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1. Synthesis Details 
 
1.1 General Considerations 

The synthesis of P(2EO-MO) has been briefly reported1–3 but previous work has not 

explored its application as a polymer electrolyte. Step-growth polymerization between diethylene 

glycol and paraformaldehyde was not successful in obtaining a high molecular weight polymer, 

instead, an oligomer was synthesized with an Mn ~ 1 kDa. However, the resulting oligomer can 

be heated under vacuum and depolymerized to yield the cyclic ether monomer, 1,3,6-trioxocane, 

which can then be polymerized subsequently under cationic conditions to yield higher molecular 

weight P(2EO-MO). All air and water sensitive reactions were carried out under dry nitrogen 

conditions using standard Schlenk techniques or MBraun UniLab drybox.  

1.2. Materials 

Diethylene glycol, paraformaldehyde, polyphosphoric acid, BF3·OEt2, α-bromoisobutyryl 

bromide was purchased from Sigma-Aldrich and used as received. n-Heptane was purchased 

from Fisher Scientific. Dichloromethane and tetrahydrofuran (THF) was purchased from Fisher 

Scientific and dried using a Phoenix solvent drying system and degassed by freeze-pump-thaw 

method for three cycles before use. All the other chemicals were purchased from commercial 

vendors and used as received unless otherwise noted. NMR solvent (CDCl3) was purchased from 

Cambridge Isotope Laboratories (CIL) and used as received.  

1.3 Synthesis of 1,3,6-trioxocane Monomer 

 

Diethylene glycol (15.92 g, 150 mmol), paraformaldehyde (5.86 g, 195 mmol), and 

polyphosphoric acid (~0.2 mL) was dissolved in 30 mL n-heptane. The resulting mixture was 
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refluxed at 110 °C for 16 h with a Dean-Stark head to remove the water generated from the 

reaction. Solvent was removed and the resulting white solid was melted by heating and distilled 

at 150 °C under static vacuum (0.2 torr). The collected liquid was a mixture of the desired 

product and diethylene glycol. The collected liquid was fractional distilled at 28 °C under static 

vacuum (0.2 torr) to yield the product as a colorless liquid (13.4 g, 75%). The 1H NMR spectra 

and 13C NMR for 1,3,6-trioxocane are shown in Figure S1 and Figure S2.  

 
1.4 Synthesis of P(2EO-MO) Polymer 

 

The monomer 1,3,6-trioxocane (4.00 g, 33.9 mmol) was dissolved in 10 mL 

dichloromethane. To this solution was added a 0.5 mol/mL stock solution of BF3·OEt2 (0.677 

mL, 0.339 mmol). The mixture was stirred at room temperature for 2 h and quenched with water. 

The resulting mixture was washed with water and the organic layer was separated and dried over 

anhydrous Na2SO4. The organic layer was concentrated under rotavapor and added dropwise into 

hexanes. A white solid was precipitated out. The solid was filtered and dried under vacuum to 

yield the polymer product as a white solid (3.30 g, 83 %). The 1H NMR spectra and 13C NMR for 

P(2EO-MO) are shown in Figure S3 and Figure S4. 

Table S1 summarizes the P(2EO-MO) synthesis with different mol% of BF3∙OEt2 

catalysts and temperatures. The polymerization exhibits very fast rates and the reaction normally 

started to become viscous after 30 minutes and reached full conversion in 2 hours. The yielded 

polymer has an alternating sequence of 2EO and MO units, and no regio-defects are observed 

based on 13C-NMR. It is noteworthy that there is an equilibrium between the high molecular 

weight polymer and oligo-macrocycles in the cationic ring-opening polymerization (see Figure 

S5 for an exemplary crude GPC of Table S1 entry 3) possibly because of backbiting from the 
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active chain end. The oligo-macrocycles can be removed by precipitation in hexanes. The 

formation of oligo-macrocycles was greatly suppressed when the reaction temperature was 

lowered and an increased Mns was observed for all initiator loadings. The Mns of the synthesized 

P(2EO-MO) at all loadings were all higher than the theoretical Mn, suggesting that not all 

initiators initiated the polymerization. A similar discrepancy between experimental and 

theoretical Mns has been reported by Chien and co-workers1 in polymerizing 1,3,6-trioxocane in 

toluene with the BF3∙OEt2 catalyst.  

