004	100.000



Racemic: hw-7-62-AD-1.0%-1.0


PDA Ch2 223nm					
Peak#	Ret. Time	Area	Height	Area%	
1	12.320	2358065	86400	12.466	
2	13.441	7066400	220741	37.355	
3	16.822	2425492	63380	12.822	
4	25.484	7066751	103450	37.357	
Total		18916708	473971	100.000	

mAU

Scalemic: hw-7-177-2a-AD-1%-1.0

PDA Ch2 223nm					
Peak#	Ret. Time	Area	Height	Area%	
1	12.486	760984	27225	32.196	
2	13.542	1411562	45079	59.721	
3	17.044	28858	783	1.221	
4	24.866	162187	2816	6.862	
Total		2363592	75902	100.000	

