OBO Protected Pyruvates as Reagents for the Synthesis of Functionalized Heteroaromatic Compounds

C. Henrique A. Esteves, ^a Maria Koyioni, ^a Kirsten E. Christensen, ^a Peter D. Smith ^b and Timothy J. Donohoe ^a*

E-mail: timothy.donohoe @ chem.ox.ac.uk

^a Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

^b Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK.

Table of Contents					
S1	Screening of reaction conditions for the α -arylation of methyl OBO-				
	ketone 1 with o-nitroarylbromides 5	S3			
S2	General methods and materials	S3			
S3	Experimental procedures and spectroscopic data	S5			
S3.1	Synthesis of isoquinoline- and β -carboline-3-carboxylates 4	S5			
S3.1.1	Arylated OBO-ketones 3	S5			
S3.1.2	α -Functionalisation of arylated OBO-ketone 3a	S7			
S3.1.3	α -Functionalisation of arylated OBO-ketone 3c	S 8			
S3.1.4	Cyclisation to isoquinoline and β -carboline-3-carboxylates 4	S10			
S3.2	Synthesis of indole-2-carboxylates 7	S14			
S3.2.1	Arylated OBO-ketones 6	S14			
S3.2.2	α -Functionalisation of arylated OBO-ketones 6	S15			
S3.2.3	Reductive cyclisation to indole-2-carboxylates 7	S16			
S3.3	Synthesis of pyrrole/furan-2-carboxylates 10-11 and N-substituted				
	pyrrole-2-carboxylates 12-13	S19			
S3.3.1	1,4-Dicarbonyl scaffolds 9	S19			
S3.3.2	Cyclisation to pyrrole-2-carboxylates 10	S21			
S3.3.3	Cyclisation to furan-2-carboxylates 11	S24			
S3.3.4	Cyclisation to <i>N</i> -substituted pyrrole-2-carboxylates 12-13	S26			
S3.4	Synthesis of pyridine-2-carboxylates 16	S29			
S3.4.1	1,5-Dicarbonyl scaffolds 15	S29			
S3.4.2	Cyclisation to pyridine-2-carboxylates 16	S32			
S4	Single crystal X-ray diffraction for compounds 10c, 11b, 16a and 17b	S36			
S5	References	S40			
S6	¹ H and ¹³ C NMR spectra	S41			

S1 Screening of reaction conditions for the α-arylation of methyl OBO-ketone 1 with α-nitroarylbromides 5

Table S1: Optimization for the coupling of 1-bromo-4-methyl-2-nitrobenzene (**5a**) with methyl-OBO-ketone **1**

entry	1/5a (equiv)	Pd ₂ (dba) ₃ (mol %)	DavePhos (mol %)	4-RC ₆ H ₄ OH (R)	temp (°C)	base	conversion (%)	yield (%)		
1	1.1/1.0	1	4	OMe	50	K_2CO_3	37	28		
2	1.1/1.0	1	4	OMe	50	t-BuONa	0	-		
3	1.1/1.0	1	4	OMe	50	Cs_2CO_3	7	-		
4	1.1/1.0	1	4	H	50	K_2CO_3	47	-		
5	1.1/1.0	2	8	H	50	K_2CO_3	60	48		
6	2.0/1.0	1	4	H	50	K_2CO_3	63	-		
7	2.0/1.0	2	8	H	50	K_2CO_3	66	-		
8	1.1/1.0	1	4	H	80	K_2CO_3	100	56		
9	1.0/2.0	1	4	H	80	K_2CO_3	100	91		
10^a	1.0/2.0	1	4	H	80	K_2CO_3	100	86		
^a Gram scale										

S2 General methods and materials

Solvents were dried over 4 Å molecular sieves or activated alumina columns. Dry ethanol used for OBO deprotection experiments was purified following a literature procedure. All reagents were purchased from Sigma-Aldrich, Alfa Aesar, Acros Organics or Fluorochem and used without further purification. [1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) was purchased from Alfa Aesar. t-BuONa solution (2 M in THF) was purchased from Sigma-Aldrich (grade $ZerO_2^{\oplus}$). p-Toluenesulfonic acid was dried by heating p-toluenesulfonic acid monohydrate under vacuum at 100 °C for 4 h. K_2CO_3 was dried by heating under vacuum at 400 °C for 30 min. All reactions requiring anhydrous conditions were carried out using flame-dried glassware. Flash column chromatography was performed using Merck Kieselgel 60 (0.040 – 0.063 mm) silica gel following the established literature method. Thin layer chromatography was performed on Merck Kieselgel 60 F_{254} 0.25 mm pre-coated aluminum-backed plates. Product spots were visualized under UV light (v_{max} = 254 nm) and/or by staining with vanillin, phosphomolybdic acid or KMnO₄. Melting points (mp) were obtained by using a Lecia VMTG heated-stage microscope with a Testo 720 thermometer and are uncorrected. Solvents used for recrystallization are indicated after the

melting point. ¹H, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker AVII400 or AVIII400 instrument at 400, 101 and 376 MHz, respectively or on a Bruker AVIII500 at 500 and 126 MHz, for ¹H and ¹³C NMR spectra, respectively. ¹³C NMR spectra were recorded with broadband proton decoupling. Chemical shifts, δ , are reported relative to residual solvent peaks and quoted in parts per million (ppm) to the nearest 0.01 ppm for ¹H and to the nearest 0.1 ppm for ¹³C and ¹⁹F. Coupling constants, J, are quoted to the nearest 0.1 Hz. Assignments were made based on DEPT, COSY, HSQC and HMBC experiments. Low temperature³ single crystal X-ray diffraction data were collected using a (Rigaku) Oxford Diffraction SuperNova diffractometer. Raw frame data were reduced using CrysAlisPro and the structures were solved using 'Superflip' before refinement with CRYSTALS⁵ as per the SI (CIF). Full refinement details are given in the Supporting Information (CIF); Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC 1843229-32) and can be obtained via www. ccdc.cam.ac.uk/data request/cif. Highresolution mass spectra were acquired using electrospray ionisation (ESI) as ionization source and were recorded on a Thermo Exactive orbitrap spectrometer equipped with a Waters Equity LC system. Infrared spectra (IR) were obtained either from evaporated films (indicated) or crystalline solids using a Bruker Tensor 27 spectrometer, equipped with a Pike Miracle Attenuated Total Reflectance (ATR) sampling accessory. Absorption is quoted in wavenumbers (cm⁻¹) for the range 3500–600 cm⁻¹. Compound names were generated by the software ChemDraw Professional 15.1. 1-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]octan-1- $(1)^{6}$ 2-(2-bromophenyl)-1,3-dioxolane $(2a)^{7}$ yl)ethan-1-one 2-(2-bromo-4,5dimethoxyphenyl)-1,3-dioxolane (2b), ⁷ 1-benzyl-3-bromo-2-(1,3-dioxolan-2-yl)-1*H*-indole (2c), ⁸ 1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-2-[4-(trifluoromethyl)-phenyl]ethan-1-one (**8a**), ⁶ 1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-2-(*p*-tolyl)-ethan-1-one (**8b**), ⁶ 2-(3-methoxyphenyl)-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-ethan-1-one and 2-[4-(dimethylamino)phenyl]-1-(4-methyl-2,6,7-trioxabicyclo-[2.2.2]octan-1-yl)ethan-1one (8d)⁶ were prepared according to literature procedures.

S3 Experimental procedures and spectroscopic data

S3.1 Synthesis of isoquinoline- and β -carboline-3-carboxylates 4

S3.1.1 Arylated OBO-ketones 3

2-[2-(1,3-Dioxolan-2-yl)phenyl]-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)ethan-1-one~(3a)

To a flame-dried Biotage[®] microwave vial capped with a rubber septum were added methyl-OBO-ketone **1**,⁶ (100 mg, 0.581 mmol, 1.5 equiv), 2-(2-bromophenyl)-1,3-dioxolane (**2a**),⁷ (89 mg, 0.39 mmol, 1.0 equiv), and Pd(dtbpf)Cl₂ (13 mg, 19 μmol, 5 mol %). The rubber septum was then removed, and the reaction vessel was

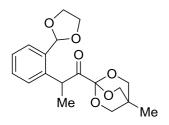
sealed with a microwave vial cap (ResealTM septum). THF (5.3 mL) and *t*-BuONa solution (490 μL, 0.975 mmol, 2.5 equiv, 2 M in THF) were added *via* syringe. The vial was flushed with argon for 5 min and then heated at 70 °C for 24 h. The resulting mixture was filtered through a plug of silica using EtOAc as eluent and concentrated *in vacuo*. Purification by flash column chromatography (*n*-pentane/EtOAc, 65:35) gave the *title compound* **3a** (116 mg, 93%) as a brown solid. **mp**: 86–87 °C; **IR**: v_{max} (thin film) 2943, 2883, 1751, 1073, 1049, 993, 723 cm⁻¹; **HRMS**: calculated for $C_{17}H_{21}O_6$, 321.1333 [M+H]⁺, found *m/z* 321.1335, $\Delta = 0.87$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.56–7.51 (1H, m, HC_{Ar}), 7.33–7.24 (2H, m, 2 × HC_{Ar}), 7.14–7.08 (1H, m, HC_{Ar}), 5.80 (1H, s, $CH(OR)_2$), 4.18 (2H, s, $CH_2C(O)$), 4.10–3.90 (4H, m, (OC H_2)₂), 4.01 (6H, s, $C(OCH_2)_3C$), 0.83 (3H, s, CH_3); ¹³C **NMR** (101 MHz, CDCl₃) δ 195.4 (C(O)), 136.2 (C_{Ar}), 132.3 (C_{Ar}), 131.7 (HC_{Ar}), 129.0 (HC_{Ar}), 127.1 (HC_{Ar}), 126.7 (HC_{Ar}), 103.7 (CO_3), 102.4 ($CH(OR)_2$), 73.1 ($C(OCH_2)_3C$), 65.0 ((OCH_2)₂), 40.6 ($CH_2C(O)$), 30.9 ($C(OCH_2)_3CMe$), 14.2 (CH_3).

2-[2-(1,3-Dioxolan-2-yl)-4,5-dimethoxyphenyl]-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]-octan-1-yl)ethan-1-one (3b)

To a flame-dried Biotage[®] microwave vial capped with a rubber septum were added methyl-OBO ketone **1**⁶ (103 mg, 0.598 mmol, 1.0 equiv), 2-(2-bromo-4,5-dimethoxyphenyl)-1,3-dioxolane (**2b**)⁷ (191 mg, 0.661 mmol, 1.1 equiv) and Pd(dtbpf)Cl₂ (20 mg, 30 μmol, 5 mol%). The rubber septum

was then removed, and the reaction vessel was sealed with a microwave vial cap (ResealTM septum). THF (5.3 mL) and *t*-BuONa solution (750 μL, 1.50 mmol, 2.5 equiv, 2 M in THF) were added *via* syringe. The vial was flushed with argon for 5 mins and then heated at 70 °C for 24 h. The resulting mixture was filtered through a plug of silica using EtOAc as eluent and concentrated *in vacuo*. Purification by flash column chromatography (*n*-pentane/EtOAc, 50:50) gave the *title compound* **3b** (205 mg, 90%) as a brown solid. **mp**: 100–103 °C; **IR**: v_{max} (thin film) 2939, 2883, 1751, 1518, 1268, 1121, 1075, 1034, 1004, 750 cm⁻¹; **HRMS**: calculated for $C_{19}H_{25}O_8$, 381.1544 [M+H]⁺, found m/z 381.1542, $\Delta = -0.58$ ppm. ¹**H NMR** (400 MHz, CDCl₃) δ 7.01 (1H, s, HC_{Ar}), 6.53 (1H, s, HC_{Ar}), 5.63 (1H, s, $CH(OR)_2$), 4.03 (2H, s, $CH_2C(O)$), 4.00–3.83 (4H, m, $(OCH_2)_2$), 3.92 (6H, s, $C(OCH_2)_3C$), 3.79 (3H, s, OCH_3), 3.74 (3H, s, OCH_3), 0.74 (3H, s, CCH_3); ¹³C **NMR** (101 MHz, CDCl₃) δ 195.4 (C(O)), 148.7 (C_{Ar}), 147.4 (C_{Ar}), 128.1 (C_{Ar}), 124.4 (C_{Ar}), 114.2 (C_{Ar}), 109.5 (C_{Ar}), 103.4 (CO_3), 101.7 (C_{Ar}), 72.8 (C_{Ar}), 124.4 (C_{Ar}), 114.2 (C_{Ar}), 109.5 (C_{Ar}), 103.4 (CO_3), 101.7 (C_{Ar}), 72.8 (C_{Ar}), 128.1 (C_{Ar}), 124.4 (C_{Ar}), 114.2 (C_{Ar}), 155.59 (C_{Ar}), 197.6 (C_{Ar}), 101.7 (C_{Ar}), 128.1 (C_{Ar}), 124.4 (C_{Ar}), 114.2 (C_{Ar}), 155.59 (C_{Ar}), 197.6 (C_{Ar}), 101.7 (C_{Ar}), 101.7 (C_{Ar}), 128.1 (C_{Ar}), 138 (C_{Ar}), 155.60 (C_{Ar}), 55.59 (C_{Ar}), 39.7 (C_{Ar}), 30.5 (C_{Ar}), 30.5 (C_{Ar}), 13.8 (C_{Ar}), 13.8 (C_{Ar}).

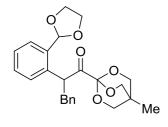
2-[1-Benzyl-2-(1,3-dioxolan-2-yl)-1H-indol-3-yl]-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]-octan-1-yl)ethan-1-one (3c)


To a flame-dried Biotage[®] microwave vial capped with a rubber septum were added methyl-OBO-ketone $\mathbf{1}^6$ (721 mg, 4.19 mmol, 1.5 equiv), 1-benzyl-3-bromo-2-(1,3-dioxolan-2-yl)-1*H*-indole ($\mathbf{2c}$)⁸ (1.00 g, 2.79 mmol, 1.0 equiv), and Pd(dtbpf)Cl₂ (46 mg, 70 µmol, 2.5 mol %). The rubber septum

was then removed, and the reaction vessel was sealed with a microwave vial cap (ResealTM septum). THF (20.9 mL) and *t*-BuONa solution (2.8 mL, 7.0 mmol, 2.5 equiv, 2 M in THF) were added *via* syringe. The vial was flushed with argon for 5 min and then heated at 70 °C for 24 h. The resulting mixture was filtered through a plug of silica using EtOAc as eluent and concentrated *in vacuo*. Purification by flash column chromatography (*n*-pentane/EtOAc, 50:50) gave the *title compound* **3c** (1.05 g, 84%) as a brown solid. **mp**: 135–137 °C; **IR**: v_{max} (thin film) 3474, 2940, 2883, 1751, 1076, 735 cm⁻¹; **HRMS**: calculated for $C_{26}H_{28}NO_{6}$, 450.19111 [M+H]⁺, found m/z 450.19093, $\Delta = -0.4$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (1H, d, J = 7.9 Hz, HC_{Ar}), 7.28–7.02 (8H, m, 8 × HC_{Ar}), 6.06 (1H, s, $CH(OR)_2$), 5.50 (2H, s, PhC H_2), 4.32 (2H, s, $CH_2C(O)$), 4.05 (6H, s, $C(OCH_2)_3C$), 4.02–3.88 (4H, m, $C(OCH_2)_2$), 0.87 (3H, s, CCH_3); ¹³**C NMR** (101 MHz, CDCl₃) δ 195.7 (C(O)), 138.4 (C_{Ar}), 137.4 (C_{Ar}), 131.7

 (C_{Ar}) , 128.6 (H C_{Ar}), 127.9 (C_{Ar}), 127.1 (H C_{Ar}), 126.2 (H C_{Ar}), 122.9 (H C_{Ar}), 119.7 (H C_{Ar}), 119.4 (H C_{Ar}), 110.0 (H C_{Ar}), 107.9 (C_{Ar}), 104.0 (C_{O_3}), 99.0 (C_{O_3}), 73.2 (C_{O_3}), 65.0 ((O_3), 47.8 (Ph C_3), 32.9 (C_3), 31.0 (C_3), 31.0 (C_3), 27.8 (Ph C_3).

S3.1.2 α-Functionalisation of arylated OBO-ketone 3a


2-[2-(1,3-Dioxolan-2-yl)phenyl]-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)propan-1-one (S1)

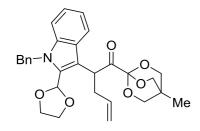
To a flame-dried Biotage[®] microwave vial capped with a rubber septum was added the arylated OBO-ketone **3a** (250 mg, 0.780 mmol, 1.0 equiv). The rubber septum was then removed, and the reaction vessel was sealed with a microwave vial cap (ResealTM septum) and then dry THF (7.2 mL), *t*-BuONa solution (590 μL,

1.20 mmol, 1.5 equiv, 2 M in THF) and MeI (53 μL, 0.86 mmol, 1.1 equiv) were added sequentially *via* syringe. The vial was flushed with argon for 5 min and then heated at 70 °C for 3 h. The resulting mixture was filtered through a plug of silica using EtOAc as eluent, concentrated *in vacuo* and purified by flash column chromatography (*n*-pentane/EtOAc, 60:40) to give the *title compound* **S1** (175 mg, 67%) as brown solid. **mp**: 130–132 °C; **IR**: v_{max} (thin film) 2946, 2887, 2824, 1740, 1113, 1056, 1046, 930, 747 cm⁻¹; **HRMS**: calculated for $C_{18}H_{23}O_6$, 335.1489 [M+H]⁺, found *m/z* 335.1489, $\Delta = 0.03$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (1H, d, J = 7.4 Hz, HC_{Ar}), 7.31–7.18 (3H, m, 3 × HC_{Ar}), 6.22 (1H, s, $CH(OR)_2$), 4.75 (1H, q, J = 6.9 Hz, $CHCH_3$), 4.20–3.99 (4H, m, $(OCH_2)_2$), 3.88 (6H, s, $C(OCH_2)_3C$), 1.40 (3H, d, J = 6.9 Hz, $CHCH_3$), 0.78 (3H, s, CCH_3); ¹³C **NMR** (101 MHz, CDCl₃) δ 198.9 (C(O)), 138.7 (C_{Ar}), 135.2 (C_{Ar}), 129.1 (HC_{Ar}), 127.7 (HC_{Ar}), 126.7 (HC_{Ar}), 126.0 (HC_{Ar}), 104.0 (CO_3), 101.7 ($CH(OR)_2$), 73.0 ($C(OCH_2)_3C$), 65.4 ($OC_aH_2C_bH_2O$), 65.1 ($OC_aH_2C_bH_2O$), 41.5 (CH_3CH), 30.9 ($C(OCH_2)_3CM$ e), 19.2 ($CHCH_3$), 14.3 (CCH_3).

2-[2-(1,3-Dioxolan-2-yl)phenyl]-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-3-phenylpropan-1-one (S2)

To a flame-dried Biotage[®] microwave vial capped with a rubber septum was added the arylated OBO-ketone **3a** (100 mg, 0.312 mmol, 1.0 equiv). The rubber septum was then removed, and the reaction vessel was sealed with a microwave vial cap (ResealTM septum) and then dry THF (2.9 mL), *t*-BuONa solution (235 μL,

S3.1.3 α-Functionalisation of arylated OBO-ketone 3c


General procedure A: To a flame-dried Biotage[®] microwave vial capped with a rubber septum were added the arylated OBO-ketone 3c (1.0 equiv) and the appropriate electrophile (1.1 equiv). The rubber septum was then removed, and the reaction vessel was sealed with a microwave vial cap (ResealTM septum) and dry DMF (0.2 M) was added. The mixture was stirred at 0 °C for 10 min, followed by the addition of NaH (60% in mineral oil) (1.2 equiv). The reaction was stirred for 15 min at 0 °C, after which the ice was removed from the cooling bath and the cold water was left to warm to rt over 2 h. The reaction was quenched with saturated aq NH₄Cl and extracted with DCM (× 3). The organic layers were combined and washed with water (× 5), dried over MgSO₄, filtered, concentrated *in vacuo* and purified by flash column chromatography to give the corresponding product S3-S4.

2-[1-Benzyl-2-(1,3-dioxolan-2-yl)-1H-indol-3-yl]-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]-octan-1-yl)propan-1-one (S3)

Arylated OBO-ketone **3c** (270 mg, 0.601 mmol, 1.0 equiv) and MeI (41 μ L, 0.66 mmol, 1.1 equiv) were subjected to **General procedure A** (chromatography eluent: DCM/MeOH, 99:1) to give the *title compound* **S3** (259 mg, 93%) as a white solid. **mp**: 182–184 °C. **IR**: ν_{max} (thin film) 2935, 2880, 1740, 1075,

1031, 989, 908, 726 cm⁻¹; **HRMS**: calculated for $C_{27}H_{30}NO_6$, 464.20676 [M+H]⁺, found m/z 464.20663, $\Delta = -0.28$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (1H, d, J = 7.8 Hz, HC_{Ar}), 7.26–7.17 (3H, m, 3 × HC_{Ar}), 7.12–7.01 (5H, m, 5 × HC_{Ar}), 6.27 (1H, s, $CH(OR)_2$), 5.56 (1H, d, J = 17.0 Hz, PhC H_aH_b), 5.48 (1H, d, J = 17.0 Hz, PhCH_a H_b), 4.82 (1H, q, J = 7.1 Hz, $CHCH_3$), 4.12–3.95 (4H, m, (OC H_2)₂), 3.86 (6H, s, $C(OCH_2)_3C$), 1.63 (3H, d, J = 7.1 Hz, $CHCH_3$), 0.76 (3H, s, CCH_3); ¹³**C NMR** (101 MHz, $CDCl_3$) δ 197.9 (C(O)), 138.7 (C_{Ar}), 137.6 (C_{Ar}), 129.2 (C_{Ar}), 128.3 (HC_{Ar}), 126.7 (HC_{Ar}), 126.1 (C_{Ar}), 126.0 (HC_{Ar}), 122.8 (HC_{Ar}), 120.9 (HC_{Ar}), 119.5 (HC_{Ar}), 114.8 (IC_{Ar}), 110.1 (IC_{Ar}), 104.0 (IC_{Ar}), 98.4 (IC_{Ar}), 72.8 (IC_{Ar}), 64.94 (IC_{Ar}), 64.86 (IC_{Ar}), 14.2 (IC_{Ar}), 17.9 (IC_{Ar}), 16.9 (IC_{Ar})

2-[1-Benzyl-2-(1,3-dioxolan-2-yl)-1H-indol-3-yl]-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]-octan-1-yl)pent-4-en-1-one (S4)

Arylated OBO-ketone **3c** (270 mg, 0.601 mmol, 1.0 equiv) and allyl bromide (57 μ L, 0.66 mmol, 1.1 equiv) were subjected to **General Procedure A** (chromatography eluent: DCM/MeOH, 99:1) to give the *title compound* **S4** (209 mg, 71%) as a white solid. **mp**: 177–180 °C; **IR**: ν_{max} (thin film) 2936, 2881, 1741,

1496, 1344, 1077, 988, 953, 910, 730 cm⁻¹; **HRMS**: calculated for $C_{29}H_{32}NO_6$, 490.22241 [M+H]⁺, found m/z 490.22208, $\Delta = -0.69$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.77–7.72 (1H, m, HC_{Ar}), 7.26–7.16 (3H, m, 3 × HC_{Ar}), 7.11–6.96 (5H, m, 5 × HC_{Ar}), 6.25 (1H, s, $CH(OR)_2$), 5.80–5.66 (1H, m, $CH_2=CHCH_2$), 5.55 (1H, d, J=16.9 Hz, $PhCH_aH_b$), 5.49 (1H, d, J=17.0 Hz, $PhCH_aH_b$), 5.05 (1H, dd, J=17.1, 2.1 Hz, $CH_{trans}H_{cis}CH$), 4.97 (1H, dd, J=10.2, 2.1 Hz, $CH_{trans}H_{cis}CH$), 4.74 (1H, t, J=7.6 Hz, CHC(O)), 4.10–3.95 (4H, m, $(OCH_2)_2$), 3.87 (6H, s, $C(OCH_2)_3C$), 3.10–3.00 (1H, m, $CHCH_aH_bCH$), 2.80–2.70 (1H, m, $CHCH_aH_bCH$), 0.76 (3H, s, CCH_3); ¹³C **NMR** (101 MHz, $CDCl_3$) δ 196.6 (C(O)), 138.7

 (C_{Ar}) , 137.6 (C_{Ar}) , 135.9 $(CH_2=CHCH_2)$, 130.0 (C_{Ar}) , 128.3 (HC_{Ar}) , 126.8 (HC_{Ar}) , 126.2 (C_{Ar}) , 126.0 (HC_{Ar}) , 122.8 (HC_{Ar}) , 121.0 (HC_{Ar}) , 119.7 (HC_{Ar}) , 116.5 $(CH_2=CHCH_2)$, 112.6 (C_{Ar}) , 110.2 (HC_{Ar}) , 104.0 (CO_3) , 98.4 $(CH(OR)_2)$, 72.9 $(C(OCH_2)_3C)$, 65.0 $(OC_aH_2C_bH_2O)$, 64.9 $(OC_aH_2C_bH_2O)$, 48.0 $(PhCH_2)$, 43.5 (CHC(O)), 34.8 $(CH_2=CHCH_2)$, 30.8 $(C(OCH_2)_3CMe)$, 14.3 (CCH_3) .