Table S1. Synthesis of P(2EO-MO) 
 

Entry 
Temperature 

(°C) 
Initiator loading  

(mol%) 
Conversion 

%
a 

Theoretical Mn  
(kg/mol) 

Experimental Mn  
(kg/mol)

b
 

Đ
b
 

   1 22 1 >99 11.8 74.8 2.3 
   2

c 
22 2 >99 5.9 47.5 2.0 

   3 22 5 >99 2.4 28.5 1.9 
   4 0 1 >99 11.8 126.9 2.3 
   5 0 2 >99 5.9 66.6 2.6 
   6 0 5 >99 2.4 58.5 2.2 

a
The conversion of the polymerization was determined from 

1
H-NMR from the crude reaction mixture. 

b
Number average molecular weight (Mn) and polydispersity index (PDI) were determined by THF gel 

permeation chromatography calibrated with polystyrene. c
Polymer from a scale-up reaction of this entry 

was used for electrochemical study in this paper. The polymer used in this study has an Mn of 55 kDa and 
polydispersity index of 2.2. 

 

1.5 NMR 

1H NMR spectra were collected on a Bruker AV 500MHz spectrometer equipped with 

liquid nitrogen cooled cryoprobe and referenced with residue non-deuterated solvent shifts 

(CHCl3 = 7.26 ppm). 13C NMR spectra were collected on a Bruker AV 500 MHz (13C, 125 MHz) 

spectrometer liquid nitrogen cooled cryoprobe and referenced to chloroform (δ 77.23 ppm). High 

resolution mass spectrometry (DART-HRMS) analyses were performed on a Thermo Scientific 

Exactive Orbitrap MS system equipped with an Ion Sense Direct Analysis in Real Time (DART) 

ion source.  

HRMS (DART) m/z calculated for C5H11O3
+ [M + H]+ 119.07027, found 119.07095. 
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Figure S1. 1H-NMR (500 MHz, CDCl3) δ 4.88 (s, 2H), 3.81 (s, 8H) spectrum of 1,3,6-
trioxocane. Signal at 7.26 ppm is residue CHCl3. 
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Figure S2. 13C-NMR (125 MHz, CDCl3) δ 98.65, 73.29, 71.30 spectrum of 1,3,6-
trioxocane. Signal at 77.16 ppm is residue CHCl3. 
 

 

Figure S3. 1H-NMR (500 MHz, CDCl3) δ 4.73 (s, 2H), 3.74 – 3.61 (m, 8H) spectrum of 
poly(1,3,6-trioxocane). Signal at 7.26 ppm is residue CHCl3.  
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Figure S4. 13C-NMR (125 MHz, CDCl3) δ 95.73, 70.59, 67.02 spectrum of poly(1,3,6-
trioxocane). Signal at 77.16 ppm is residue CHCl3. 
 
 
 
1.6 GPC 

Gel permeation chromatography (GPC) analyses were carried out using an Agilent PL-

GPC 50 integrated system, equipped with UV and refractive index detectors, and 2 PL gel Mini-

MIX C columns (5 micron, 4.6 mm ID). The GPC columns were eluted with tetrahydrofuran at 

30 °C at 0.3 mL/min and were calibrated with monodisperse polystyrene standards. 
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Figure S5. GPC traces of the crude mixture of Table 1 entry 3. 
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2. DSC of PEO and P(2EO-MO) Electrolytes 
 

  

Figure S6. Differential scanning calorimetry (DSC) curves of (a) PEO and (b) P(2EO-
MO) electrolytes at different salt concentrations.  
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3. Li-TFSI Radial Distribution Functions 

Figure S7 shows a comparison of the Li-TFSI radial distribution function (rdf) in PEO 

and P(2EO-MO) as a function of salt concentration. In each case the rdf is calculated with 

respect to the Li cations and the oxygen atoms in TFSI. The rdfs show a minimal counter-ion 

presence in the first solvation shell of the ions. The counter-ion feature in the Li-solvation shell 

is also much weaker than the corresponding ether oxygen feature in the polymer-Li rdfs. This 

data is consistent weak ion pairing in both polymers for all studied salt concentrations. 

 

Figure S7. Comparison of Li-TFSI radial distribution functions at different salt 
concentrations in PEO (left) and P(2EO-MO) (right). Note, “r” in each legend refers to 
the salt concentration. 
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