S3.1.4 Cyclisation to isoquinoline- and β -carboline-3-carboxylates 4

General procedure B: Step 1: To a Biotage[®] microwave vial NH₄Cl (10 equiv), the appropriate acetal 3 or S1-4 (1.0 equiv) and EtOH (0.1 M) were added. The reaction vessel was sealed with a microwave vial cap (ResealTM septum) and the mixture stirred at 115 °C for 12 h. After cooling to rt, the crude material was concentrated *in vacuo*, passed through a short silica column using EtOAc as eluent and concentrated *in vacuo*. Step 2: The crude material was dissolved in dry EtOH (0.1 M) and transferred via syringe to a flamed-dried Biotage[®] microwave vial containing anhydrous p-toluenesulfonic acid (3.0 equiv) and stirred at 115 °C for 24 h for isoquinolines and for 36 h for β-carbolines. After cooling to rt, the reaction mixture was neutralised by the addition of solid NaHCO₃ (6.0 equiv) and concentrated *in vacuo*. The crude material was dissolved in DCM and washed with water. The organic phase was separated, and the aqueous layer was extracted with DCM (× 3). The organic layers were combined, dried over MgSO₄, filtered, concentrated *in vacuo* and purified by flash column chromatography to give the corresponding isoquinoline 4.

Ethyl isoquinoline-3-carboxylate (4a)

Arylated OBO-ketone **3a** (96 mg, 0.30 mmol, 1.0 equiv) was subjected to **General Procedure B** (chromatography eluent: n-pentane/EtOAc, 60:40) to give the *title compound* **4a** (51 mg, 84%) as a light brown solid. **mp**: 43–45 °C (lit. mp 45-45.5 °C); **IR**: v_{max} (thin film) 2975, 2880, 1710, 1280, 1150, 750 cm⁻¹; **HRMS**: calculated for $C_{12}H_{12}NO_2$, 202.08626 [M+H]⁺, found m/z 202.08623, $\Delta = -0.14$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 9.33 (1H, s, $HC_{Ar}(1)$), 8.58 (1H, s, $HC_{Ar}(4)$), 8.04 (1H, d, J = 7.8 Hz, HC_{Ar}), 7.95 (1H, d, J = 7.9 Hz, HC_{Ar}), 7.70–7.80 (2H, m, 2 × HC_{Ar}), 4.52 (2H, q, J = 7.1 Hz, OC H_2 CH₃), 1.47 (3H, t, J = 7.2 Hz, OC H_2 CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 165.9 (C(O)), 152.8 (H $C_{Ar}(1)$), 141.9 ($C_{Ar}(1)$), 135.5 ($C_{Ar}(1)$), 131.2 (H $C_{Ar}(1)$), 130.0 ($C_{Ar}(1)$), 129.6 (H $C_{Ar}(1)$), 128.1 (H $C_{Ar}(1)$), 127.8 (H $C_{Ar}(1)$), 124.0 (H $C_{Ar}(4)$), 62.0 (OC H_2 CH₃), 14.6

(OCH₂CH₃). Physical and spectroscopic data are consistent with those previously reported.^{9,10}

Ethyl 6,7-dimethoxyisoquinoline-3-carboxylate (4b)

Arylated OBO-ketone **3b** (114 mg, 0.300 mmol, 1.0 equiv) was subjected to **General procedure B** (chromatography eluent: *n*-pentane/EtOAc, 30:70) to give the *title compound* **4b** (63 mg, 80%) as a light brown solid. **mp**: 178–181 °C (lit. ¹⁰ mp 174–176

°C); **IR**: v_{max} (thin film) 3069, 2980, 2834, 1703, 1504, 1408, 1245, 1148, 1104, 1006, 861 cm⁻¹; **HRMS**: calculated for C₁₄H₁₆NO₄, 262.10738 [M+H]⁺, found m/z 262.10716, $\Delta = -0.86$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 9.10 (1H, s, $HC_{\text{Ar}}(1)$), 8.42 (1H, s, $HC_{\text{Ar}}(4)$), 7.24 (1H, s, HC_{Ar}), 7.16 (1H, s, HC_{Ar}), 4.48 (2H, q, J = 7.2 Hz, OCH₂CH₃), 4.03 (3H, s, OCH₃), 4.02 (3H, s, OCH₃), 1.45 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 166.1 (C(O)), 153.5 (C_{Ar}), 152.1 (C_{Ar}), 150.0 (H $C_{\text{Ar}}(1)$), 140.8 (C_{Ar}), 132.2 (C_{Ar}), 126.4 (C_{Ar}), 122.7 (H $C_{\text{Ar}}(4)$), 105.9 (H C_{Ar}), 105.5 (H C_{Ar}), 61.7 (OCH₂CH₃), 56.3 (OCH₃), 56.3 (OCH₃), 14.6 (OCH₂CH₃). Physical and spectroscopic data are consistent with those previously reported. ¹⁰

Ethyl 9-benzyl-9H-pyrido[3,4-b]indole-3-carboxylate (4c)

Arylated OBO-ketone **3c** (135 mg, 0.300 mmol, 1.0 equiv) was subjected to **General procedure B** (chromatography eluent: *n*-pentane/EtOAc, 60:40) to give the *title compound* **4c** (88 mg, 89%) as a light brown solid. **mp**: 124–126 °C (lit. 11 mp 126–127 °C); **IR**:

ν_{max} (thin film) 3062, 3029, 2993, 1721, 1267, 1216, 1028, 749, 722 cm⁻¹; **HRMS**: calculated for C₂₁H₁₉N₂O₂, 331.14410 [M+H]⁺, found m/z 331.14404, $\Delta = -0.19$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 8.91–8.87 (2H, m, $HC_{Ar}(1) + HC_{Ar}(4)$), 8.22 (1H, d, J = 7.8 Hz, HC_{Ar}), 7.59 (1H, ddd, J = 8.3, 7.2, 1.2 Hz, HC_{Ar}), 7.48 (1H, d, J = 8.1 Hz, HC_{Ar}), 7.36 (1H, ddd, J = 8.0, 7.1, 0.9 Hz, HC_{Ar}), 7.29–7.21 (3H, m, 3 × HC_{Ar}), 7.16–7.10 (2H, m, 2 × HC_{Ar}), 5.59 (2H, s, PhC H_2), 4.53 (2H, q, J = 7.1 Hz, OC H_2 CH₃), 1.48 (3H, t, J = 7.2 Hz, OC H_2 CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.2 (C(O)), 141.8 (C_{Ar}), 138.1 (C_{Ar}), 138.0 (C_{Ar}), 135.8 (C_{Ar}), 132.1 ($HC_{Ar}(1)$), 129.14 (HC_{Ar}), 129.09 (HC_{Ar}), 128.8 (C_{Ar}), 128.1 (HC_{Ar}), 126.6 (HC_{Ar}), 121.6 (C_{Ar}), 121.0 (HC_{Ar}), 117.8 ($HC_{Ar}(4)$), 110.2 (HC_{Ar}), 61.7 (OC H_2 CH₃), 47.3 (PhCH₂), 14.6 (OC H_2 CH₃). Physical and spectroscopic data are consistent with those previously reported. ^{11,12}

Ethyl 4-methylisoquinoline-3-carboxylate (4d)

Arylated OBO-ketone **S1** (100 mg, 0.30 mmol, 1.0 equiv) was subjected to **General Procedure B** (chromatography eluent: n-pentane/EtOAc, 60:40) to give the *title compound* **4d** (45 mg, 70%) as a yellow oil. **IR**: v_{max} (thin film) 2980, 1714, 1284, 1250, 1220, 1054, 768, 751 cm⁻¹; **HRMS**: calculated for $C_{13}H_{14}NO_2$, 216.10191 [M+H]⁺, found m/z 216.10176, $\Delta = -0.67$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 9.15 (1H, s, HC(1)), 8.13 (1H, d, J = 8.6 Hz, HC_{Ar}), 7.99 (1H, dd, J = 8.1, 1.2 Hz, HC_{Ar}), 7.79 (1H, ddd, J = 8.7, 6.8, 1.8 Hz, HC_{Ar}), 7.68 (1H, ddd, J = 8.0, 6.9, 1.1 Hz, HC_{Ar}), 4.51 (2H, J = 7.2 Hz, OCH_2CH_3), 2.87 (3H, s, $ArCH_3$), 1.46 (3H, t, J = 7.1 Hz, OCH_2CH_3); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.6 (C(O)), 150.5 ($HC_{Ar}(1)$), 141.7 (C_{Ar}), 136.0 (C_{Ar}), 131.0 (HC_{Ar}), 130.0 (C_{Ar}), 128.9 (C_{Ar}), 128.5 (HC_{Ar}), 128.2 (HC_{Ar}), 124.3 (HC_{Ar}), 61.8 (OCH_2CH_3), 14.5 (OCH_2CH_3), 14.4 ($ArCH_3$).

Ethyl 4-benzylisoquinoline-3-carboxylate (4e)

Arylated OBO-ketone **S2** (123 mg, 0.300 mmol, 1.0 equiv) was subjected to **General procedure B** (chromatography eluent: n-pentane/EtOAc, 60:40) to give the *title compound* **4e** (62 mg, 71%) as an off-white solid. **mp**: 118–120 °C; **IR**: v_{max} (thin film) 3080, 3027, 2985, 1708, 1291, 1248, 1200, 1064, 789, 774, 693, 676 cm⁻¹; **HRMS**: calculated for $C_{19}H_{18}NO_2$, 292.13321 [M+H]⁺, found m/z 292.13321, $\Delta = 0.01$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 9.25 (1H, s, $HC_{Ar}(1)$), 8.98–8.10 (2H, m, 2 × HC_{Ar}), 7.71–7.62 (2H, m, 2 × HC_{Ar}), 7.25–7.11 (5H, m, 5 × HC_{Ar}), 4.77 (2H, s, PhC H_2), 4.46 (2H, q, J = 7.2 Hz, OC H_2 CH₃), 1.37 (3H, t, J = 7.1 Hz, OC H_2 CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 167.4 (C(O)), 151.5 (C(1)), 142.9 (C_{Ar}), 139.9 (C_{Ar}), 135.8 (C_{Ar}), 131.4 (C_{Ar}), 131.3 (HC_{Ar}), 129.4 (C_{Ar}), 128.59 (HC_{Ar}), 128.57 (HC_{Ar}), 128.37 (HC_{Ar}), 128.36 (HC_{Ar}), 126.2 (HC_{Ar}), 125.0 (HC_{Ar}), 62.0 (HC_{Ar}), 33.8 (HC_{Ar}), 14.4 (HC_{Ar}), 126.2 (HC_{Ar}), 125.0 (HC_{Ar}), 62.0 (HC_{Ar}), 33.8 (HC_{Ar}), 14.4 (HC_{Ar}), 126.2 (HC_{Ar}), 125.0 (HC_{Ar}), 62.0 (HC_{Ar}), 33.8 (HC_{Ar}), 14.4 (HC_{Ar}), 126.2 (HC_{Ar}), 125.0 (HC_{Ar}), 62.0 (HC_{Ar}), 33.8 (HC_{Ar}), 14.4 (HC_{Ar})

Ethyl 9-benzyl-4-methyl-9H-pyrido[3,4-b]indole-3-carboxylate (4f)

Arylated OBO-ketone **S3** (139 mg, 0.300 mmol, 1.0 equiv) was subjected to **General procedure B** (chromatography eluent: n-pentane/EtOAc, 60:40) to give the *title compound* **4f** (76 mg, 74%) as a light brown solid. **mp**: 116–118 °C; **IR**: v_{max} (thin film) 3031, 2979, 2933, 1709, 1368, 1332, 1273, 1220, 1075, 747, 730, 699 cm⁻¹; **HRMS**: calculated for $C_{22}H_{21}N_2O_2$, 345.15975 [M+H]⁺, found m/z 345.15927, $\Delta = -1.40$ ppm; ¹H

NMR (400 MHz, CDCl₃) δ 8.76 (1H, s, $HC_{Ar}(1)$), 8.34 (1H, d, J = 7.8 Hz, HC_{Ar}), 7.59 (1H, ddd, J = 8.3, 7.2, 1.2 Hz, HC_{Ar}), 7.49 (1H, d, J = 8.1 Hz, HC_{Ar}), 7.36 (1H, ddd, J = 8.1, 7.2, 1.2 Hz, HC_{Ar}), 7.27–7.21 (3H, m, 3 × HC_{Ar}), 7.13–7.08 (2H, m, 2 × HC_{Ar}), 5.56 (2H, s, PhC H_2), 4.51 (2H, q, J = 7.2 Hz, OC H_2 CH₃), 3.15 (3H, s, ArC H_3), 1.48 (3H, t, J = 7.1 Hz, OC H_2 CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 167.3 (C(O)), 141.5 (C_{Ar}), 137.9 (C_{Ar}), 137.0 (C_{Ar}), 136.0 (C_{Ar}), 131.4 (C_{Ar}), 129.6 (H C_{Ar} (1)), 129.1 (H C_{Ar}), 129.0 (C_{Ar}), 128.2 (H C_{Ar}), 128.1 (H C_{Ar}), 126.6 (H C_{Ar}), 124.4 (H C_{Ar}), 122.4 (C_{Ar}), 120.8 (H C_{Ar}), 110.0 (H C_{Ar}), 61.5 (OC H_2 CH₃), 47.0 (PhCH₂), 16.7 (ArCH₃), 14.6 (OC H_2 CH₃).

Ethyl 4-allyl-9-benzyl-9H-pyrido[3,4-b]indole-3-carboxylate (4g)

O OEt

Arylated OBO-ketone **S4** (147 mg, 0.300 mmol, 1.0 equiv) was subjected to **General procedure B** (chromatography eluent: toluene/MeCN, 90:10) to give the *title compound* **4g** (72 mg, 65%) as a light brown solid. **mp**: 82–85 °C; **IR**: v_{max} (thin film) 2980, 2928, 1712, 1453, 1388, 1368, 1334, 1272, 1236, 736 cm⁻¹; **HRMS**:

calculated for $C_{24}H_{23}N_{2}O_{2}$, 371.17540 [M+H]⁺, found m/z 371, 17673, $\Delta = 3.56$ ppm; ¹H NMR (400 MHz, CDCl₃) δ 8.83 (1H, s, $HC_{Ar}(1)$), 8.30 (1H, d, J = 7.9 Hz, HC_{Ar}), 7.60 (1H, ddd, J = 8.4, 7.0, 1.4 Hz, HC_{Ar}), 7.52 (1H, d, J = 7.7 Hz, HC_{Ar}), 7.37 (1H, ddd, J = 8.1, 7.1, 1.1 Hz, HC_{Ar}), 7.29–7.23 (3H, m, 3 × HC_{Ar}), 7.17–7.12 (2H, m, 2 × HC_{Ar}), 6.30–6.18 (1H, m, CH₂=CH), 5.61 (2H, s, PhCH₂), 5.16–5.04 (2H, m, CH₂=CHCH₂), 4.49 (2H, q, J = 7.1 Hz, OCH₂CH₃), 4.45–4.40 (2H, m, CH₂=CHCH₂), 1.46 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 167.0 (C(O)), 141.8 (C_{Ar}), 138.0 (C_{Ar}), 137.4 (C_{Ar}), 136.0 (C_{Ar}), 135.0 (CH₂=CH), 132.6 (C_{Ar}), 130.2 (H C_{Ar}), 129.1 (H C_{Ar}), 128.5 (H C_{Ar}), 128.2 (C_{Ar}), 128.2 (H C_{Ar}), 126.6 (H C_{Ar}), 124.6 (H C_{Ar}), 121.6 (C_{Ar}), 121.0 (H C_{Ar}), 116.5 (CH₂=CHCH₂), 110.1 (H C_{Ar}), 61.6 (OCH₂CH₃), 47.1 (PhCH₂), 33.5 (CH₂=CHCH₂), 14.6 (OCH₂CH₃). Compound 4g was isolated as a mixture with a minor inseparable impurity.

S3.2 Synthesis of indole-2-carboxylates 7

S3.2.1 Arylated OBO-ketones 6

2-(4-Methyl-2-nitrophenyl)-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)ethan-1-one (6a)

To a flame-dried Biotage[®] microwave vial capped with a Ме rubber septum were added methyl-OBO ketone 1⁶ (861 mg, 5.00 mmol, 1.0 equiv), 1-bromo-4-methyl-2-nitrobenzene (5a) NO_2 (2.16 g, 10.0 mmol, 2.0 equiv), Pd₂(dba)₃ (46 mg, 50 μmol, 1 mol %), DavePhos (79 mg, 0.20 mmol, 4 mol %), K₂CO₃ (1.38 g, 10.0 mmol, 2.0 equiv) and phenol (94 mg, 1.00 mmol, 20 mol %). The rubber septum was then removed, and the reaction vessel was sealed with a microwave vial cap (ResealTM septum). Dry toluene (2.0 mL, 2.5 M) was added *via* syringe. The vial was flushed with argon for 5 min and heated at 80 °C for 24 h. The resulting mixture was filtered through a plug of silica using EtOAc as eluent and concentrated in vacuo and purified by flash column chromatography (n-pentane/EtOAc, 80:20) to give the title compound **6a** (1.32 g, 86%) as a yellow solid. **mp**: 175–177 °C; **IR**: v_{max} (thin film) 2933, 2879, 1723, 1613, 1521, 1350, 1076, 1032, 999, 909, 817, 739 cm⁻¹; **HRMS**: calculated for $C_{15}H_{18}NO_6$, 308.11286 [M+H]⁺, found m/z 308.11267, $\Delta = -0.63$ ppm; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (1H, s, $C_{Ar}C_{Ar}(H)C_{Ar}$), 7.35 (1H, d, J = 7.8 Hz, HC_{Ar}), 7.12 (1H, d, J = 7.7 Hz, HC_{Ar}), 4.36 (2H, s, $CH_2C(O)$), 4.03 (6H, s, $C(OCH_2)_3C$), 2.40 (3H, s, $ArCH_3$), 0.87 (3H, s, CCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 194.0 (C(O)), 148.9 (O₂NC_{Ar}), 139.0 (C_{Ar}), 134.3 (HC_{Ar}) , 133.3 (HC_{Ar}) , 126.2 (C_{Ar}) , 125.6 $(C_{Ar}C_{Ar}(H)C_{Ar})$, 103.7 (CO_3) , 73.3 $(C(OCH_2)_3C)$, 42.0 (CH₂C(O)), 31.0 (C(OCH₂)₃CMe), 20.9 (ArCH₃), 14.3 (CCH₃).

2-(4-Methoxy-2-nitrophenyl)-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)ethan-1-one (6b)

$$\begin{array}{c|c} \text{MeO} & \text{O} & \text{O} \\ \hline & \text{NO}_2 & \text{O} & \text{Me} \end{array}$$

To a flame-dried Biotage[®] microwave vial capped with a rubber septum were added methyl-OBO ketone **1**⁶ (431 mg, 2.50 mmol, 1.0 equiv), 1-bromo-4-methoxy-2-nitrobenzene (**5b**) (1.16 g, 5.00 mmol, 2.0 equiv), Pd₂(dba)₃ (23 mg, 25

μmol, 1 mol %), DavePhos (40 mg, 0.10 mmol, 4 mol %), K₂CO₃ (691 mg, 5.00 mmol, 2.0 equiv) and phenol (47 mg, 0.50 mmol, 20 mol %). The rubber septum was then removed, and the reaction vessel was sealed with a microwave vial cap (ResealTM septum). Dry toluene (2.0

mL, 1.25 M) was added *via* syringe. The vial was flushed with argon for 5 min and heated at 80 °C for 24 h. The resulting mixture was filtered through a plug of silica using EtOAc as eluent, concentrated *in vacuo* and purified by flash column chromatography (*n*-pentane/EtOAc, 60:40) to give the *title compound* **6b** (727 mg, 90%) as yellow solid. **mp**: 152-154 °C; **IR**: v_{max} (thin film) 2940, 2883, 1753, 1528, 1347, 1247, 1075, 1047, 1033, 993, 729 cm⁻¹; **HRMS**: calculated for $C_{15}H_{18}NO_7$, 324.10778 [M+H]⁺, found m/z 324.10785, $\Delta = 0.22$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (1H, d, J = 2.7 Hz, $C_{Ar}C_{Ar}(H)C_{Ar}$), 7.13 (1H, d, J = 8.6 Hz, $CH_2C_{Ar}C_{Ar}(H)C_{Ar}(H)$), 7.08 (1H, dd, J = 8.5, 2.6 Hz, $CH_2C_{Ar}C_{Ar}(H)C_{Ar}(H)$), 4.33 (2H, s, $CH_2C(O)$), 4.02 (6H, s, $C(OCH_2)_3C$), 3.83 (3H, s, OCH_3), 0.86 (3H, s, CCH_3); ¹³C NMR (101 MHz, CDCl₃) δ 194.2 (C(O)), 159.3 (C_{Ar}), 149.6 (C_{Ar}), 134.2 ($CH_2C_{Ar}C_{Ar}(H)C_{Ar}(H)$), 121.1 (C_{Ar}), 120.0 ($CH_2C_{Ar}C_{Ar}(H)C_{Ar}(H)$), 110.0 ($C_{Ar}C_{Ar}(H)C_{Ar}$), 103.7 (CO_3), 73.2 ($C(OCH_2)_3C$), 55.9 (OCH_3), 41.7 ($CH_2C(O)$), 31.0 ($C(OCH_2)_3CMe$), 14.2 (CCH_3).

S3.2.2 α-Functionalisation of arylated OBO-ketones 6

General procedure C: To a flame-dried Biotage[®] microwave vial capped with a rubber septum were added the appropriate arylated OBO-ketone **6a,b** (1.0 equiv) and electrophile (1.1 equiv). The rubber septum was then removed, and the reaction vessel was sealed with a microwave vial cap (ResealTM septum) and dry DMF (0.2 M) was added. The mixture was stirred at 0 °C for 10 min, followed by the addition of NaH (60% in mineral oil) (1.2 equiv). The reaction was stirred for 15 min at 0 °C, after which the ice was removed from the cooling bath and the cold water was left to warm to rt over 2 h. The reaction was quenched with saturated aq NH₄Cl and extracted with DCM (× 3). The organic layers were combined and washed with water (× 5), dried over MgSO₄, filtered, concentrated *in vacuo* and purified by flash column chromatography to give the corresponding product **S5-S6**.

$2-(4-Methyl-2-nitrophenyl)-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2] octan-1-yl) propan-1-one \\ (S5)$

Arylated OBO-ketone **6a** (184 mg, 0.599 mmol, 1.0 equiv) and MeI (41 μ L, 0.66 mmol, 1.1 equiv) were subjected to **General procedure C** (chromatography eluent: *n*-pentane/EtOAc, 80:20) to give the *title compound* **S5** (184 mg, 95%) as a yellow solid. **mp**: 126–128 °C; **IR**: ν_{max} (thin film) 2937, 2882, 1748, 1527, 1354, 1032, 988, 946, 748 cm⁻¹; **HRMS**: calculated

for C₁₆H₂₀NO₆, 322.12851 [M+H]⁺, found m/z 322.12845, $\Delta = -0.20$ ppm; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (1H, s, C_{Ar}C_{Ar}(H)C_{Ar}), 7.28 (1H, d, J = 8.2 Hz, HC_{Ar}), 7.20 (1H, d, J = 8.0 Hz, HC_{Ar}), 4.89 (1H, q, J = 6.9 Hz, CHC(O)), 3.81 (6H, s, C(OCH₂)₃C), 2.36 (3H, s, ArCH₃), 1.44 (3H, d, J = 6.8 Hz, CHCH₃), 0.75 (3H, s, CCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 197.5 (C(O)), 149.8 (C_{Ar}), 138.0 (C_{Ar}), 133.4 (HC_{Ar}), 130.8 (C_{Ar}), 129.2 (HC_{Ar}), 124.6 (C_{Ar}C_{Ar}(H)C_{Ar}), 103.8 (CO₃), 73.0 (C(OCH₂)₃C), 40.4 (CHC(O)), 30.9 (C(OCH₂)₃CMe), 20.8 (ArCH₃), 17.3 (CHCH₃), 14.1 (CCH₃).

2-(4-Methoxy-2-nitrophenyl)-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-3-phenyl-propan-1-one (S6)

Arylated OBO-ketone **6b** (194 mg, 0.600 mmol, 1.0 equiv) MeO. and benzyl bromide (78 µL, 0.66 mmol, 1.1 equiv) were subjected to General procedure C (chromatography eluent: *n*-pentane/EtOAc, 60:40) to give the *title compound* **S6** (235 mg, 95%) as a yellow solid. **mp**: 123–125 °C; **IR**: v_{max} (thin film) 2937, 2883, 1747, 1529, 1356, 1251, 1030, 1001, 910, 729, 699 cm⁻¹; **HRMS**: calculated for $C_{22}H_{24}NO_7$, 414.15473 [M+H]⁺, found m/z 414.15479, $\Delta =$ 0.14 ppm ¹H NMR (400 MHz, CDCl₃) δ 7.33 (1H, d, J = 8.7 Hz, MeOC_{Ar}C_{Ar}(H)C_{Ar}(H)), 7.23 (1H, d, J = 3.4 Hz, $C_{Ar}C_{Ar}(H)C_{Ar}$), 7.20–7.09 (5H, m, $5 \times HC_{Ar}$), 7.04 (1H, dd, J = 8.8, 3.4 Hz, MeOC_{Ar}C_{Ar}(H)C_{Ar}(H)), 5.22 (1H, dd, J = 8.1, 6.7 Hz, CHC(O)), 3.784 (3H, s, OCH_3), 3.777 (6H, s, $C(OCH_2)_3C$), 3.41 (1H, dd, J = 13.9, 8.3 Hz, $PhCH_3H_b$), 3.03 (1H, dd, J = 13.9), 3.777 (6H, s, $C(OCH_2)_3C$), 3.41 (1H, dd, J = 13.9), 8.3 Hz, $PhCH_3H_b$), 3.03 (1H, dd, J = 13.9), 8.3 Hz, $PhCH_3H_b$), 3.03 (1H, dd, J = 13.9), 8.3 Hz, $PhCH_3H_b$), 3.03 (1H, dd, J = 13.9), 8.3 Hz, $PhCH_3H_b$), 3.03 (1H, dd, J = 13.9), 8.3 Hz, $PhCH_3H_b$), 3.03 (1H, dd, J = 13.9), 8.3 Hz, $PhCH_3H_b$), 3.03 (1H, dd, J = 13.9), 8.3 Hz, $PhCH_3H_b$), 3.03 (1H, dd, J = 13.9), 8.3 Hz, $PhCH_3H_b$), 3.03 (1H, dd, J = 13.9), 8.3 Hz, $PhCH_3H_b$), 3.03 (1H, dd, J = 13.9), 8.3 Hz, $PhCH_3H_b$), 9.10 Hz, $PhCH_3H_b$ = 13.9, 6.7 Hz, PhCH_aH_b), 0.72 (3H, s, CCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 196.3 (C(O)), 158.5 (C_{Ar}), 150.7 (C_{Ar}), 138.3 (C_{Ar}), 130.4 (MeOC_{Ar}C_{Ar}(H) C_{Ar} (H)), 129.2 (H C_{Ar}), 128.1 (HC_{Ar}) , 126.2 (HC_{Ar}) , 123.5 (C_{Ar}) , 118.7 $(MeOC_{Ar}C_{Ar}(H)C_{Ar}(H))$, 109.5 $(C_{Ar}C_{Ar}(H)C_{Ar})$, 103.6 (CO₃), 72.9 (C(OCH₂)₃C), 55.7 (OCH₃), 46.8 (CHC(O)), 37.8 (CHCH₂), 30.7 $(C(OCH_2)_3CMe)$, 14.0 (CCH_3) .

S3.2.3 Reductive cyclisation to indole-2-carboxylates 7

General procedure D: Step 1: To a Biotage[®] microwave vial were added an aqueous solution of TiCl₃ (16.5 equiv), a 6.6 M aqueous solution of NH₄OAc (100 equiv) and EtOH (0.2 M). The vial was capped with a rubber septum and purged with argon for 5 min. A solution of the indicated arylated OBO-ketone 6 or S5-6 (1.0 equiv) dissolved in EtOH (0.07 M) was added dropwise and stirred at rt for 1 h. The mixture was extracted with DCM (\times 3), dried over MgSO₄ and concentrated *in vacuo*. Step 2: The crude material was dissolved in

dry EtOH (0.1 M) and added via syringe to a flame-dried Biotage[®] microwave vial containing anhydrous p-toluenesulfonic acid (3.0 equiv) and stirred at 115 °C for 16 h. After cooling to rt, the reaction was neutralized by the addition of solid NaHCO₃ (6.0 equiv) and concentrated $in\ vacuo$. The crude material was dissolved in DCM and washed with water. The organic layer was separated, and the aqueous layer was extracted with DCM (× 3). The organic layers were combined, dried over MgSO₄, filtered, concentrated $in\ vacuo$ and purified by flash column chromatography to give the corresponding indole 7.

Ethyl 6-methyl-1H-indole-2-carboxylate (7a)

204.10191 [M+H]⁺, found m/z 204.10211, $\Delta = 1.01$ ppm; ¹H NMR (400 MHz, CDCl₃) δ 8.94 (1H, s, NH), 7.57 (1H, d, J = 8.2 Hz, HC_{Ar}), 7.22–7.18 (2H, m, $2 \times HC_{Ar}$), 7.00 (1H, dd, J = 8.2, 1.5 Hz, HC_{Ar}), 4.42 (2H, q, J = 7.1 Hz, OCH₂CH₃), 2.48 (3H, s, ArCH₃), 1.42 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (C(O)), 137.5 (C_{Ar}), 135.7 (C_{Ar}), 127.0 (C_{Ar}), 125.5 (C_{Ar}), 123.0 (H C_{Ar}), 122.3 (H C_{Ar}), 111.6 (H C_{Ar}), 108.8 (H C_{Ar}), 61.1 (OCH₂CH₃), 22.1 (ArCH₃), 14.6 (OCH₂CH₃). Physical and spectroscopic data are consistent with those previously reported. ^{13,14}

Ethyl 6-methoxy-1H-indole-2-carboxylate (7b)

Arylated OBO-ketone **6b** (97 mg, 0.30 mmol, 1.0 equiv) was subjected to **General procedure D** (chromatography eluent:
$$n$$
-pentane/EtOAc, 85:15) to give the *title compound* **7b** (56 mg, 85%) as a white solid. **mp**: 133–135 °C (lit. 15 mp 131–133 °C); **IR**: v_{max} (thin film) 3317, 1677, 1626, 1253, 1196, 1023, 822, 767, 735 cm⁻¹; **HRMS**: calculated for $C_{12}H_{14}NO_3$, 220.09682 [M+H]⁺, found m/z 220.09700, $\Delta = 0.82$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 9.22 (1H, s, N*H*), 7.55 (1H, d, $J = 8.6$ Hz, HC_{Ar}), 7.18 (1H, d, $J = 2.3$ Hz, HC_{Ar}), 6.86–6.81 (2H, m, 2 × HC_{Ar}), 4.42 (2H, q, $J = 7.2$ Hz, OC H_2 CH₃), 3.85 (3H, s, OC H_3), 1.42 (3H, t, $J = 7.1$ Hz, OC H_2 CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 162.3 (C (O)), 158.9 (C_{Ar}), 138.2 (C_{Ar}), 126.5 (C_{Ar}), 123.4 (H C_{Ar}), 121.9 (C_{Ar}), 112.4 (H C_{Ar}), 109.1 (H C_{Ar}), 93.8 (H C_{Ar}), 60.9

(OCH₂CH₃), 55.5 (OCH₃), 14.5 (OCH₂CH₃). Physical and spectroscopic data are consistent with those previously reported.¹⁵

Ethyl 3,6-dimethyl-1H-indole-2-carboxylate (7c)

Me Arylated OBO-ketone **S5** (96 mg, 0.30 mmol, 1.0 equiv) was subjected to **General procedure D** (chromatography eluent: CHCl₃) Me Ne To give the *title compound* **7c** (48 mg, 74%) as a white solid. **mp**: 129–131 °C; **IR**: v_{max} (thin film) 3315, 2975, 1676, 1327, 1266, 797, 776 cm⁻¹; **HRMS**: calculated for $C_{13}H_{16}NO_2$, 218.11756 [M+H]⁺, found m/z 218.11769, $\Delta = 0.62$ ppm. ¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (1H, s, N*H*), 7.54 (1H, d, J = 8.1 Hz, HC_{Ar}), 7.14 (1H, s, HC_{Ar}), 6.98 (1H, dd, J = 8.3, 1.5 Hz, HC_{Ar}), 4.41 (2H, q, J = 7.1 Hz, OCH₂CH₃), 2.59 (3H, s, ArCH₃), 2.47 (3H, s, C_{Ar} (3)CH₃), 1.43 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³**C NMR** (126 MHz, CDCl₃) δ 162.9 (C(O)), 136.4 (C_{Ar}), 135.9 (C_{Ar}), 126.7 (C_{Ar}), 123.0 (C_{Ar}), 122.1 (HC_{Ar}), 120.5 (HC_{Ar}), 120.4 (C_{Ar}), 111.4 (HC_{Ar}), 60.7 (OCH_2CH_3), 22.1 ($ArCH_3$), 14.6 (OCH_2CH_3), 10.1 (C_{Ar} (3)CH₃).

Ethyl 3-benzyl-6-methoxy-1H-indole-2-carboxylate (7d)

Arylated OBO-ketone **S6** (124 mg, 0.300 mmol, 1.0 equiv) was subjected to **General procedure D** (chromatography eluent: n-pentane/EtOAc, 90:10) to give the *title compound* **7d** (80 mg, 86%) as a white solid. **mp**: 142–145 °C; **IR**: v_{max} (thin film) 3330, 2980, 2835, 1672, 1247, 1027, 950, 669 cm⁻¹; **HRMS**: calculated for $C_{19}H_{20}NO_3$, 310.14377 [M+H]⁺, found m/z 310.14377, $\Delta = 0.00$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 8.89 (1H, s, N*H*), 7.48 (1H, d, J = 8.7 Hz, HC_{Ar}), 7.31–7.21 (4H, m, $4 \times HC_{Ar}$), 7.19–7.13 (1H, m, HC_{Ar}), 6.82–6.75 (2H, m, $2 \times HC_{Ar}$), 4.49 (2H, s, PhC H_2), 4.41 (2H, q, J = 7.1 Hz, OC H_2 CH₃), 3.84 (3H, s, OC H_3), 1.38 (3H, t, J = 7.2 Hz, OC H_2 CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (C(O)), 159.1 (C_{Ar}), 141.1 (C_{Ar}), 137.1 (C_{Ar}), 128.4 (HC_{Ar}), 128.3 (HC_{Ar}), 125.8 (HC_{Ar}), 123.1 (C_{Ar}), 122.6 (C_{Ar}), 122.6 (C_{Ar}), 122.1 (HC_{Ar}), 111.7 (HC_{Ar}), 93.6 (HC_{Ar}), 60.7 (HC_{Ar}), 55.5 (HC_{Ar}), 30.7 (HC_{Ar}), 14.5 (HC_{Ar}), 111.7 (HC_{Ar}), 93.6 (HC_{Ar}), 60.7 (HC_{Ar}), 55.5 (HC_{Ar}), 30.7 (HC_{Ar}), 14.5 (HC_{Ar}), 111.7 (HC_{Ar}), 93.6 (HC_{Ar}), 60.7 (HC_{Ar}), 55.5 (HC_{Ar}), 120.6 (HC_{Ar}), 14.5 (HC_{Ar}), 111.7 (HC_{Ar}), 93.6 (HC_{Ar}), 60.7 (HC_{Ar}), 55.5 (HC_{Ar}), 120.1 (HC_{Ar}), 111.7 (HC_{Ar}), 121.6 (HC_{Ar}), 121.7 (HC_{Ar}), 121.7 (HC_{Ar}), 122.8 (HC_{Ar}), 123.8 (HC_{Ar}), 60.7 (HC_{Ar}), 55.5 (HC_{Ar}), 122.6 (HC_{Ar}), 141.5 (HC_{Ar}), 111.7 (HC_{Ar}), 93.6 (HC_{Ar}), 60.7 (HC_{Ar}), 125.8 (HC_{Ar}), 125.8 (HC_{Ar}), 125.8 (HC_{Ar}), 125.8 (HC_{Ar}), 126.9 (HC_{Ar}), 127.5 (HC_{Ar}), 127.5 (HC_{Ar}), 127.5 (HC_{Ar}), 127.5 (HC_{Ar}), 128.4 (HC_{Ar}), 128.5 (HC_{Ar}), 128.5 (HC_{Ar}), 128.5 (HC_{Ar}), 129.5 (HC_{Ar}), 129.6 (HC_{Ar}

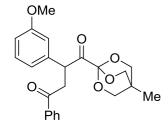
S3.3 Synthesis of pyrrole/furan-2-carboxylates 10/11 and N-substituted pyrrole-2-carboxylates 12-13

S3.3.1 1,4-Dicarbonyl scaffolds 9

General procedure E: To a stirred solution of the appropriate arylated OBO-ketone **8** (1.0 equiv) in THF (0.06 M) at rt or at 66 °C was added in one portion a *t*-BuONa solution (1.2 equiv, 2 M in THF). After stirring for 30 mins, a solution of bromoacetophenone (1.2 equiv) in THF (0.08 M) was added dropwise *via* syringe (rate 10 mL/h). The reaction mixture was then stirred for 1 h and quenched with saturated aq NH₄Cl. The aqueous phase was extracted with DCM (x 4) and the organic extracts were combined, dried over Na₂SO₄, filtered, concentrated *in vacuo* and purified by flash column chromatography to give the corresponding product **9**.

1-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-4-phenyl-2-[4-(trifluoromethyl)phenyl]-butane-1,4-dione (9a)

Arylated OBO-ketone $8a^6$ (32 mg, 0.10 mmol, 1.0 equiv) in THF (1.5 mL), *t*-BuONa solution (60 μ L, 0.12 mmol, 1.2 equiv, 2 M in THF) and BrCH₂COPh (24 mg, 0.12 mmol, 1.2 equiv) in THF (1.5 mL) were subjected to **General procedure**

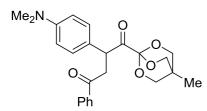

E (rt) (chromatography eluent: *n*-pentane/acetone, 80:20) to give the *title compound* **9a** (43 mg, 99%) as colorless needles. **mp**: 149–151 °C (*c*-hexane/EtOH); **IR**: v_{max} 3062, 2924, 2902, 2849, 1752, 1685, 1616, 1595, 1582, 1471, 1450, 1426, 1415, 1400, 1353, 1330, 1299, 1265, 1214, 1193, 1152, 1115, 1069, 1049, 1033, 1004, 980, 961, 948, 919, 899, 859, 830, 777, 756, 741, 729, 718, 690, 657, 628 cm⁻¹; **HRMS**: calculated for $C_{23}H_{22}F_{3}O_{5}$, 435.14138 [M+H]⁺, found *m/z* 435.14110, $\Delta = -0.62$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (2H, d, *J* = 7.4 Hz, *H*C_{Ar}), 7.59–7.49 (3H, m, *H*C_{Ar}), 7.48–7.36 (4H, m, *H*C_{Ar}), 5.07 (1H, dd, *J* = 8.5, 5.7 Hz, C_{Ar}CHC(O)), 3.95 (6H, s, C(OCH₂)₃C), 3.86 (1H, dd, *J* = 18.1, 8.5 Hz, C(O)CH_aH_bC), 3.36 (1H, dd, *J* = 18.1, 5.7 Hz, C(O)CH_aH_bC), 0.81 (3H, s, CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 197.1 (*C*(O)), 196.7 (*C*(O)), 141.8 (q, ⁵ J_{CF} = 1.7 Hz, C_{Ar}), 136.4 (C_{Ar}), 133.6 (H C_{Ar}), 129.6 (q, ² J_{CF} = 32.4 Hz, F₃C C_{Ar}), 129.2 (H C_{Ar}), 128.8 (H C_{Ar}), 128.3 (H C_{Ar}), 125.7 (q, ³ J_{CF} = 3.9 Hz, H C_{Ar}), 124.4 (q, ¹ J_{CF} = 272.2 Hz, C_{F3}), 104.3 (CO₃), 73.3 (C(OCH₂)₃C), 47.3 (C_{Ar}CHC(O)), 42.9 (C(O)CH_aH_bC), 31.1 (C(OCH₂)₃CMe), 14.4 (CCH₃). ¹⁹F **NMR** (376 MHz, CDCl₃) δ –62.5 (3F, s, CF₃).

1-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-4-phenyl-2-(p-tolyl)butane-1,4-dione (9b)

Arylated OBO-ketone **8b**⁶ (394 mg, 1.50 mmol, 1.0 equiv) in THF (25 mL), *t*-BuONa solution (900 μL, 1.80 mmol, 1.2 equiv, 2 M in THF) and BrCH₂COPh (358 mg, 1.80 mmol, 1.2 equiv) in THF (23 mL) were subjected to **General procedure E** (66 °C) (chromatography eluent: *n*-pentane/acetone, 80:20)

to give the *title compound* **9b** (520 mg, 91%) as colorless needles. **mp** 141–143 °C (*c*-hexane/EtOH); **IR**: v_{max} 2940, 2881, 1734, 1678, 1594, 1578, 1509, 1470, 1449, 1414, 1397, 1342, 1266, 1252, 1207, 1195, 1176, 1092, 1071, 1032, 1013, 993, 955, 921, 890, 849, 818, 765, 753, 736, 722, 689, 649, 633, 610 cm⁻¹; **HRMS:** calculated for $C_{23}H_{25}O_5$, 381.16965 [M+H]⁺, found m/z 381.17001, $\Delta = 0.95$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (2H, d, J = 7.2 Hz, HC_{Ar}), 7.52 (1H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 7.41 (2H, dd, J = 7.7, 7.7 Hz, HC_{Ar}), 7.17 (2H, d, J = 8.1 Hz, HC_{Ar}), 7.10 (2H, d, J = 8.0 Hz, HC_{Ar}), 4.96 (1H, dd, J = 9.1, 5.1 Hz, $C_{Ar}CHC(O)$), 3.95 (6H, s, $C(OCH_2)_3C$), 3.87 (1H, dd, J = 18.1, 9.1 Hz, $C(O)CH_aH_bC$), 3.31 (1H, dd, J = 18.1, 5.1 Hz, $C(O)CH_aH_bC$), 2.31 (3H, s, H_3CC_{Ar}), 0.81 (3H, s, CC_{Ar}), 134.5 (C_{Ar}), 133.3 (C_{Ar}), 129.5 (C_{Ar}), 128.7 (2 × C_{Ar}), 128.4 (C_{Ar}), 136.6 (C_{Ar}), 134.5 (C_{Ar}), 133.3 (C_{Ar}), 14.5 ($C_{Ar}CHC(O)$), 43.4 ($C_{Ar}CC_{Ar}$), 128.4 ($C_{Ar}CC_{Ar}$), 104.3 ($C_{Ar}CC_{Ar}$), 14.5 ($C_{Ar}CC_{Ar}$), 14.5 ($C_{Ar}CC_{Ar}$), 14.5 ($C_{Ar}CC_{Ar}$). Spectroscopic data consistent with those previously reported.

2-(3-Methoxyphenyl)-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-4-phenylbutane-1,4-dione (9c)



Arylated OBO-ketone **8c**³ (278 mg, 1.00 mmol, 1.0 equiv) in THF (17 mL), *t*-BuONa solution (600 μL, 1.20 mmol, 1.2 equiv, 2 M in THF) and BrCH₂COPh (239 mg, 1.20 mmol, 1.2 equiv) in THF (15 mL) were subjected to **General procedure E** (66 °C) (chromatography eluent: *n*-pentane/acetone, 80:20) to give the *title*

compound **9c** (365 mg, 92%) as colorless needles. **mp**: 63–65 °C (*c*-hexane/EtOH); **IR**: v_{max} 2880, 2841, 1742, 1684, 1608, 1597, 1583, 1485, 1470, 1448, 1397, 1353, 1297, 1255, 1234, 1195, 1143, 1100, 1069, 1044, 1033, 995, 950, 905, 864, 827, 778, 760, 734, 694, 660, 625 cm⁻¹; **HRMS**: calculated for $C_{23}H_{24}O_6^{23}Na$, 419.14651 [M+Na]⁺, found m/z 419.14602, $\Delta = -1.16$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (2H, dd, J = 8.4, 1.3 Hz, HC_{Ar}), 7.53 (1H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 7.41 (2H, dd, J = 7.6, 7.6 Hz, HC_{Ar}), 7.21 (1H, dd, J = 7.9, 7.9 Hz,

 HC_{Ar}), 6.87 (1H, d, J = 7.7 Hz, HC_{Ar}), 6.85–6.81 (1H, m, HC_{Ar}), 6.77 (1H, ddd, J = 8.2, 2.6, 0.8 Hz, HC_{Ar}), 4.96 (1H, dd, J = 9.3, 4.9 Hz, $C_{Ar}CHC(O)$), 3.96 (6H, s, $C(OCH_2)_3C$), 3.89 (1H, dd, J = 18.1, 9.3 Hz, $C(O)CH_aH_bC$), 3.78 (3H, s, OCH_3), 3.32 (1H, dd, J = 18.1, 4.9 Hz, $C(O)CH_aH_bC$), 0.81 (3H, s, CH_3); ¹³C NMR (101 MHz, $CDCl_3$) δ 197.6 (C(O)), 197.3 (C(O)), 159.8 (C_{Ar}), 139.1 (C_{Ar}), 136.5 (C_{Ar}), 133.4 (C_{Ar}), 129.7 (C_{Ar}), 128.7 (C_{Ar}), 128.4 (C_{Ar}), 121.2 (C_{Ar}), 114.4 (C_{Ar}), 112.9 (C_{Ar}), 104.3 (C_{Ar}), 73.2 (C_{Ar}), 159.4 (C_{Ar}), 47.4 (C_{Ar}), 14.4 (C_{Ar}), 112.9 (C_{Ar}), 31.1 (C_{Ar}), 14.4 (C_{Ar}), 14.4 (C_{Ar}), 14.4 (C_{Ar}), 159.5 (C_{Ar}), 159.6 (C_{Ar}), 159.6 (C_{Ar}), 169.7 (

2-[4-(Dimethylamino)phenyl]-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-4-phenylbutane-1,4-dione (9d)

Arylated OBO-ketone $8d^6$ (291 mg, 1.00 mmol, 1.0 equiv) in THF (17 mL), t-BuONa solution (600 μ L, 1.20 mmol, 1.2 equiv, 2 M in THF) and BrCH₂COPh (239 mg, 1.20 mmol, 1.2 equiv) in THF (15 mL) were subjected to **General**

procedure E (rt). Flash column chromatography (n-pentane/acetone, 80:20) gave unreacted starting material **8d** (41 mg, 14%). Further elution (*n*-pentane/acetone, 80:20) gave the *title* compound 9d (274 mg, 67%) as colorless needles. mp: 203–205 °C (c-hexane/EtOH); IR: v_{max} 2958, 2883, 2804, 1732, 1685, 1611, 1597, 1581, 1519, 1473, 1449, 1399, 1350, 1327, 1294, 1229, 1193, 1179, 1166, 1096, 1062, 1043, 1033, 986, 950, 929, 866, 815, 780, 754, 730, 718, 690, 651, 634, 607 cm⁻¹; **HRMS**: calculated for $C_{24}H_{28}NO_5$, 410.19620 [M+H]⁺, found m/z 410.19542, $\Delta = -1.86$ ppm; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (2H, d, J = 7.2 Hz, HC_{Ar}), 7.51 (1H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 7.40 (2H, dd, J = 7.6, 7.6 Hz, HC_{Ar}), 7.14 (2H, d, $J = 8.8 \text{ Hz}, HC_{Ar}$, 6.66 (2H, d, $J = 8.8 \text{ Hz}, HC_{Ar}$), 4.89 (1H, dd, J = 9.2, 5.0 Hz, $C_{Ar}CHC(O)$), 3.95 (6H, s, $C(OCH_2)_3C$), 3.86 (1H, dd, J = 18.1, 9.2 Hz, $C(O)CH_aH_bC$), 3.29 (1H, dd, J = 18.1, 5.0 Hz, C(O)CH_aH_bC), 2.92 (6H, s, N(CH₃)₂), 0.80 (3H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 198.0 (C(O)), 197.7 (C(O)), 149.8 (C_{Ar}), 136.7 (C_{Ar}), 133.2 (HC_{Ar}), 129.5 (H C_{Ar}), 128.6 (H C_{Ar}), 128.4 (H C_{Ar}), 124.9 (C_{Ar}), 112.8 (H C_{Ar}), 104.3 (CO_3), 73.2 $(C(OCH_2)_3C)$, 46.4 $(C_{Ar}CHC(O))$, 43.4 $(C(O)CH_aH_bC)$, 40.7 $(N(CH_3)_2)$, 31.0 $(C(OCH_2)_3CMe)$, 14.5 (CCH_3) .

S3.3.2 Cyclisation to pyrrole-2-carboxylates 10

General procedure F: *Step 1:* A mixture of the appropriate dicarbonyl precursor **9** (0.10 mmol, 1.0 equiv) and NH₄OAc (77 mg, 1.0 mmol, 10 equiv) in AcOH (3 mL) was heated at

100 °C for 20 mins. The reaction mixture was cooled to rt and then poured onto crushed ice and neutralized by careful addition of solid K_2CO_3 . The aqueous phase was extracted with DCM (3 × 50 mL) and the combined organic extracts were dried with Na_2SO_4 , filtered, and evaporated *in vacuo*. *Step 2*: The crude residue was dissolved in EtOH (3 mL) and transferred to a round bottom flask. Dried and finely powdered K_2CO_3 (28 mg, 0.20 mmol, 2.0 equiv) was then added to the solution and the mixture was heated under reflux for 2 h. The reaction mixture was cooled to rt, the solvent was evaporated *in vacuo*, and the residue was partitioned in DCM/water. The organic layer was collected, and the aqueous phase was extracted with DCM (3 × 50 mL). The combined organic extracts were dried with Na_2SO_4 , filtered and evaporated to dryness to give the corresponding pyrrole 10.

Ethyl 5-phenyl-3-[4-(trifluoromethyl)phenyl]-1H-pyrrole-2-carboxylate (10a)

CF₃ 1,4-Dicarbonyl compound **9a** (43 mg, 0.10 mmol, 1.0 equiv) was subjected to **General procedure F** to give the *title compound* **10a** (33 mg, 90%) as colourless needles. **mp**: 170–171.5 °C (*c*-hexane); **IR**: v_{max} 3321, 1650, 1616, 1533, 1504, 1462, 1445, 1413, 1387, 1365, 1324, 1288, 1266, 1203, 1160, 1137, 1103, 1063, 1022, 990, 907, 874, 852, 839, 816, 773, 759, 747, 716, 688, 675, 662, 618 cm⁻¹; **HRMS**: calculated for C₂₀H₁₇F₃NO₂, 360.12059 [M+H]⁺, found m/z 360.12054, Δ = -0.13 ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 9.38 (1H, br s, N*H*), 7.71 (2H, d, J = 8.2 Hz, HC_{Ar}), 7.66–7.56 (4H, m, HC_{Ar}), 7.45 (2H, dd, J = 7.6, 7.6 Hz, HC_{Ar}), 7.35 (1H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 6.63 (1H, d, J = 3.0 Hz, HC_{pyrrole}), 4.30 (2H, q, J = 7.1 Hz, OCH₂CH₃), 1.27 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 161.0 (IC(O)), 139.0 (IC_{Ar}), 135.8 (IC_{Ar}), 132.1 (IC_{Ar}), 131.0 (IC_{Ar}), 130.0 (IC_{Ar}), 129.4 (IC_{Ar}), 129.3 (IC_{Ar}) = 32.6 Hz, F₃CC_{Ar}), 128.4 (IC_{Ar}), 125.0 (IC_{Ar}), 124.8 (IC_{Ar}), 124.6 (IC_{Ar}), 124.6 (IC_{Ar}), 124.6 (IC_{Ar}), 14.5 (OCH₂CH₃); 19 **F NMR** (376 MHz, CDCl₃) δ -62.4 (3F, s, CF₃).

Ethyl 5-phenyl-3-(p-tolyl)-1H-pyrrole-2-carboxylate (10b)

Me 1,4-Dicarbonyl compound **9b** (38 mg, 0.10 mmol, 1.0 equiv) was subjected to **General procedure F** to give the *title compound* **10b** (24 mg, 78%) as colourless needles. **mp**: 171–173 °C (*c*-hexane) (lit. 16 mp 166.2–167 °C); **IR:** v_{max} 3313, 2978, 2917, 2860, 1654, 1607, 1529, 1499, 1474, 1460, 1443, 1408, 1385, 1363, 1320, 1307, 1291, 1266, 1212, 1200, 1184, 1159, 1131, 1110, 1079, 1026, 988, 966, 945, 908, 873, 841, 827, 809,

771, 758, 728, 708, 689, 675, 664, 638, 617 cm⁻¹; **HRMS:** calculated for $C_{20}H_{20}NO_2$, 306.14886 [M+H]⁺, found m/z 306.14901, $\Delta = 0.52$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 9.30 (1H, br s, N*H*), 7.60 (2H, d, J = 7.3 Hz, HC_{Ar}), 7.51 (2H, d, J = 8.1 Hz, HC_{Ar}), 7.43 (2H, dd, J = 7.7, 7.7 Hz, HC_{Ar}), 7.33 (1H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 7.20 (2H, d, J = 7.9 Hz, HC_{Ar}), 6.62 (1H, d, J = 3.1 Hz, $HC_{pytrole}$), 4.29 (2H, q, J = 7.1 Hz, OCH_2CH_3), 2.40 (3H, s, $ArCH_3$), 1.29 (3H, t, J = 7.1 Hz, OCH_2CH_3); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.4 (C(O)), 137.0 (C_{Ar}), 135.5 (C_{Ar}), 133.7 (C_{Ar}), 132.2 (C_{Ar}), 131.3 (C_{Ar}), 129.6 (HC_{Ar}), 129.3 (HC_{Ar}), 128.6 (HC_{Ar}), 128.1 (HC_{Ar}), 124.9 (HC_{Ar}), 118.7 (C_{Ar}), 110.1 ($HC_{pytrole}$), 60.6 (OCH_2CH_3), 21.5 ($ArCH_3$), 14.5 (OCH_2CH_3). Physical and spectroscopic data are consistent with those previously reported. ¹⁶

Ethyl 3-(3-methoxyphenyl)-5-phenyl-1H-pyrrole-2-carboxylate (10c)

1,4-Dicarbonyl compound **9c** (40 mg, 0.10 mmol, 1.0 equiv) was subjected to **General procedure F** to give the *title compound* **10c** (32 mg, 100%) as colourless plates. **mp**: 119–121 °C (c-hexane); **IR**: v_{max} 3305, 3008, 2961, 2936, 2834, 1659, 1610, 1577, 1519, 1486, 1470, 1453, 1435, 1387, 1365, 1315, 1288, 1267, 1207, 1174, 1129, 1081, 1049, 1021, 995, 970, 917, 877, 849, 825, 817, 783, 770, 725, 695, 658, 616 cm⁻¹; **HRMS**: calculated for $C_{20}H_{20}NO_3$, 322.14377 [M+H]⁺, found m/z 322.14386, $\Delta = 0.28$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 9.34 (1H, br s, N*H*), 7.60 (2H, d, J = 7.1 Hz, HC_{Ar}), 7.44 (2H, dd, J = 7.6, 7.6 Hz, HC_{Ar}), 7.38–7.27 (2H, m, HC_{Ar}), 7.22–7.15 (2H, m, HC_{Ar}), 6.88 (1H, ddd, J = 8.2, 2.6, 1.1 Hz, HC_{Ar}), 6.64 (1H, d, J = 3.1 Hz, $HC_{pytrole}$), 4.29 (2H, q, J = 7.1 Hz, OCH_2CH_3), 3.86 (3H, s, OCH_3), 1.28 (3H, t, J = 7.1 Hz, OCH_2CH_3); ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (C(O)), 159.3 (C_{Ar}), 136.6 (C_{Ar}), 135.5 (C_{Ar}), 133.4 (C_{Ar}), 131.2 (C_{Ar}), 129.3 (HC_{Ar}), 128.8 (HC_{Ar}), 128.2 (HC_{Ar}), 125.0 (HC_{Ar}), 122.3 (HC_{Ar}), 118.9 (C_{Ar}), 115.4 (HC_{Ar}), 113.0 (HC_{Ar}), 110.2 ($HC_{pytrole}$), 60.7 (OCH_2CH_3), 55.5 (OCH_3), 14.5 (OCH_2CH_3).

Ethyl 3-[4-(dimethylamino)phenyl]-5-phenyl-1H-pyrrole-2-carboxylate (10d)

NMe₂ 1,4-Dicarbonyl compound **9d** (41 mg, 0.10 mmol, 1.0 equiv) was subjected to **General procedure F**. Purification my flash column chromatography (DCM) gave the *title compound* **10d** (29 mg, 86%) as colourless needles. **mp**: 141–143 °C (*c*-hexane) [lit. 17 mp 135–137 °C (EtOH)]; **IR:** v_{max} 3333, 3069, 2888, 2799, 1659, 1611, 1556, 1531, 1502, 1477, 1443, 1387, 1351, 1289, 1262, 1197, 1164, 1135, 1124, 1076, 1061, 1028, 985,

945, 907, 878, 809, 773, 755, 732, 686, 642, 614 cm⁻¹; **HRMS:** calculated for $C_{21}H_{23}N_2O_2$, 335.17540 [M+H]⁺, found m/z 335.17532, $\Delta = -0.24$ ppm; ¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.40 (1H, br s, N*H*), 7.64 (2H, d, J = 7.3 Hz, HC_{Ar}), 7.52 (2H, d, J = 8.8 Hz, HC_{Ar}), 7.44 (2H, dd, J = 7.7, 7.7 Hz, HC_{Ar}), 7.33 (1H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 6.76 (2H, d, J = 8.8 Hz, HC_{Ar}), 6.63 (1H, d, J = 3.1 Hz, $HC_{pytrole}$), 4.30 (2H, q, J = 7.1 Hz, OCH_2CH_3), 2.99 (6H, s, N(C*H*₃)₂), 1.32 (3H, t, J = 7.1 Hz, OCH_2CH_3); ¹³C **NMR** (101 MHz, CD₂Cl₂) δ 161.6 (*C*(O)), 150.5 (*C*_{Ar}), 135.6 (*C*_{Ar}), 134.3 (*C*_{Ar}), 131.8 (*C*_{Ar}), 130.7 (H*C*_{Ar}), 129.6 (H*C*_{Ar}), 128.3 (H*C*_{Ar}), 125.2 (H*C*_{Ar}), 123.3 (*C*_{Ar}), 118.6 (*C*_{Ar}), 112.2 (H*C*_{Ar}), 109.9 (H*C*_{pytrole}), 60.8 (O*C*H₂CH₃), 40.9 (N(*C*H₃)₂), 14.8 (OCH₂*C*H₃). Physical and spectroscopic data are consistent with those previously reported.¹⁷

S3.3.3 Cyclisation to furan-2-carboxylates 11

General procedure G: Step 1: In a Biotage[®] microwave vial, a mixture of the appropriate 1,4-dicarbonyl scaffold 9 (0.10 mmol, 1 0 equiv) and p-toluenesulfonic acid monohydrate (190 mg, 1.00 mmol, 10 equiv) in EtOH (3 mL) was heated at 115 °C for 24 h. The reaction mixture was cooled to rt, diluted with DCM and washed with saturated aq NaHCO₃. The aqueous phase was extracted with DCM (3 × 50 mL) and the combined organic extracts were dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography to afford the desired furans 11.

Ethyl 5-phenyl-3-[4-(trifluoromethyl)phenyl]furan-2-carboxylate (11a)

CF₃ 1,4-Dicarbonyl compound **9a** (43 mg, 0.10 mmol, 1.0 equiv) was subjected to **General procedure G** (chromatography eluent: n-pentane/Et₂O, 95:5) to give the *title compound* **11a** (25 mg, 68%) as colourless plates. **mp**: 124–125 °C (n-pentane/Et₂O at –20 °C); **IR**: ν_{max} 3073, 3001, 2976, 2940, 2909, 1713, 1638, 1620, 1578, 1543, 1509, 1476, 1448, 1418, 1402, 1388, 1360, 1321, 1294, 1267, 1183, 1166, 1120, 1107, 1068, 1021, 984, 959, 933, 921, 857, 846, 819, 773, 746, 693, 678, 659, 631, 618 cm⁻¹; **HRMS**: calculated for C₂₀H₁₅F₃O₃²³Na, 383.08655 [M+Na]⁺, found m/z 383.08646, Δ = –0.24 ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (2H, d, J = 7.2 Hz, HC_{Ar}), 7.74 (2H, d, J = 8.3 Hz, HC_{Ar}), 7.68 (2H, d, J = 8.3 Hz, HC_{Ar}), 7.46 (2H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 7.39 (1H, dd, J = 7.3, 7.3 Hz, HC_{Ar}), 6.85 (1H, s, HC_{furan}), 4.34 (2H, q, J = 7.1 Hz, OCH2CH₃), 1.32 (3H, t, J = 7.1 Hz OCH₂CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 159.2 (C(O)), 156.4 (C_{Ar}), 138.7 (C_{Ar}),

136.1 (C_{Ar}), 135.2 (C_{Ar}), 130.5 (q, ${}^{2}J_{CF} = 32.5$ Hz, $F_{3}CC_{Ar}$), 129.9 (H C_{Ar}), 129.5 (H C_{Ar}), 129.3 (C_{Ar}), 129.1 (H C_{Ar}), 125.2 (H C_{Ar}), 125.1 (q, ${}^{3}J_{CF} = 3.8$ Hz, H C_{Ar}), 124.3 (q, ${}^{1}J_{CF} = 272.0$ Hz, CF_{3}), 109.2 (H C_{furan}), 61.2 (O $CH_{2}CH_{3}$), 14.4 (O $CH_{2}CH_{3}$); ¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.6 (3F, s, C F_{3}).

Ethyl 5-phenyl-3-(p-tolyl)furan-2-carboxylate (11b)

Me 1,4-Dicarbonyl compound **9b** (38 mg, 0.10 mmol, 1.0 equiv) was subjected to **General procedure G** (chromatography eluent: *n*-pentane/Et₂O, 95:5) to give the *title compound* **11b** (28 mg, 94%) as colourless plates. **mp**: 112–113 °C (*n*-pentane at –20 °C); **IR**: ν_{max} 2997, 2974, 2907, 1705, 1614, 1589, 1576, 1541, 1505, 1476, 1446, 1414, 1400, 1387, 1376, 1357, 1317, 1289, 1266, 1226, 1177, 1157, 1125, 1109, 1074, 1063, 1024, 1000, 982, 951, 932, 920, 874, 843, 811, 772, 721, 693, 660, 634, 619 cm⁻¹; **HRMS**: calculated for C₂₀H₁₉O₃, 307.13287 [M+H]⁺, found m/z 307.13300, Δ = 0.41 ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (2H, d, *J* = 7.2 Hz, *H*C_{Ar}), 7.53 (2H, d, *J* = 8.1 Hz, *H*C_{Ar}), 7.44 (2H, dd, *J* = 7.4, 7.4 Hz, *H*C_{Ar}), 7.37 (1H, dd, *J* = 7.4, 7.4 Hz, *H*C_{Ar}), 7.23 (2H, d, *J* = 8.2 Hz, *H*C_{Ar}), 6.84 (1H, s, *H*C_{furan}), 4.34 (2H, q, *J* = 7.1 Hz, OCH₂CH₃), 2.40 (3H, s, ArCH₃), 1.33 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 159.5 (*C*(O)), 155.9 (*C*_{Ar}), 138.4 (*C*_{Ar}), 138.2 (*C*_{Ar}), 136.7 (*C*_{Ar}), 129.6 (*C*_{Ar}), 129.4 (H*C*_{Ar}), 129.3 (*C*_{Ar}), 129.2 (H*C*_{Ar}), 129.0 (H*C*_{Ar}), 128.9 (H*C*_{Ar}), 125.1 (H*C*_{Ar}), 109.6 (H*C*_{furan}), 60.9 (OCH₂CH₃), 21.5 (ArCH₃), 14.5 (OCH₂CH₃).

Ethyl 3-(3-methoxyphenyl)-5-phenylfuran-2-carboxylate (11c)

MeO 1,4-Dicarbonyl compound **9c** (40 mg, 0.10 mmol, 1.0 equiv) was subjected to **General procedure G** (chromatography eluent: n-pentane/Et₂O, 95:5) to give the *title compound* **11c** (27 mg, 85%) as colourless needles. **mp**: 102–104 °C (n-pentane/Et₂O at –20 °C); **IR**: v_{max} 3083, 2998, 2937, 2837, 1702, 1607, 1593, 1577, 1540, 1481, 1450, 1429, 1397, 1357, 1313, 1265, 1248, 1200, 1168, 1110, 1089, 1066, 1052, 1024, 1001, 932, 878, 831, 812, 783, 770, 704, 692, 661, 617 cm⁻¹; **HRMS**: calculated for $C_{20}H_{19}O_4$, 323.12779 [M+H]⁺, found m/z 323.12790, Δ = 0.35 ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (2H, d, J = 7.1 Hz, HC_{Ar}), 7.45 (2H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 7.41–7.30 (2H, m, HC_{Ar}), 7.23–7.14 (2H, m, HC_{Ar}), 6.93 (1H, ddd, J = 8.3, 2.6, 1.1 Hz, HC_{Ar}), 6.85 (1H, s, HC_{Guran}), 4.34 (2H, q, J = 7.1 Hz, OC H_2 CH₃), 3.86 (3H, s, OC H_3), 1.32 (3H, t, J = 7.1 Hz,

OCH₂CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 159.4 (C(O) and MeOC_{Ar}), 156.0 (C_{Ar}), 138.5 (C_{Ar}), 136.4 (C_{Ar}), 133.6 (C_{Ar}), 129.6 (C_{Ar}), 129.3 (HC_{Ar}), 129.2 (HC_{Ar}), 129.1 (HC_{Ar}), 125.1 (HC_{Ar}), 122.0 (HC_{Ar}), 115.3 (HC_{Ar}), 114.1 (HC_{Ar}), 109.6 (HC_{furan}), 61.0 (OCH₂CH₃), 55.5 (OCH₃), 14.5 (OCH₂CH₃).

Ethyl 3-[4-(dimethylamino)phenyl]-5-phenylfuran-2-carboxylate (11d)

1,4-Dicarbonyl compound **9d** (41 mg, 0.10 mmol, 1.0 equiv) was NMe₂ subjected to General procedure G (chromatography eluent: *n*-pentane/Et₂O, 80:20) to give the *title compound* **11d** (33 mg, 97%) as pale-yellow needles. **mp**: 115-117 °C (c-hexane); **IR**: v_{max} 2979, 2934, 2903, 2803, 1699, 1611, 1543, 1509, 1478, 1446, 1403, 1385, 1353, 1319, 1295, 1283, 1267, 1222, 1197, 1175, 1157, 1132, 1110, 1074, 1061, 1024, 980, 945, 931, 920, 877, 838, 826, 812, 774, 729, 694, 659, 629, 614 cm⁻¹; **HRMS**: calculated for $C_{21}H_{22}NO_3$, 336.15942 [M+H]⁺, found m/z 336.15924, $\Delta = -0.53$ ppm; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (2H, d, J = 7.2 Hz, HC_{Ar}), 7.60 (2H, d, J = 8.9 Hz, HC_{Ar}), 7.44 (2H, dd, J =7.5, 7.5 Hz, HC_{Ar}), 7.35 (1H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 6.85 (1H, s, HC_{furan}), 6.77 (2H, d, J= 8.8 Hz, HC_{Ar}), 4.36 (2H, q, J = 7.1 Hz, OCH_2CH_3), 3.01 (6H, s, $N(CH_3)_2$), 1.37 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 159.8 (C(O)), 155.7 (C_{Ar}), 150.7 (C_{Ar}), 137.5 (C_{Ar}), 137.2 (C_{Ar}), 130.5 (HC_{Ar}), 129.8 (C_{Ar}), 129.04 (HC_{Ar}), 128.98 (HC_{Ar}), 125.1 (HC_{Ar}) , 119.7 (C_{Ar}) , 111.9 (HC_{Ar}) , 109.4 (HC_{furan}) , 60.8 (OCH_2CH_3) , 40.7 $(N(CH_3)_2)$, 14.6 (OCH_2CH_3) .

S3.3.4 Cyclisation to *N*-substituted pyrrole-2-carboxylates 12-13

General procedure H: Step 1: In a Biotage[®] microwave vial sealed with a microwave vial cap (ResealTM septum), a mixture of 1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-4-phenyl-2-(p-tolyl)butane-1,4-dione (**9b**) (38.0 mg, 0.10 mmol, 1.0 equiv) and the appropriate amine (0.12 mmol, 1.2 equiv) in AcOH (3 mL) was heated at 120 °C for 15 h. The reaction mixture was then cooled to rt, poured onto crushed ice and neutralized by careful addition of solid K_2CO_3 . The aqueous phase was extracted with DCM (3 × 50 mL) and the combined organic extracts were dried over Na₂SO₄, filtered and evaporated *in vacuo*. Step 2: The crude residue was dissolved in EtOH (3 mL) and transferred to a Biotage[®] microwave vial. Dried and finely powdered K_2CO_3 (55 mg, 0.40 mmol, 4.0 equiv) was added and the vial was sealed with a microwave vial cap (ResealTM septum). The mixture was heated at 120 °C for 15 h.

The temperature was then increased to 140 °C and the reaction was heated for additional 5 h (CAUTION: high pressure - protected with blast shield). The reaction mixture was then cooled to rt, the solvent was evaporated *in vacuo* and the residue was partitioned in DCM/water. The organic layer was collected, and the aqueous layer was extracted with DCM (3 \times 50 mL). The combined organic extracts were dried with Na₂SO₄, filtered and concentrated *in vacuo*. Purification by column chromatography gave the corresponding pyrroles 12-13.

Ethyl 1,5-diphenyl-3-(p-tolyl)-1H-pyrrole-2-carboxylate (12)

Me Aniline (11 μL, 0.12 mmol, 1.2 equiv) was subjected to **General procedure H** (chromatography eluent: *n*-pentane/Et₂O, 95:5) to give the title compound **12** (28 mg, 73%) as colourless needles. **mp**: 136–137 °C (*n*-pentane/Et₂O at –20 °C); **IR**: v_{max} 3057, 2978, 1699, 1598, 1552, 1522, 1496, 1462, 1450, 1421, 1403, 1370, 1338, 1315, 1295, 1281, 1206, 1195, 1128, 1110, 1089, 1030, 1015, 981, 966, 950, 923, 867, 950, 923, 867, 844, 832, 813, 784, 765, 697, 670 cm⁻¹; **HRMS**: calculated for $C_{26}H_{23}NO_{2}^{23}Na$, 404.16210 [M+Na]⁺, found m/z 404.16229, Δ = 0.48 ppm; ¹**H NMR** (400 MHz, acetone- d_{6}) δ 7.47 (2H, d, J = 8.1 Hz, HC_{Ar}), 7.40–7.35 (3H, m, HC_{Ar}), 7.29–7.24 (2H, m, HC_{Ar}), 7.23–7.15 (7H, m, HC_{Ar}), 6.53 (1H, s, $HC_{pyrrole}$), 3.91 (2H, q, J = 7.1 Hz, $OCH_{2}CH_{3}$), 2.36 (3H, s, $ArCH_{3}$), 0.86 (3H, t, J = 7.1 Hz, $OCH_{2}CH_{3}$); ¹³C **NMR** (101 MHz, acetone- d_{6}) δ 161.9 (C(O)), 140.7 (C_{Ar}), 139.8 (C_{Ar}), 137.1 (C_{Ar}), 133.8 (C_{Ar}), 133.1 (C_{Ar}), 130.1 (HC_{Ar}), 129.9 (HC_{Ar}), 129.6 (HC_{Ar}), 129.4 (HC_{Ar}), 129.3 (HC_{Ar}), 129.0 (HC_{Ar}), 128.8 (HC_{Ar}), 128.3 (HC_{Ar}), 123.3 (C_{Ar}), 112.4 ($HC_{pyrrole}$), 60.5 ($OCH_{2}CH_{3}$), 21.3 ($ArCH_{3}$), 14.0 ($OCH_{2}CH_{3}$).

Ethyl 1-benzyl-5-phenyl-3-(p-tolyl)-1H-pyrrole-2-carboxylate (13)

Benzylamine (8.5 μL, 0.12 mmol, 1.2 equiv) was subjected to **General procedure H** (chromatography eluent: *n*-pentane/Et₂O, 95:5) to give the title compound **13** (26 mg, 66%) as colourless plates. **mp**: 106–107 °C (*n*-pentane/Et₂O at –20 °C); **IR**: ν_{max} 3027, 2982, 2936, 1681, 1604, 1586, 1554, 1525, 1494, 1478, 1452, 1438, 1419, 1399, 1361, 1345, 1308, 1274, 1244, 1204, 1190, 1158, 1128, 1109, 1076, 1059, 1027, 1002, 977, 923, 898, 873, 839, 818, 772, 764, 729, 696 cm⁻¹; **HRMS**: calculated for $C_{27}H_{25}NO_2^{23}Na$, 418.17775 [M+Na]⁺, found m/z 418.17786, $\Delta = 0.25$ ppm; ¹**H NMR** (400 MHz, acetone- d_6) δ 7.48–7.39 (5H, m, HC_{Ar}), 7.35 (2H, d, J = 8.1 Hz, HC_{Ar}), 7.24 (2H, dd, J = 7.3, 7.3 Hz, HC_{Ar}), 7.21–

7.14 (3H, m, HC_{Ar}), 6.90 (2H, d, J = 7.1 Hz, HC_{Ar}), 6.35 (1H, s, $HC_{pytrole}$), 5.66 (2H, s, PhC H_2 N), 4.00 (2H, q, J = 7.1 Hz, OC H_2 CH₃), 2.35 (3H, s, ArC H_3), 0.97 (3H, t, J = 7.1 Hz, OC H_2 CH₃); ¹³C NMR (101 MHz, acetone- I_3 0 δ 162.4 (I_3 0), 141.3 (I_4 1, 140.5 (I_4 1), 136.9 (I_4 1), 134.6 (I_4 1), 134.5 (I_4 1), 133.1 (I_4 1), 130.4 (I_4 1), 130.2 (I_4 1), 129.6 (I_4 1), 129.3 (I_4 1), 129.3 (I_4 1), 129.3 (I_4 1), 129.3 (I_4 2), 129.1 (I_4 3), 127.8 (I_4 4), 126.7 (I_4 6), 120.9 (I_4 7), 112.7 (I_4 7), 120.9 (I_4 8), 50.1 (Ph I_4 8), 21.3 (Ar I_4 8), 14.2 (OC I_4 9).

S3.4 Synthesis of pyridine-2-carboxylates 16

S3.4.1 1,5-Dicarbonyl scaffolds 15

General procedure I: To a stirred mixture of the appropriate arylated OBO-ketone **8** (0.50 mmol, 1.0 equiv), KOH (34 mg, 0.60 mmol, 1.2 equiv) and EtOH (7.5 mL), the appropriate α,β -unsaturated ketone **14** (0.55 mmol, 1.1 equiv) was added in one portion and the mixture was stirred at rt. After complete consumption of the starting material (2 h, by TLC), the reaction was quenched with saturated aq NH₄Cl and extracted with DCM (3 × 80 mL). The combined organic extracts were then dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography to give the corresponding product **15**.

1-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-3,5-diphenyl-2-(p-tolyl)pentane-1,5-dione (15a)

Arylated OBO-ketone **8b**⁶ (131 mg, 0.499 mmol, 1.0 equiv) and *trans*-chalcone (**14a**) (115 mg, 0.552 mmol, 1.1 equiv) were subjected to **General procedure I** (chromatography eluent: *n*-pentane/acetone, 80:20) to give the *title compound* **15a** (217 mg, 92%) as colourless needles. **mp**: 227–229 °C

(c-hexane/EtOH); **IR:** v_{max} 3031, 2961, 2934, 2891, 1742, 1682, 1598, 1581, 1513, 1494, 1470, 1450, 1401, 1352, 1304, 1244, 1193, 1073, 1060, 1047, 1031, 1003, 987, 953, 928, 907, 880, 861, 834, 805, 788, 778, 763, 750, 716, 697, 689, 610 cm⁻¹; **HRMS:** calculated for $C_{30}H_{31}O_5$, 471.21660 [M+H]⁺, found m/z 471.21585, $\Delta = -1.59$ ppm; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (2H, d, J = 7.1 Hz, HC_{Ar}), 7.45 (1H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 7.32 (2H, dd, J = 7.7, 7.7 Hz, HC_{Ar}), 7.29–7.23 (4H, m, HC_{Ar}), 7.18 (2H, dd, J = 7.5, 7.5 Hz, HC_{Ar}), 7.13–7.04 (3H, m, HC_{Ar}), 4.75 (1H, d, J = 10.8 Hz, ArCHC(O)), 4.13 (1H, ddd, J = 10.4, 10.4, 3.9 Hz, PhCH), 3.80 (6H, s, C(OC H_2)₃C), 3.10 (1H, dd, J = 16.2, 10.0 Hz, C(O)C H_a H_bC), 3.00 (1H, dd, J = 16.2, 4.0 Hz, C(O)CH_aH_bC), 2.31 (3H, s, ArC H_3), 0.74 (3H, s, C H_3); ¹³C NMR (101 MHz, CDCl₃) δ 198.9 (C(O)), 196.8 (C(O)), 141.9 (C_{Ar}), 137.4 (C_{Ar}), 137.3 (C_{Ar}), 133.3 (C_{Ar}), 132.8 (H C_{Ar}), 129.6 (H C_{Ar}), 129.5 (H C_{Ar}), 128.8 (H C_{Ar}), 128.5 (H C_{Ar}), 128.2 (H C_{Ar}), 128.1 (H C_{Ar}), 126.7 (H C_{Ar}), 103.9 (CO₃), 73.0 (C(OCH₂)₃C), 57.0 (ArCHC(O)), 44.6 (PhCH), 42.9 (C(O)CH_aH_bC), 31.0 (C(OCH₂)₃CMe), 21.3 (ArCH₃), 14.4 (CH₃).

3-(4-Methoxyphenyl)-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-5-phenyl-2-(p-tolyl)pentane-1,5-dione (15b)

Arylated OBO-ketone **8b**⁶ (131 mg, 0.499 mmol, 1.0 equiv) and 4-methoxychalcone (**14b**) (131 mg, 0.550 mmol, 1.1 equiv) were subjected to **General procedure I** (chromatography eluent: *n*-pentane/acetone, 80:20) to give the *title compound* **15b** (215 mg, 86%) as colourless needles.

mp: 218.5–220 °C (*c*-hexane/EtOH); **IR**: v_{max} 2936, 2883, 2834, 1742, 1680, 1612, 1597, 1581, 1512, 1449, 1399, 1347, 1303, 1286, 1247, 1179, 1110, 1076, 1032, 1001, 992, 928, 880, 861, 827, 796, 751, 735, 709, 691 cm⁻¹; **HRMS**: calculated for $C_{31}H_{32}O_6^{23}Na$, 523.20911 [M+Na]⁺, found m/z 523.20917, Δ = 0.11 ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (2H, d, J = 7.1 Hz, HC_{Ar}), 7.45 (1H, dd, J = 7.4, 7.4 Hz, HC_{Ar}), 7.32 (2H, dd, J = 7.7, 7.7 Hz, HC_{Ar}), 7.26 (2H, d, J = 8.1 Hz, HC_{Ar}), 7.15 (2H, d, J = 8.7 Hz, HC_{Ar}), 7.10 (2H, d, J = 7.9 Hz, HC_{Ar}), 6.72 (2H, d, J = 8.7 Hz, HC_{Ar}), 4.69 (1H, d, J = 10.8 Hz, ArCHC(O)), 4.07 (1H, ddd, J = 10.4, 10.4, 4.0 Hz, 4-MeOC₆H₄CH), 3.80 (6H, s, C(OCH₂)₃C), 3.72 (3H, s, OCH₃), 3.04 (1H, dd, J = 16.0, 10.0 Hz, C(O)CH_aH_bC), 2.96 (1H, dd, J = 16.1, 4.1 Hz, C(O)CH_aH_bC), 2.31 (3H, s, $ArCH_3$), 0.74 (3H, s, CH_3); ¹³C **NMR** (101 MHz, CDCl₃) δ 199.1 (C(O)), 196.9 (C(O)), 158.2 (C_{Ar}), 137.4 (C_{Ar}), 137.3(C_{Ar}), 134.0 (C_{Ar}), 133.5 (C_{Ar}), 132.8 (H C_{Ar}), 129.7 (H C_{Ar}), 129.6 (H C_{Ar}), 129.5 (H C_{Ar}), 128.5 (H C_{Ar}), 128.1 (H C_{Ar}), 113.6 (H C_{Ar}), 103.9 (CO_3), 73.0 (C(OCH₂)₃C), 57.2 (ArCHC(O)), 55.3 (OCH₃), 44.0 (4-MeOC₆H₄CH), 43.1 (C(O)CH_aH_bC), 31.0 (C(OCH₂)₃CMe), 21.3 (ArCH₃), 14.4 (CCH₃).

1-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-3-(4-nitrophenyl)-5-phenyl-2-(p-tolyl)-pentane-1,5-dione (15c)

Arylated OBO-ketone **8b**⁶ (131 mg, 0.499 mmol, 1.0 equiv) and 4-nitrochalcone (**14c**) (139 mg, 0.549 mmol, 1.1 equiv) were subjected to **General procedure I** (chromatography eluent: *n*-pentane/acetone, 80:20) to give the *title compound* **15c** (250 mg, 97%) as pale-yellow needles. **mp**: 273–275 °C

(*c*-hexane/EtOH); **IR**: v_{max} 3032, 2941, 2876, 1737, 1682, 1597, 1581, 1517, 1491, 1468, 1449, 1412, 1398, 1345, 1243, 1193, 1109, 1070, 1043, 1030, 1000, 950, 927, 881, 868, 855, 849, 832, 807, 789, 779, 757, 720, 691, 654, 632 cm⁻¹; **HRMS**: calculated for $C_{30}H_{29}NO_7^{23}Na$, 538.18362 [M+Na]⁺, found m/z 538.18359, $\Delta = -0.06$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (2H, d, J = 8.7 Hz, HC_{Ar}), 7.63 (2H, d, J = 7.3 Hz, HC_{Ar}), 7.53-7.44

(3H, m, HC_{Ar}), 7.34 (2H, dd, J = 7.7, 7.7 Hz, HC_{Ar}), 7.26 (2H, d, J = 8.0 Hz, HC_{Ar}), 7.13 (2H, d, J = 7.9 Hz, HC_{Ar}), 4.73 (1H, d, J = 11.2 Hz, ArCHC(O)), 4.23 (1H, ddd, J = 10.7, 10.7, 3.5 Hz, 4-O₂NC₆H₄CH), 3.79 (6H, s, C(OCH₂)₃C), 3.15 (1H, dd, J = 16.9, 10.3 Hz, C(O)CH_aH_bC), 3.02 (1H, dd, J = 16.8, 3.5 Hz, C(O)CH_aH_bC), 2.32 (3H, s, $ArCH_3$), 0.75 (3H, s, CCH_3); ¹³C NMR (101 MHz, CDCl₃) δ 197.9 (C(O)), 196.4 (C(O)), 150.1 (C_{Ar}), 146.8 (C_{Ar}), 137.9 (C_{Ar}), 136.8 (C_{Ar}), 133.3 (C_{Ar}), 132.5 (C_{Ar}), 129.9 (C_{Ar}), 129.8 (C_{Ar}), 129.4 (C_{Ar}), 128.7 (C_{Ar}), 128.0 (C_{Ar}), 123.5 (C_{Ar}), 103.8 (C_{Ar}), 73.1 (C_{Ar}), 56.7 (C_{Ar}), 44.5 (4-O₂NC₆H₄CH), 42.4 (C_{Ar}), 103.8 (C_{Ar}), 31.0 (C_{Ar}), 21.4 (C_{Ar}), 14.3 (C_{Ar}), 14.

2-(3-Methoxyphenyl)-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-3-(4-nitrophenyl)-5-phenylpentane-1,5-dione (15d)

OMe OOOMe OOOMe OOOMe Arylated OBO-ketone **8c** (138 mg, 0.496 mmol, 1.0 equiv) and 4-nitrochalcone (**14c**) (139 mg, 0.549 mmol, 1.1 equiv) were subjected to **General procedure I** (chromatography eluent: *n*-pentane/acetone, 80:20) to give the *title compound* **15d** (249 mg, 94%) as pale-yellow plates. **mp**: 222–224 °C

(*c*-hexane); **IR:** v_{max} 3069, 2934, 2883, 1742, 1731, 1682, 1606, 1581, 1518, 1487, 1471, 1449, 1433, 1400, 1344, 1320, 1294, 1259, 1244, 1185, 1147, 1108, 1076, 1044, 1027, 1002, 988, 957, 928, 902, 890, 870, 853, 826, 798, 777, 754, 713, 692, 670, 658, 633, 611 cm⁻¹; **HRMS:** calculated for $C_{30}H_{29}NO_8^{23}Na$, 554.17854 [M+Na]⁺, found m/z 554.17914, Δ = 1.08 ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (2H, d, J = 8.8 Hz, HC_{Ar}), 7.64 (2H, d, J = 7.2 Hz, HC_{Ar}), 7.51–7.45 (3H, m, HC_{Ar}), 7.34 (2H, dd, J = 7.7, 7.7 Hz, HC_{Ar}), 7.25 (1H, dd, J = 7.9, 7.9 Hz, HC_{Ar}), 6.98 (1H, d, J = 7.7 Hz, HC_{Ar}), 6.94–6.90 (1H, m, HC_{Ar}), 6.81 (1H, dd, J = 8.2, 2.1 Hz, HC_{Ar}), 4.75 (1H, d, J = 11.3 Hz, ArCHC(O)), 4.24 (1H, ddd, J = 10.7, 10.7, 3.5 Hz, 4-O₂NC₆H₄CH), 3.80 (6H, s, $C(OCH_2)_3C$), 3.79 (3H, s, OCH_3), 3.17 (1H, dd, J = 16.9, 10.3 Hz, $C(O)CH_aH_bC$), 3.03 (1H, dd, J = 16.9, 3.6 Hz, $C(O)CH_aH_bC$), 0.75 (3H, s, CH_3); 13C NMR (101 MHz, $CDCl_3$) δ 197.8 (C(O)), 196.2 (C(O)), 160.1 (C_{Ar}), 150.0 (C_{Ar}), 146.8 (C_{Ar}), 137.1 (C_{Ar}), 136.8 (C_{Ar}), 133.3 (C_{Ar}), 130.0 (C_{Ar}), 113.7 (C_{Ar}), 128.7 (C_{Ar}), 128.0 (C_{Ar}), 123.5 (C_{Ar}), 122.0 (C_{Ar}), 114.9 (C_{Ar}), 113.7 (C_{Ar}), 103.8 (C_{Ar}), 73.1 (C_{Ar}), 55.5 (C_{Ar}), 55.5 (C_{Ar}), 44.5 (4-O₂NC₆H₄CH), 42.4 (C_{Ar}), 131.0 (C_{Ar}), 150.0 (C_{Ar}), 143.1 (C_{Ar}), 150.0 (C_{Ar}), 144.5 (C_{Ar}), 150.0 (C_{Ar}), 160.1 (C_{Ar}),

S3.4.2 Cyclisation to pyridine-2-carboxylates 16

General procedure J: Step 1: In a Biotage[®] microwave vial sealed with a microwave vial cap (ResealTM septum), a mixture of the appropriate 1,5-dicarbonyl compound **15** (0.10 mmol, 1.0 equiv), hydroxylamine hydrochloride (21 mg, 0.30 mmol, 3.0 equiv), p-toluenesulfonic acid monohydrate (190 mg, 1.00 mmol, 10 equiv) and EtOH (3 mL) was heated at 115 °C for 16 h. The reaction mixture was cooled to rt, diluted with DCM (30 mL) and washed with saturated aq NaHCO₃ (50 mL). The aqueous layer was extracted with DCM (4 x 30 mL) and the organic extracts were combined, dried over Na₂SO₄, filtered, concentrated *in vacuo* and purified by flash column chromatography to give the corresponding pyridine-2-carboxylate **16**.

Ethyl 4,6-diphenyl-3-(p-tolyl)picolinate (16a)

1,5-Dicarbonyl compound 15a (47 mg, 0.10 mmol, 1.0 equiv) Ph subjected to General procedure J (chromatography eluent: *n*-pentane/Et₂O, 90:10) to give the *title compound* **16a** (33 mg, 84%) as colourless prisms. **mp**: 138–139 °C (*c*-hexane); **IR**: v_{max} 3037, 2976, 2927, 1736, 1586, 1576, 1536, 1516, 1495, 1465, 1453, 1428, 1395, 1366, 1350, 1319, 1287, 1240, 1191, 1112, 1103, 1094, 1071, 1026, 1003, 976, 927, 891, 863, 840, 824, 800, 777, 762, 744, 721, 705, 696, 678, 668, 637, 617 cm⁻¹; **HRMS**: calculated for C₂₇H₂₄NO₂, 394.18016 [M+H]⁺, found m/z 394.18027, $\Delta = 0.28$ ppm; ¹H NMR (400 MHz, acetone- d_6) δ 8.26-8.22 (2H, m, HC_{Ar}), 8.03 (1H, s, HC_{pyridine}), 7.57-7.43 (3H, m, HC_{Ar}), 7.33-7.22 (5H, m, HC_{Ar}), 7.09 (2H, d, J = 7.9 Hz, HC_{Ar}), 7.04 (2H, d, J = 8.2 Hz, HC_{Ar}), 4.09 (2H, q, J = 7.1Hz, OC H_2 CH₃), 2.29 (3H, s, ArC H_3), 1.00 (3H, t, J = 7.1 Hz, OC H_2 C H_3); ¹³C NMR (101 MHz, CDCl₃) δ 168.0 (C(O)), 156.1 (C_{Ar}), 151.9 (C_{Ar}), 150.7 (C_{Ar}), 138.8 (C_{Ar}), 138.5 (C_{Ar}), 137.4 (C_{Ar}) , 133.3 (C_{Ar}) , 132.7 (C_{Ar}) , 130.0 (HC_{Ar}) , 129.5 (HC_{Ar}) , 129.5 (HC_{Ar}) , 128.9 (HC_{Ar}) , 128.9 (HC_{Ar}) , 128.3 (HC_{Ar}) , 128.0 (HC_{Ar}) , 127.4 (HC_{Ar}) , 122.8 $(HC_{pvridine})$, 61.6 (OCH₂CH₃), 21.4 (ArCH₃), 13.9 (OCH₂CH₃).

MHz, acetone- d_6) δ 7.78 (1H, s, $HC_{pyridine}$), 7.48–7.39 (2H, m, HC_{Ar}), 7.35 (2H, d, J = 7.9 Hz, HC_{Ar}), 7.31–7.18 (10H, m, HC_{Ar}), 4.25 (2H, q, J = 7.1 Hz, OCH_2CH_3), 2.41 (3H, s, $ArCH_3$), 1.14 (3H, t, J = 7.1 Hz, OCH_2CH_3); ¹³C NMR (101 MHz, $CDCl_3$) δ 167.6 (C(O)), 155.7 (C_{Ar}), 148.2 (C_{Ar}), 140.7 ($HC_{pyridine}$), 139.4 (C_{Ar}), 139.3 (C_{Ar}), 138.2 (C_{Ar}), 137. (C_{Ar}), 135.2 (C_{Ar}), 135.1 (C_{Ar}), 130.4 (HC_{Ar}), 129.7 (HC_{Ar}), 129.5 (HC_{Ar}), 128.7 (HC_{Ar}), 128.5 (HC_{Ar}), 128.3 (HC_{Ar}), 128.1 (HC_{Ar}), 127.9 (HC_{Ar}), 61.8 (OCH_2CH_3), 21.5 ($ArCH_3$), 14.0 (OCH_2CH_3).

Ethyl 4-(4-methoxyphenyl)-6-phenyl-3-(p-tolyl)picolinate (16b)

OMe Me Ph N OEt 1,5-Dicarbonyl compound **15b** (50 mg, 0.10 mmol, 1.0 equiv) was subjected to **General procedure J** (chromatography eluent: n-pentane/Et₂O, 90:10) gave the *title compound* **16b** (25 mg, 59%) as colourless plates. **mp**:142–144 °C (c-hexane); **IR**: v_{max} 3036, 2979, 2958, 2837, 1729, 1608, 1578, 1535, 1513, 1495, 1465, 1451, 1433, 1413, 1397, 1376, 1367, 1346, 1301, 1286, 1250, 1204, 1185,

1178, 1152, 1113, 1103, 1072, 1029, 1016, 967, 942, 924, 912, 895, 865, 851, 835, 820, 805, 789, 773, 738, 720, 696, 671, 643, 625 cm⁻¹; **HRMS**: calculated for $C_{28}H_{26}NO_3$, 424.19072 [M+H]⁺, found m/z 424.19043, $\Delta = -0.68$ ppm; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (2H, d, J = 7.0 Hz, HC_{Ar}), 7.84 (1H, s, $HC_{pyridine}$), 7.60–7.39 (3H, m, HC_{Ar}), 7.14–6.99 (6H, m, HC_{Ar}), 6.80 (2H, d, J = 8.8 Hz, HC_{Ar}), 4.16 (2H, q, J = 7.1 Hz, OC H_2 CH₃), 3.81 (3H, s, OCH₃), 2.35 (3H, s, ArC H_3), 1.04 (3H, t, J = 7.1 Hz, OC H_2 CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.1 (C(O)), 159.5 (C_{Ar}), 156.2 (C_{Ar}), 152.0 (C_{Ar}), 150.3 (C_{Ar}), 138.7 (C_{Ar}), 137.4 (C_{Ar}), 133.6 (C_{Ar}), 132.5 (C_{Ar}), 131.1 (C_{Ar}), 130.8 (H C_{Ar}), 130.1 (H C_{Ar}), 129.4 (H C_{Ar}), 129.0 (H C_{Ar}), 128.9 (H C_{Ar}), 127.4 (H C_{Ar}), 122.8 ($HC_{pyridine}$), 113.8 (H C_{Ar}), 61.6 (OCH₂CH₃), 55.4 (OCH₃), 21.5 (ArCH₃), 13.9 (OCH₂CH₃).

MeO Me OEt

Further elution (n-pentane/Et₂O, 90:10) gave ethyl 5-(4-methoxyphenyl)-6-phenyl-3-(p-tolyl)picolinate (**17b**) (13 mg, 30%) as colourless needles. **mp**: 193–194 °C (c-hexane); **IR**: v_{max} 3020, 2983, 2924, 2844, 1723, 1606,

1578, 1510, 1468, 1448, 1426, 1393, 1362, 1318, 1310, 1293, 1269, 1247, 1221, 1203, 1178, 1138, 1112, 1078, 1066, 1032, 1016, 1001, 974, 948, 920, 912, 869, 842, 822, 788, 758, 734, 724, 703, 695, 675, 636 cm⁻¹; **HRMS**: calculated for $C_{28}H_{25}NO_3^{23}Na$, 446.17266 [M+Na]⁺, found m/z 446.17310, $\Delta = 0.97$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (1H, s, $HC_{pyridine}$),

7.45–7.43 (2H, m, HC_{Ar}), 7.34 (2H, d, J = 8.1 Hz, HC_{Ar}), 7.29–7.22 (5H, m, HC_{Ar}), 7.13 (2H, d, J = 8.7 Hz, HC_{Ar}), 6.82 (2H, d, J = 8.8 Hz, HC_{Ar}), 4.24 (2H, q, J = 7.1 Hz, OCH_2CH_3), 3.80 (3H, s, OCH_3), 2.41 (3H, s, $ArCH_3$), 1.13 (3H, t, J = 7.1 Hz, OCH_2CH_3); ¹³C NMR (101 MHz, $CDCl_3$) δ 167.6 (C(O)), 159.4 (C_{Ar}), 155.6 (C_{Ar}), 147.7 (C_{Ar}), 140.6 ($HC_{pyridine}$), 139.5 (C_{Ar}), 138.1 (C_{Ar}), 137.3 (C_{Ar}), 135.3 (C_{Ar}), 135.2 (C_{Ar}), 131.5 (C_{Ar}), 130.8 (HC_{Ar}), 130.3 (HC_{Ar}), 129.4 (HC_{Ar}), 128.5 (HC_{Ar}), 128.19 (HC_{Ar}), 128.16 (HC_{Ar}), 114.1 (HC_{Ar}), 61.8 (OCH_2CH_3), 55.5 (OCH_3), 21.4 ($ArCH_3$), 14.0 (OCH_2CH_3).

Ethyl 4-(4-nitrophenyl)-6-phenyl-3-(p-tolyl)picolinate (16c)

NO₂
1,5-Dic
subjecte
meg, 87

OEt

IR: v_m
1474. 1

1,5-Dicarbonyl compound **15c** (52 mg, 0.10 mmol, 1.0 equiv) was subjected to **General procedure J** (chromatography eluent: n-pentane/DCM, 20:80 to 0:100) to give the *title compound* **16c** (38 mg, 87%) as colourless plates. **mp**: 205–206 °C (c-hexane/EtOH); **IR:** v_{max} 3108, 3081, 2991, 2909, 1740, 1600, 1585, 1640, 1509, 1474, 1454, 1428, 1378, 1363, 1344, 1312, 1285, 1191, 1157, 1108,

1069, 1022, 963, 924, 898, 869, 852, 830, 805, 791, 783, 770, 753, 722, 692, 663, 642, 619 cm⁻¹; **HRMS:** calculated for $C_{27}H_{23}N_2O_4$, 439.16523 [M+H]⁺, found m/z 439.16510, $\Delta = -0.3$ ppm; ¹**H NMR** (400 MHz, CDCl₃) δ 8.14–8.00 (4H, m, HC_{Ar}), 7.82 (1H, s, $HC_{pyridine}$), 7.54–7.41 (3H, m, HC_{Ar}), 7.31 (2H, d, J = 8.7 Hz, HC_{Ar}), 7.06 (2H, d, J = 7.9 Hz, HC_{Ar}), 6.99 (2H, d, J = 8.0 Hz, HC_{Ar}), 4.16 (2H, q, J = 7.1 Hz, OCH_2CH_3), 2.33 (3H, s, $ArCH_3$), 1.03 (3H, t, J = 7.1 Hz, OCH_2CH_3); ¹³C **NMR** (101 MHz, CDCl₃) δ 167.4 (C(O)), 156.5 (C_{Ar}), 152.2 (C_{Ar}), 148.4 (C_{Ar}), 147.5 (C_{Ar}), 145.5 (C_{Ar}), 138.1 (C_{Ar}), 138.0 (C_{Ar}), 132.5 (C_{Ar}), 132.4 (C_{Ar}), 130.4 (C_{Ar}), 129.9 (2 × C_{Ar}), 129.2 (C_{Ar}), 129.1 (C_{Ar}), 127.4 (C_{Ar}), 123.6 (C_{Ar}), 122.1 (C_{Ar}), 129.9 (2 × C_{Ar}), 129.2 (C_{Ar}), 13.9 (C_{Ar}), 127.4 (C_{Ar}), 123.6 (C_{Ar}), 122.1 (C_{Ar}), 121.4 (C_{Ar}), 129.1 (C_{Ar}), 13.9 (C_{Ar}), 123.6 (C_{Ar}), 122.1 (C_{Ar}), 121.6 (C_{Ar}), 122.1 (C_{Ar}), 121.6 (C_{Ar}), 122.1 (C_{Ar}), 122.1 (C_{Ar}), 121.6 (C_{Ar}), 122.1 (C_{Ar}), 123.6 (C_{Ar}), 122.1 (C_{Ar}), 123.6 (C_{Ar}), 123.9 (C_{Ar}), 13.9 (C_{Ar}), 13.9 (C_{Ar}).

Ethyl 3-(3-methoxyphenyl)-4-(4-nitrophenyl)-6-phenylpicolinate (16d)

1,5-Dicarbonyl compound **15d** (53 mg, 0.10 mmol, 1.0 equiv) was subjected to **General procedure J** (chromatography eluent: DCM) to give the *title compound* **16d** (37 mg, 83%) as colourless needles. **mp**: 170-171 °C (*c*-hexane); **IR**: v_{max} 3106, 3080, 2995, 2933, 2833, 1736, 1588, 1537, 1514, 1495, 1462, 1435, 1418, 1398, 1366, 1346, 1321, 1302, 1287, 1270, 1224, 1192, 1181, 1106, 1093, 1069, 1046, 1030,

1014, 976, 934, 908, 872, 856, 831, 792, 772, 755, 748, 703, 666, 633, 619 cm⁻¹; **HRMS**: calculated for $C_{27}H_{22}N_2O_5^{23}Na$, 477.14209 [M+Na]⁺, found m/z 477.14212, $\Delta = 0.06$ ppm;

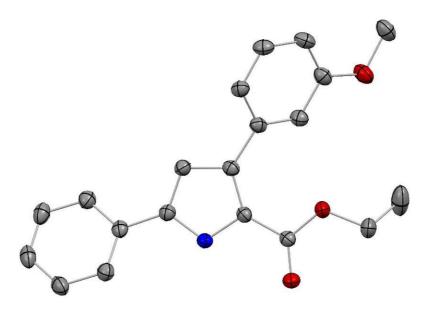
¹H NMR (400 MHz, CDCl₃) δ 8.13 (2H, d, J = 8.8 Hz, HC_{Ar}), 8.10 (2H, dd, J = 8.1, 1.5 Hz, HC_{Ar}), 7.83 (1H, s, $HC_{pyridine}$), 7.54–7.41 (3H, m, HC_{Ar}), 7.34 (2H, d, J = 8.7 Hz, HC_{Ar}), 7.17 (1H, dd, J = 7.9, 7.9 Hz, HC_{Ar}), 6.82 (1H, dd, J = 8.1, 2.2 Hz, HC_{Ar}), 6.71–6.65 (2H, m, HC_{Ar}), 4.17 (2H, q, J = 7.1 Hz, OCH_2CH_3), 3.69 (3H, s, $ArCH_3$), 1.03 (3H, t, J = 7.1 Hz, OCH_2CH_3); ¹³C NMR (101 MHz, CDCl₃) δ 167.4 (C(O)), 159.6 (C_{Ar}), 156.8 (C_{Ar}), 152.1 (C_{Ar}), 148.4 (C_{Ar}), 147.6 (C_{Ar}), 145.4 (C_{Ar}), 137.9 (C_{Ar}), 136.8 (C_{Ar}), 132.3 (C_{Ar}), 130.4 (HC_{Ar}), 130.0 (HC_{Ar}), 129.6 (HC_{Ar}), 129.1 (HC_{Ar}), 127.4 (HC_{Ar}), 123.6 (HC_{Ar}), 122.6 (HC_{Ar}), 122.1 ($HC_{pyridine}$), 115.8 (HC_{Ar}), 113.8 (HC_{Ar}), 61.9 (OCH_2CH_3), 55.4 (OCH_3), 13.9 (OCH_2CH_3).

S4 Single crystal X-ray diffraction for compounds 10c, 11b, 16a and 17b

Single Crystal Data for **10c**: C₂₀H₁₉NO₃

Mr =321.38 150 K

Monoclinic $P2_1/c$


a = 11.0495(2) Å, b = 7.3658(2) Å, c = 20.3211(5) Å

 $\beta = 102.670(2)^{\circ}$ V = 1613.63(7) Å

Data/restraints/parameters - 3337/0/217

Rint = 0.033

Final R1 = 0.0438, wR2 = 0.1154 (I>2 σ (I))

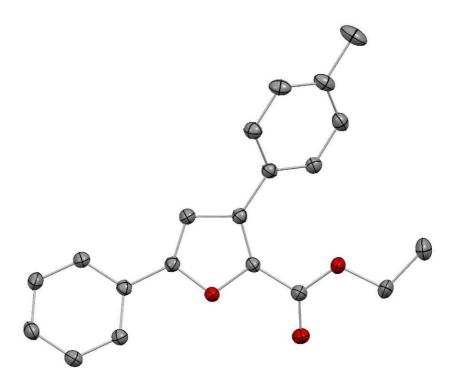
Figure S1. X-ray crystal structure (ellipsoid representation, probability level of 50%) for ethyl 3-(3-methoxyphenyl)-5-phenyl-1*H*-pyrrole-2-carboxylate (**10c**). H atoms are omitted for clarity.

Single Crystal Data for **11b**: C₂₀H₁₈O₃

Mr = 306.36

150 K

Triclinic *P*-1


a = 8.2046(5) Å, b = 9.7927(6) Å, c = 10.6455(6) Å α = 107.704(5)°, β = 93.556(5)°, γ = 103.034(5)°

V = 785.92(9) Å

Data/restraints/parameters - 3229/0/208

Rint = 0.024

Final R1 = 0.0383, wR2 = 0.0983 (I>2 σ (I))

Figure S2. X-ray crystal structure (ellipsoid representation, probability level of 50%) for ethyl 5-phenyl-3-(*p*-tolyl)furan-2-carboxylate (**11b**). H atoms are omitted for clarity.

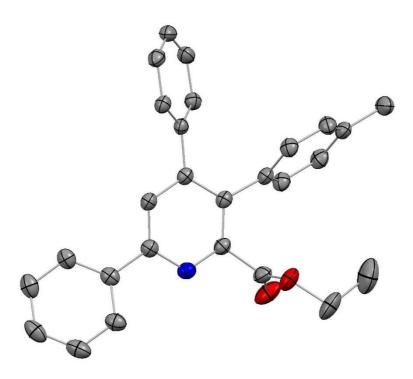
The single crystal data of a similar compound, ethyl 3,5-diphenylfuran-2-carboxylate, have been reported previously. 18

Single Crystal Data for **16a**: C₂₇H₂₃NO₂

Mr = 393.49

150 K

Monoclinic $P2_1/c$


a = 10.2055(2) Å, b = 20.3705(4) Å, c = 10.6093(2) Å

 $\beta = 105.618(2)$ V = 2124.15(7) Å

Data/restraints/parameters - 4408/4/288

Rint = 0.020

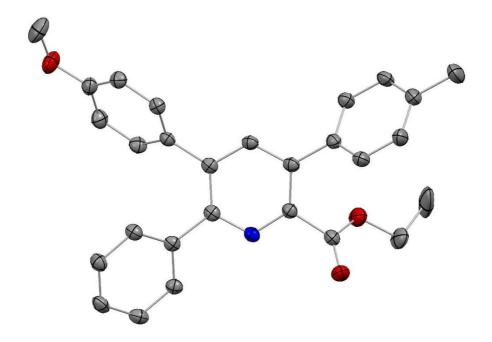
Final R1 = 0.0371, wR2 = 0.0930 (I>2 σ (I))

Figure S3. X-ray crystal structure (ellipsoid representation, probability level of 50%) for 4,6-diphenyl-3-(*p*-tolyl)picolinate (**16a**). H atoms and minor disordered component are omitted for clarity.

Single Crystal Data for 17b: $C_{28}H_{25}NO_3$

Mr =423.51 150 K

Monoclinic $P2_1/c$

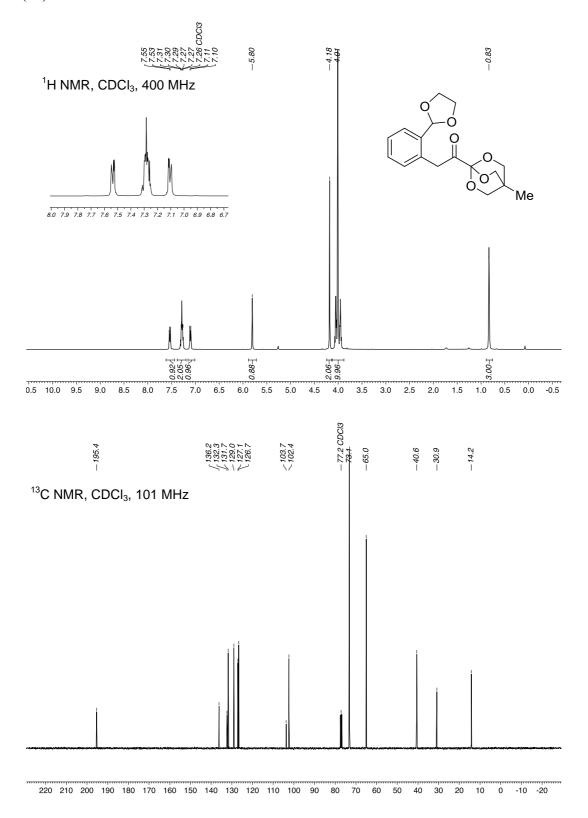

a = 17.4949(5) Å, b = 9.0087(3) Å, c = 28.6456(9) Å

 $\beta = 99.604(3)^{\circ}$ V = 4451.5(2) Å

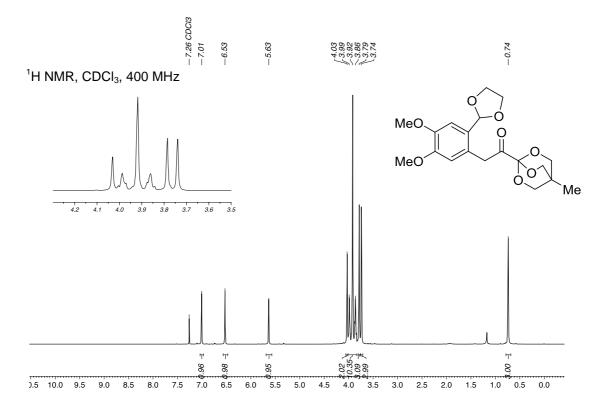
Data/restraints/parameters - 8037/4/596

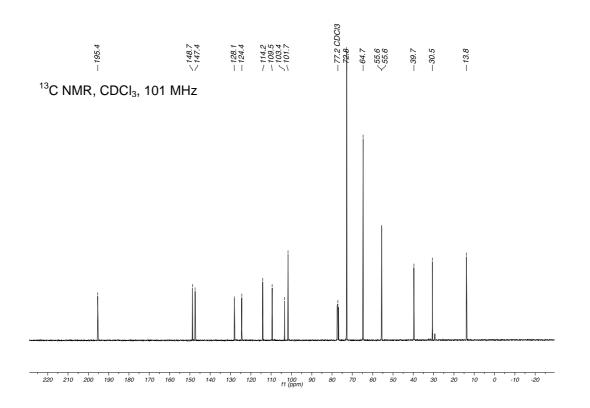
Rint = 0.050

Final R1 = 0.0394, wR2 = 0.0892 (I>2 σ (I))

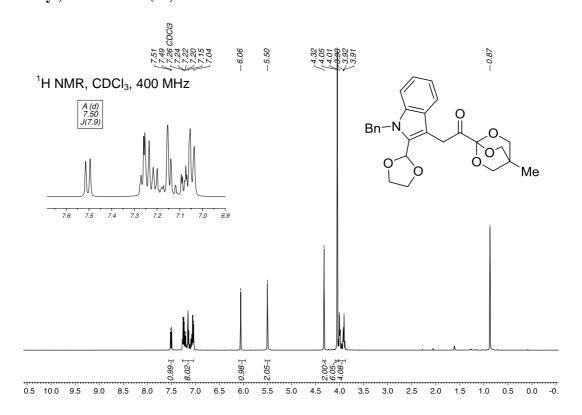

Figure S4. X-ray crystal structure (ellipsoid representation, probability level of 50%) for ethyl 5-(4-methoxyphenyl)-6-phenyl-3-(*p*-tolyl)picolinate (**17b**). H atoms and minor disordered component are omitted for clarity.

S5 References

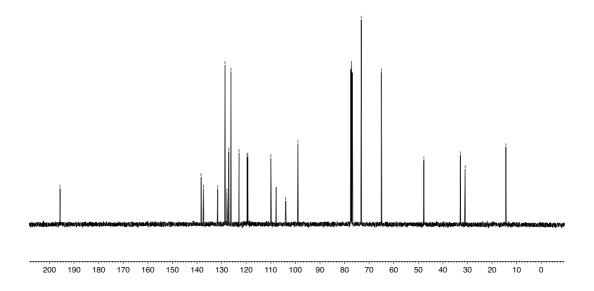

- (1) Smith, E. L. J. Chem. Soc. 1927, 1284-1288.
- (2) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
- (3) Cosier J.; Glazer, A. M. J. Appl. Cryst. 1986, 19, 105-107.
- (4) Palatinus L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790.
- (5) (a) Parois, P.; Cooper, R. I.; Thompson, A. L. *Chem. Cent. J.* **2015**, *9*:30. (b) Cooper, R. I.; Thompson, A. L.; Watkin, D. J. *J. Appl. Cryst.* **2010**, *43*, 1100-1107.
- (6) Esteves, C. H. A.; Hall, C. J. J.; Smith, P. D.; Donohoe, T. J. *Org. Lett.* **2017**, *19*, 5248-5251.
- (7) Donohoe, T. J.; Pilgrim, B. S.; Jones, G. R.; Bassuto, J. A. *Proc. Natl. Acad. Sci. USA* **2012**, *109*, 11605-11608.
- (8) Esteves, C. H. A.; Smith, P. D.; Donohoe, T. J. J. Org. Chem. 2017, 82, 4435-4443.
- (9) Kikugawa, Y.; Kuramoto, M.; Saito, I.; Yamada, S.-I. *Chem. Pharm. Bull.* **1973**, *21*, 1927-1937.
- (10) Meziane, M. A. A. A.; Bazureau, J. P. Molecules 2002, 7, 252-263.
- (11) Cao, R.; Chen, Q.; Hou, X.; Chen, H.; Guan, H.; Ma, Y.; Peng, W.; Xu, A. *Bioorg. Med. Chem.* **2004**, *12*, 4613-4623.
- (12) Chen, Y.-F.; Lin, Y.-C.; Chen, J.-P.; Chan, H.-C.; Hsu, M.-H.; Lin, H.-Y.; Kuo, S.-C.; Huang, L.-J. *Bioorg. Med. Chem. Lett.* **2015**, *25*, 3873-3877.
- (13) Zhu, Z.; Yuan, J.; Zhou, Y.; Qin, Y.; Xu, J.; Peng, Y. Eur. J. Org. Chem. 2014, 511-514.
- (14) Clagg, K.; Hou, H.; Weinstein, A. B.; Russell, D.; Stahl, S. S.; Koenig, S. G. *Org. Lett.* **2016**, *18*, 3586-3589.
- (15) McNulty, J.; Keskar, K. Eur. J. Org. Chem. **2011**, 6902-6908.
- (16) Teng, Q-h.; Xu, Y.-l.; Liang, Y.; Wang, H.-s.; Wang, Y.-c.; Pan, Y.-m. *Adv. Synth. Catal.* **2016**, *358*, 1897-1902.
- (17) Killoran, J.; Gallagher, J. F.; Murphy, P. V.; O'Shea, D. F. New J. Chem. **2005**, 29, 1258-1265.
- (18) Zhao, L.-B.; Guan, Z.-H.; Han, Y.; Xie, Y.-X.; He, S.; Liang, Y.-M. *J. Org. Chem.* **2007**, 72, 10276-10278.

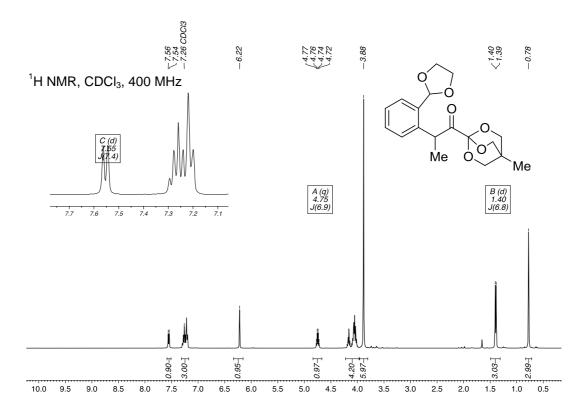

S6 ¹H and ¹³C NMR spectra

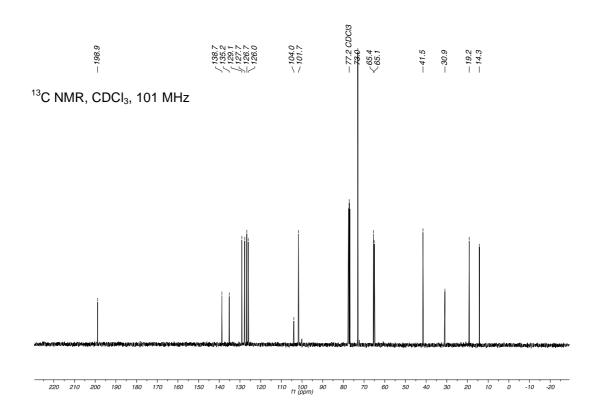
 $2\hbox{-}[2\hbox{-}(1,3\hbox{-}Dioxolan-2\hbox{-}yl)phenyl]\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo}[2.2.2]octan-1\hbox{-}yl)ethan-1-one (3a)$

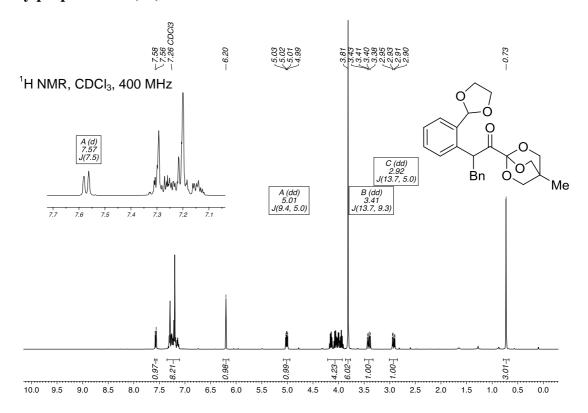


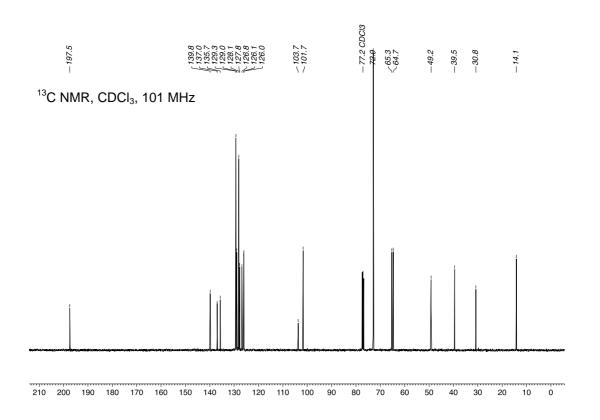
$2\hbox{-}[2\hbox{-}(1,3\hbox{-}Dioxolan-2\hbox{-}yl]\hbox{-}4,5\hbox{-}dimethoxyphenyl)\hbox{-}1\hbox{-}(4\hbox{-}methyl-2,6,7\hbox{-}trioxabicyclo}[2.2.2]\hbox{-}octan-1\hbox{-}yl)ethan-1\hbox{-}one (3b)$

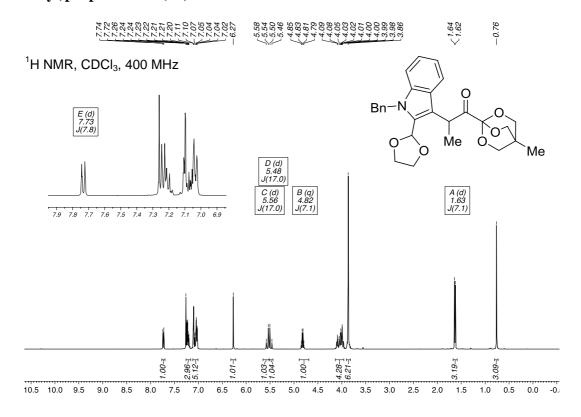


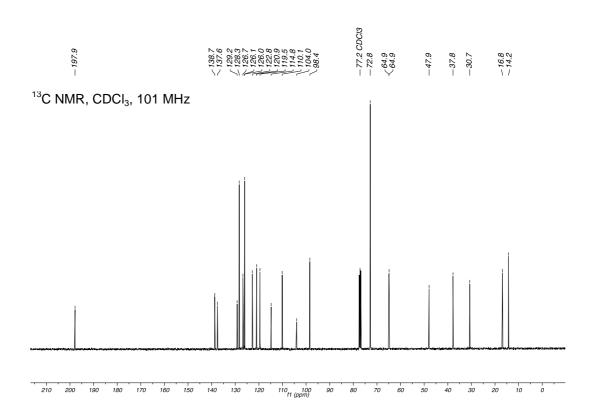

$2\hbox{-}[1\hbox{-}Benzyl\hbox{-}2\hbox{-}(1,3\hbox{-}dioxolan\hbox{-}2\hbox{-}yl)\hbox{-}1H\hbox{-}indol\hbox{-}3\hbox{-}yl]\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo\hbox{-}[2.2.2]\hbox{-}octan\hbox{-}1\hbox{-}yl)ethan\hbox{-}1\hbox{-}one (3c)$

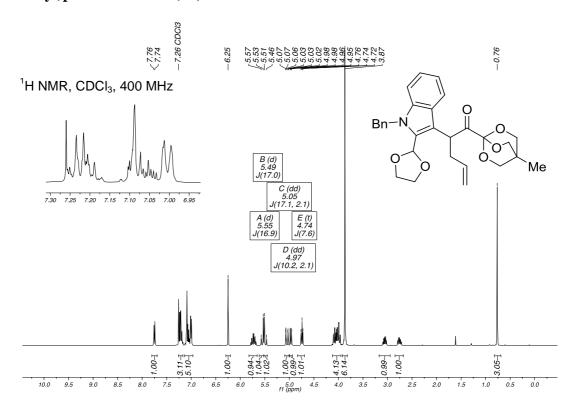




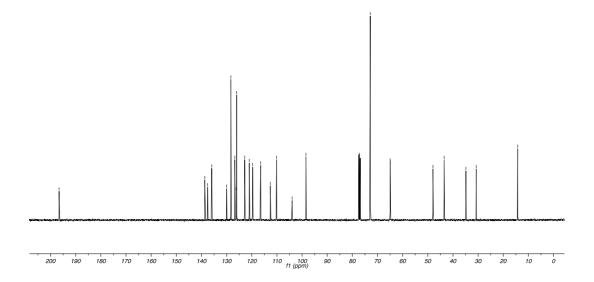

 $2\hbox{-}[2\hbox{-}(1,3\hbox{-}Dioxolan-2\hbox{-}yl)phenyl]\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo}[2.2.2]octan-1\hbox{-}yl)propan-1\hbox{-}one (S1)$



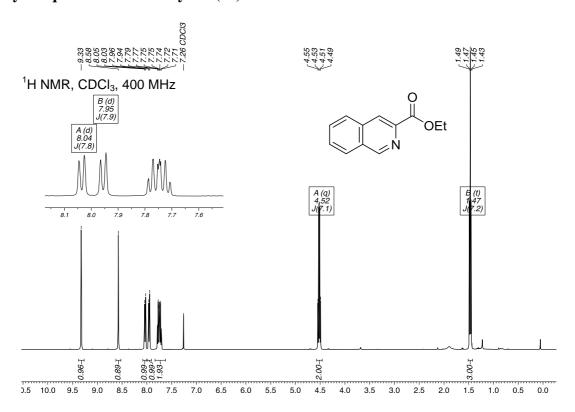

 $2\hbox{-}[2\hbox{-}(1,3\hbox{-}Dioxolan-2\hbox{-}yl)phenyl]\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo}[2.2.2]octan-1\hbox{-}yl)\hbox{-}3\hbox{-}phenylpropan-1\hbox{-}one (S2)$

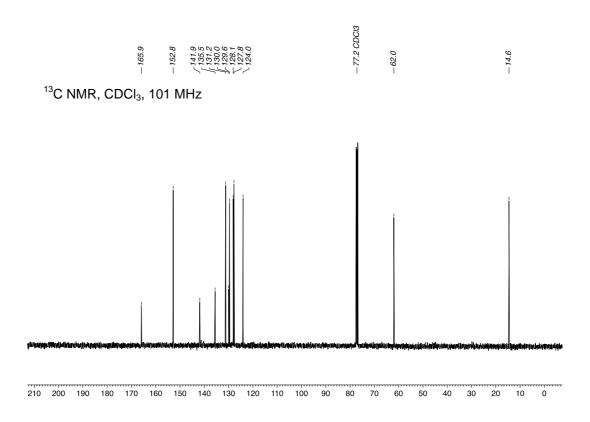


$2\hbox{-}[1\hbox{-}Benzyl\hbox{-}2\hbox{-}(1,3\hbox{-}dioxolan\hbox{-}2\hbox{-}yl)\hbox{-}1H\hbox{-}indol\hbox{-}3\hbox{-}yl]\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo}[2.2.2]\hbox{-}octan\hbox{-}1\hbox{-}yl)propan\hbox{-}1\hbox{-}one (S3)$

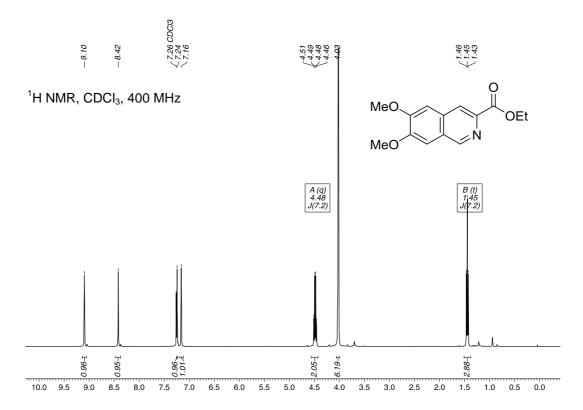


$2\hbox{-}[1\hbox{-}Benzyl\hbox{-}2\hbox{-}(1,3\hbox{-}dioxolan\hbox{-}2\hbox{-}yl)\hbox{-}1H\hbox{-}indol\hbox{-}3\hbox{-}yl]\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo}[2.2.2]\hbox{-}octan\hbox{-}1\hbox{-}yl)pent\hbox{-}4\hbox{-}en\hbox{-}1\hbox{-}one} \ (S4)$

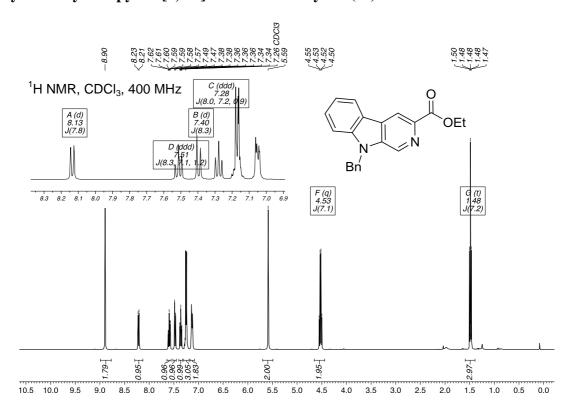




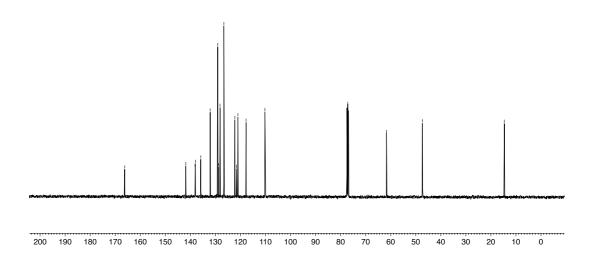
 $^{13}\text{C NMR},\,\text{CDCI}_3,\,101\;\text{MHz}$

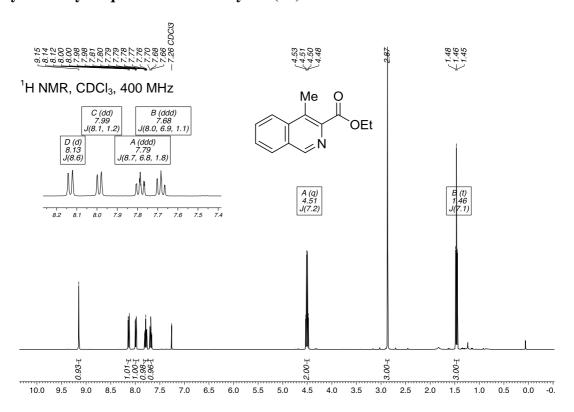


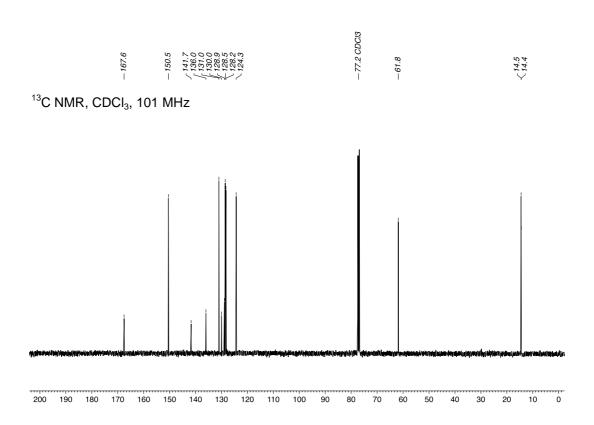
Ethyl isoquinoline-3-carboxylate (4a)

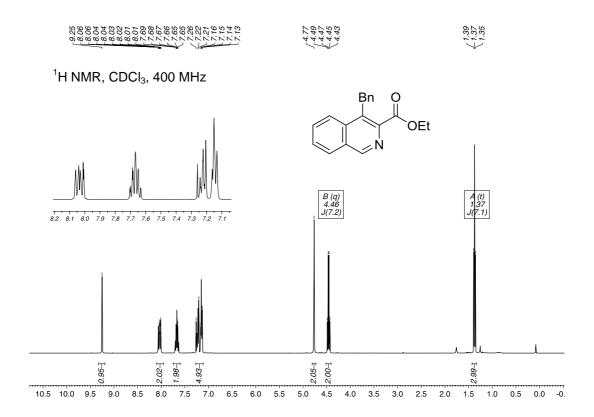


Ethyl 6,7-dimethoxyisoquinoline-3-carboxylate (4b)

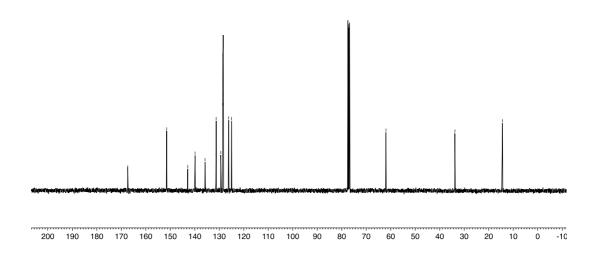


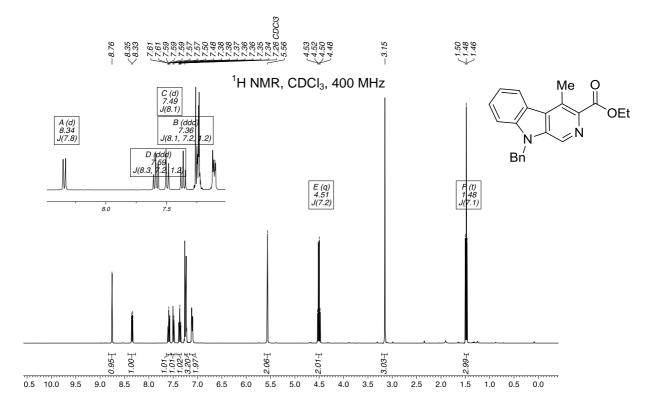

Ethyl 9-benzyl-9*H*-pyrido[3,4-*b*]indole-3-carboxylate (4c)

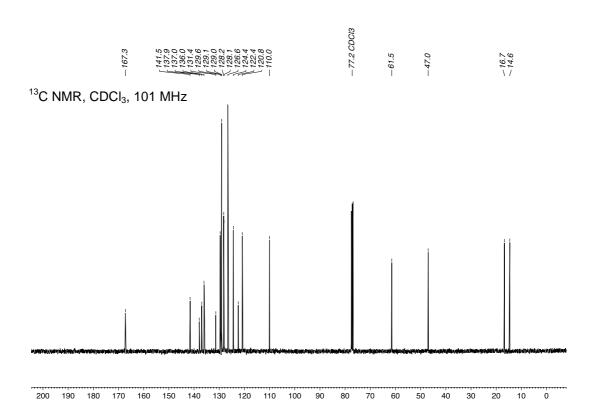


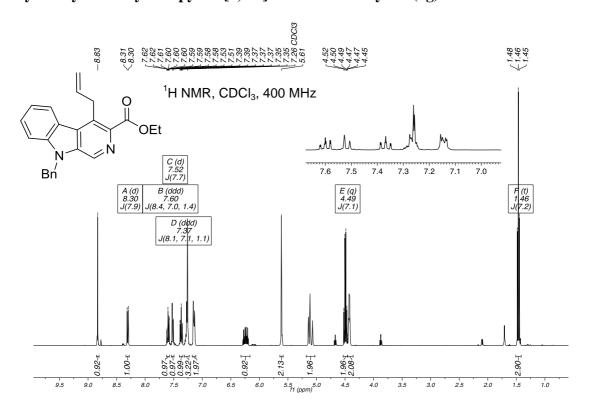


Ethyl 4-methylisoquinoline-3-carboxylate (4d)

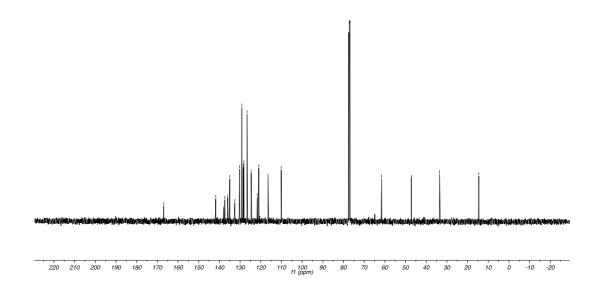


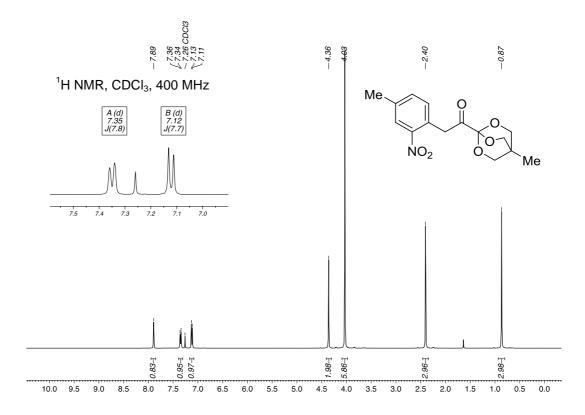

Ethyl 4-benzylisoquinoline-3-carboxylate (4e)

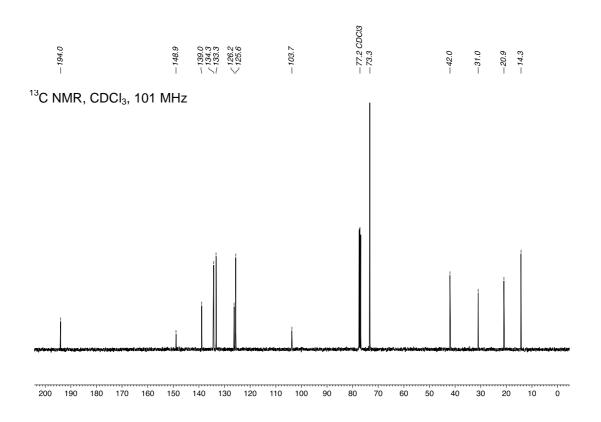


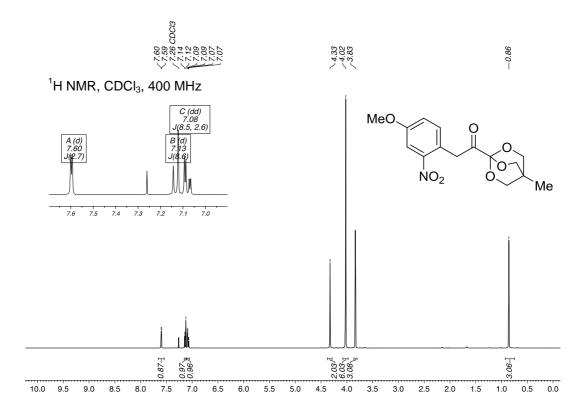


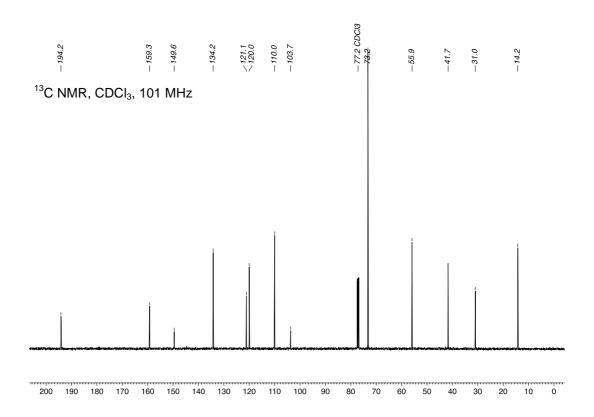
Ethyl 9-benzyl-4-methyl-9H-pyrido[3,4-b]indole-3-carboxylate (4f)

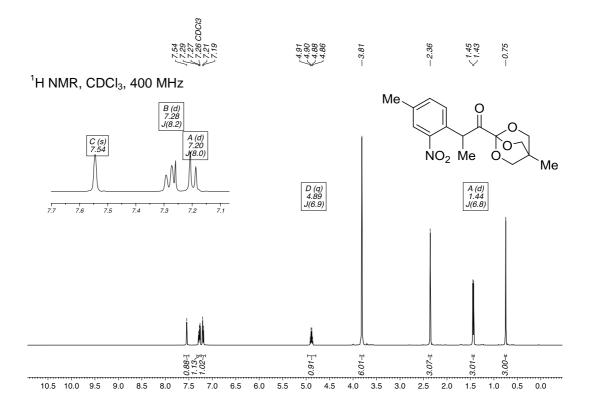



Ethyl 4-allyl-9-benzyl-9*H*-pyrido[3,4-*b*]indole-3-carboxylate (4g)

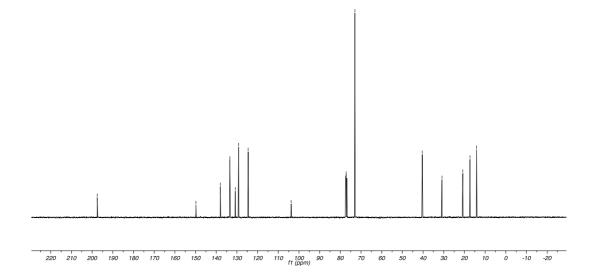


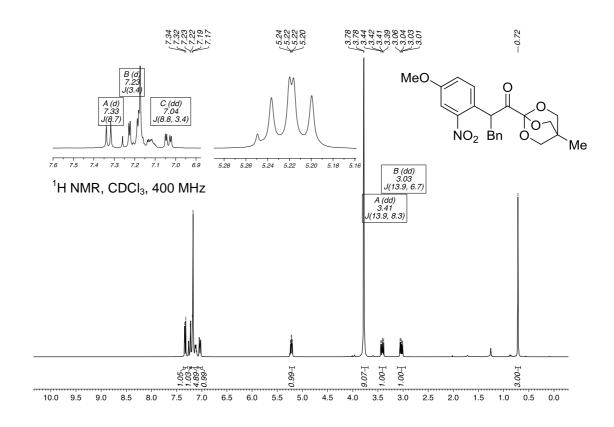


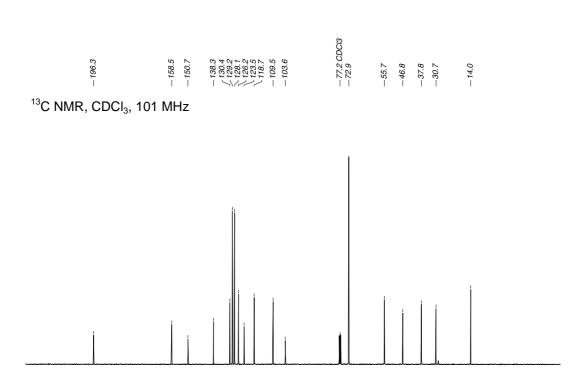

$2\hbox{-}(4\hbox{-}Methyl\hbox{-}2\hbox{-}nitrophenyl)\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo} [2.2.2] octan\hbox{-}1\hbox{-}yl)\hbox{-}ethan\hbox{-}1\hbox{-}one\ (6a)$



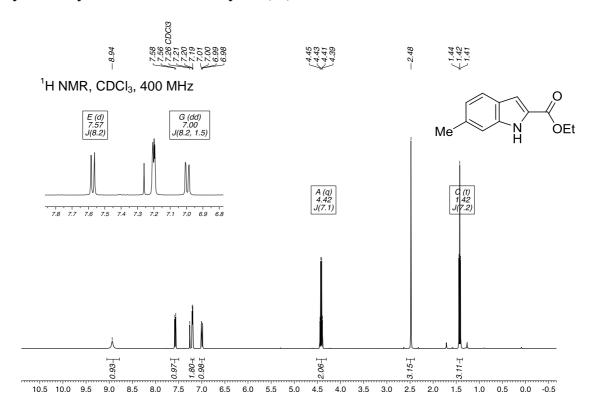
$2\hbox{-}(4\hbox{-}Methoxy\hbox{-}2\hbox{-}nitrophenyl)\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo} [2.2.2] octan\hbox{-}1\hbox{-}yl) ethan-1one \ (6b)$



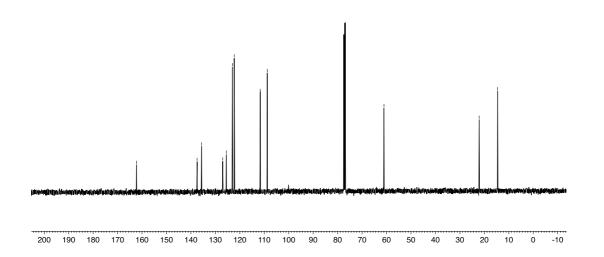

$2\hbox{-}(4\hbox{-}Methyl\hbox{-}2\hbox{-}nitrophenyl)\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2\hbox{,}6\hbox{,}7\hbox{-}trioxabicyclo} [2.2.2] octan\hbox{-}1\hbox{-}yl) propan-1one (S5)$



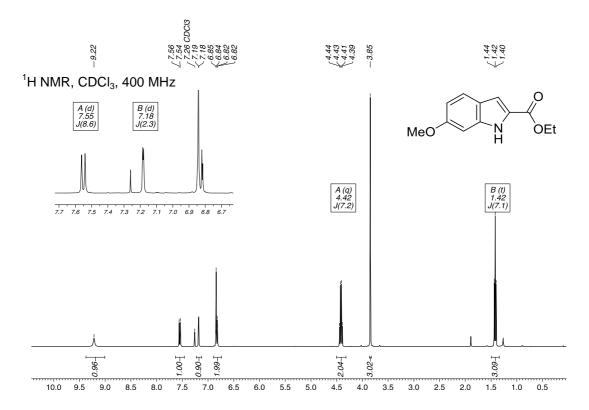
$2\hbox{-}(4\hbox{-}Methoxy\hbox{-}2\hbox{-}nitrophenyl)\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo} [2.2.2] octan\hbox{-}1\hbox{-}yl)\hbox{-}3\hbox{-}phenyl-propan\hbox{-}1\hbox{-}one} \ (S6)$

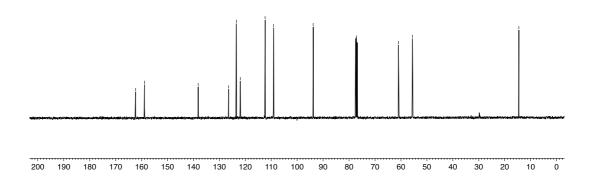


80 70

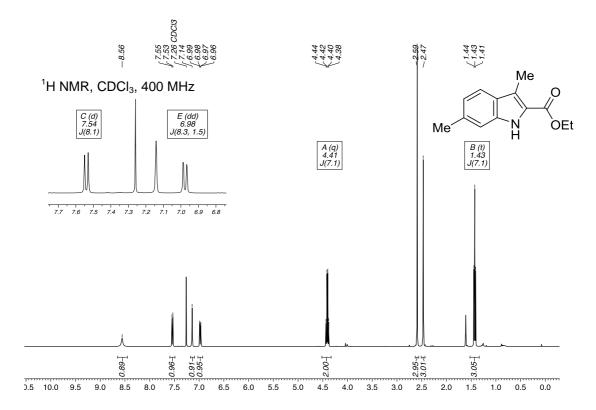

220 210 200 190 180 170 160 150 140 130 120 110 100 90

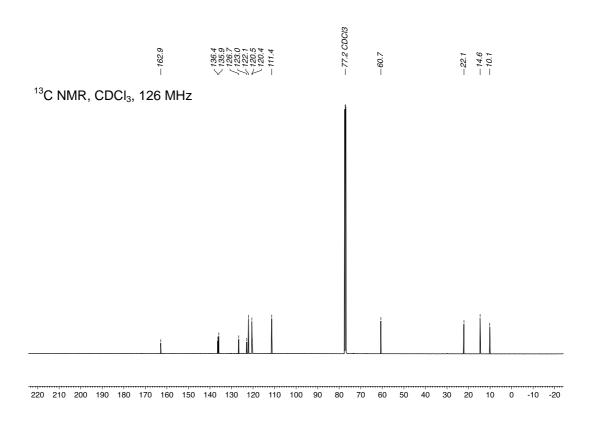
Ethyl 6-methyl-1*H*-indole-2-carboxylate (7a)

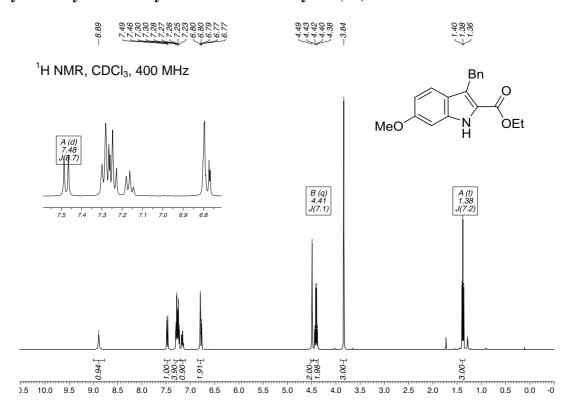




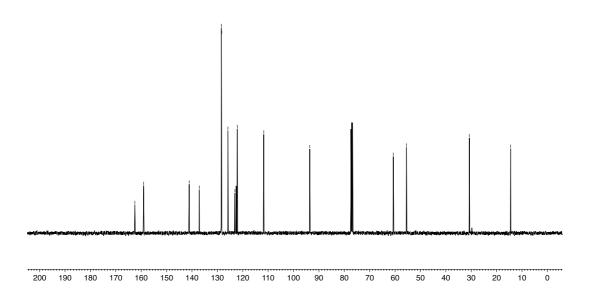
 $^{13}\text{C NMR, CDCI}_3\text{, 101 MHz}$

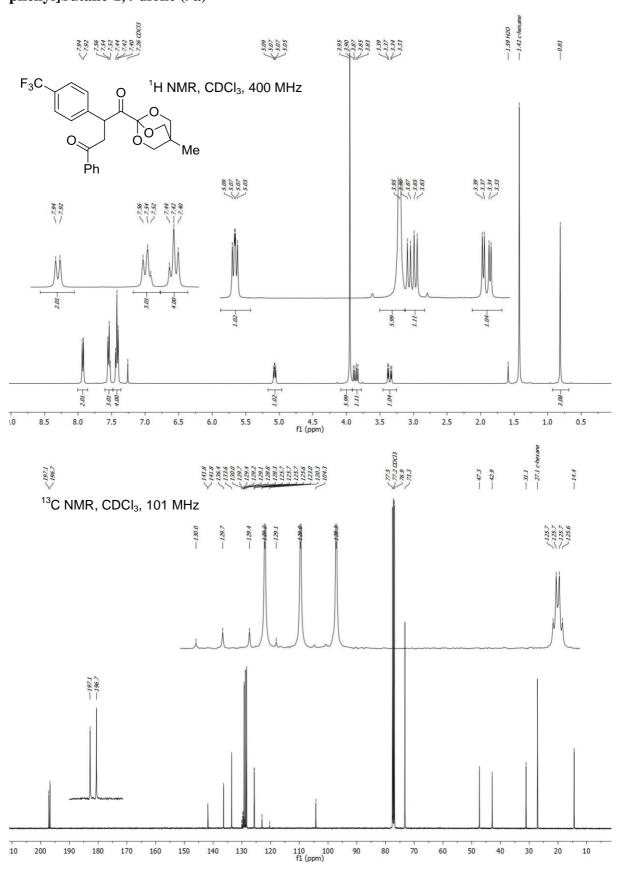



Ethyl 6-methoxy-1*H*-indole-2-carboxylate (7b)

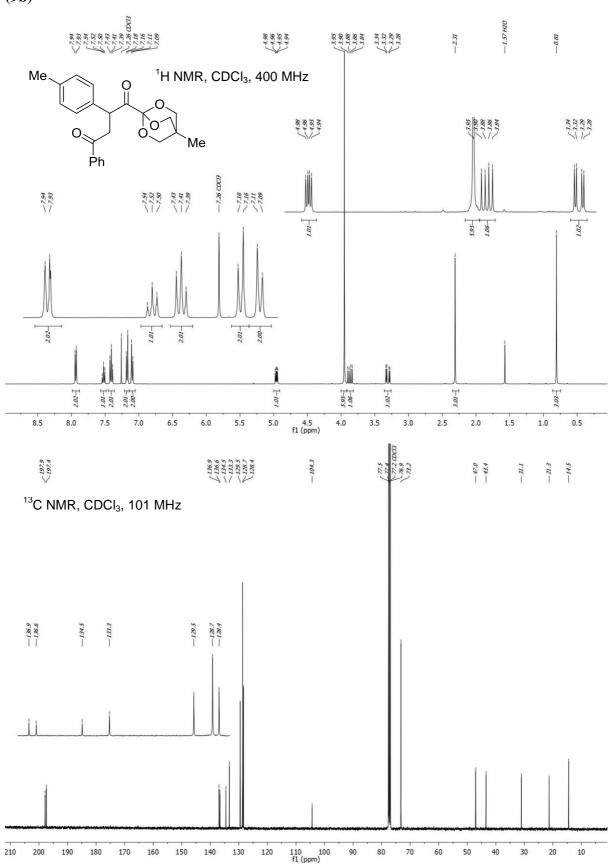


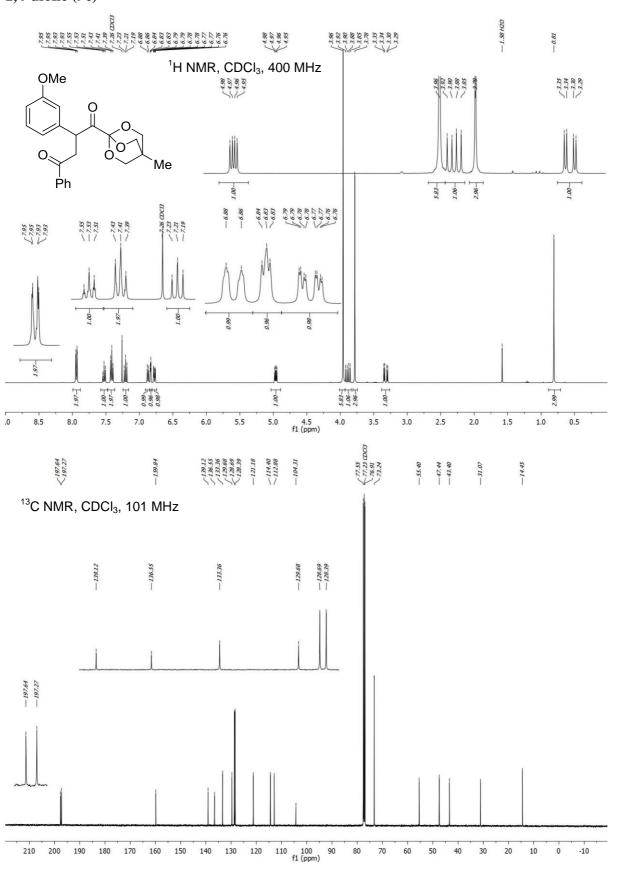
Ethyl 3,6-dimethyl-1*H*-indole-2-carboxylate (7c)



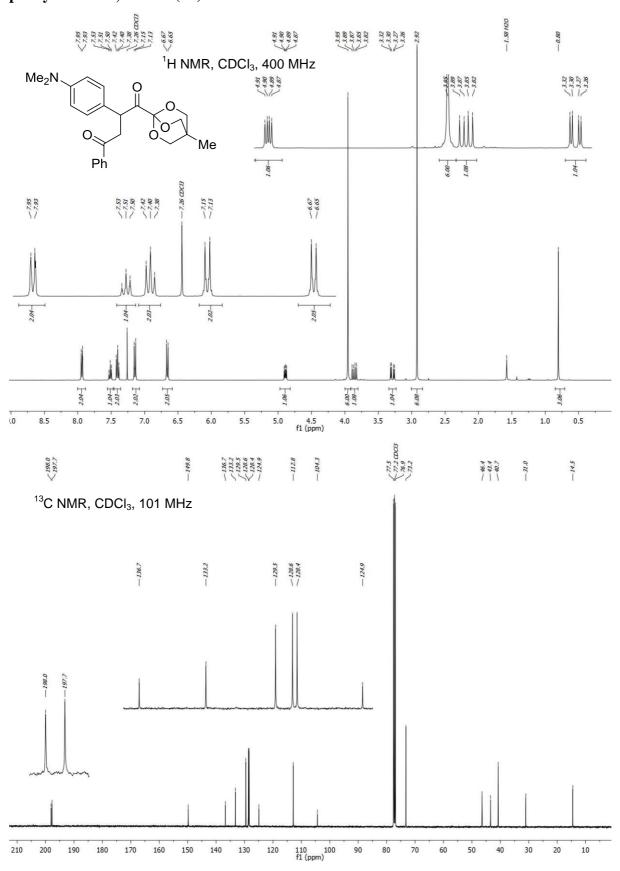

Ethyl 3-benzyl-6-methoxy-1*H*-indole-2-carboxylate (7d)

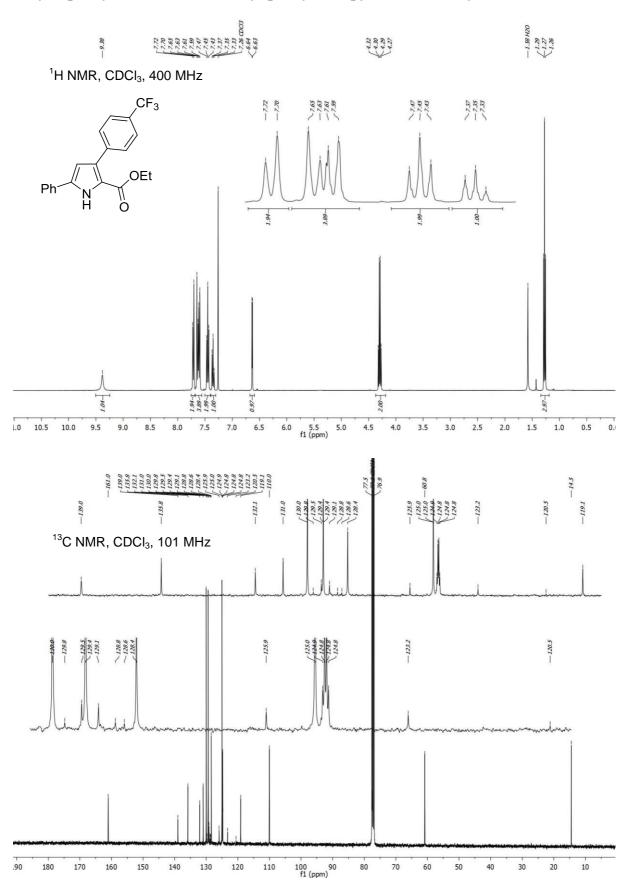
- 162.5 - 159.1 - 141.1 - 128.3 - 128.3 - 122.6 - 122.6 - 122.6 - 172.7 - 60.7 - 55.5


1-[4-Methyl-2,6,7-trioxabicyclo[2.2.2] octan-1-yl]-4-phenyl-2-[4-(trifluoromethyl)-phenyl] butane-1,4-dione (9a)

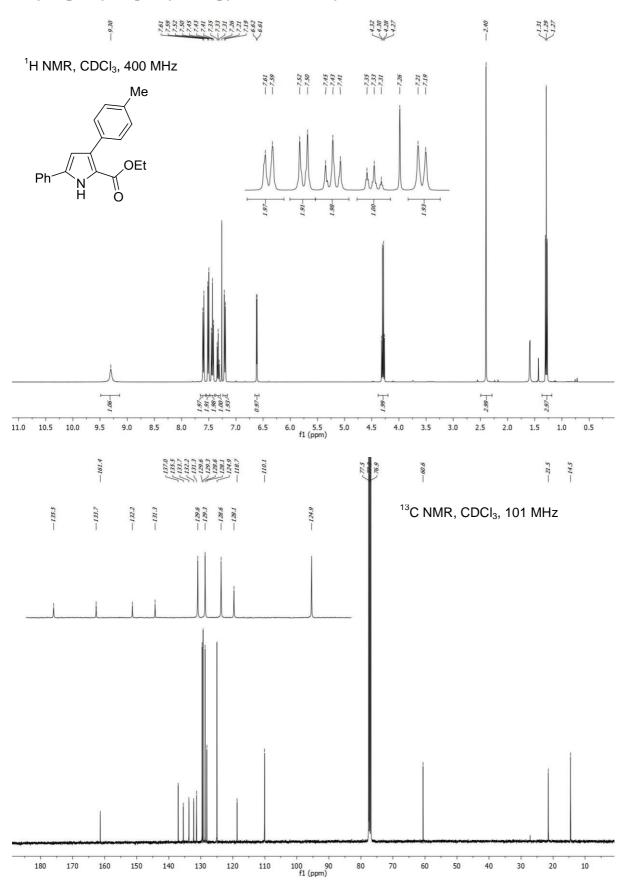

¹⁹ F NMR, CDCl ₃ , 376 MHz	62.5	

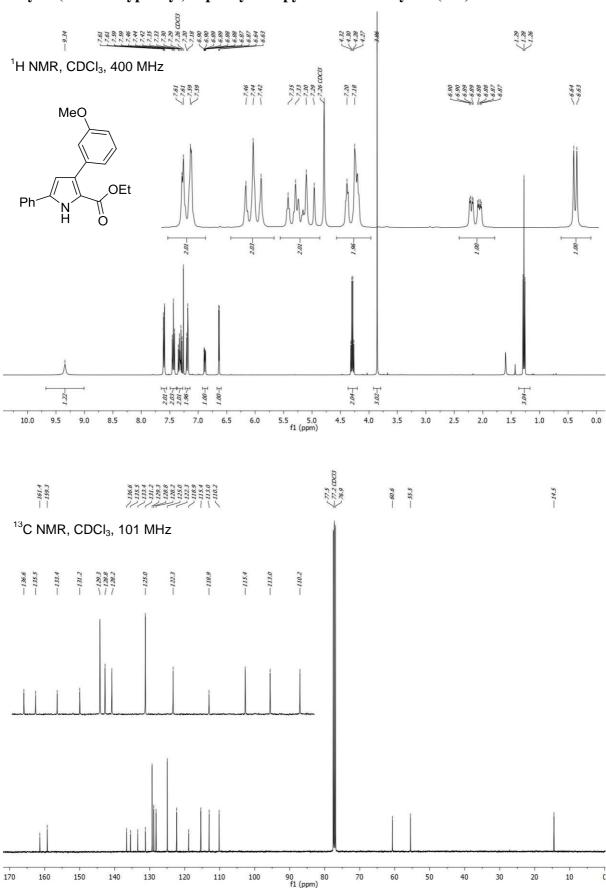
90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)


$1-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-4-phenyl-2-(p-tolyl) butane-1,4-dione \\ (9b)$

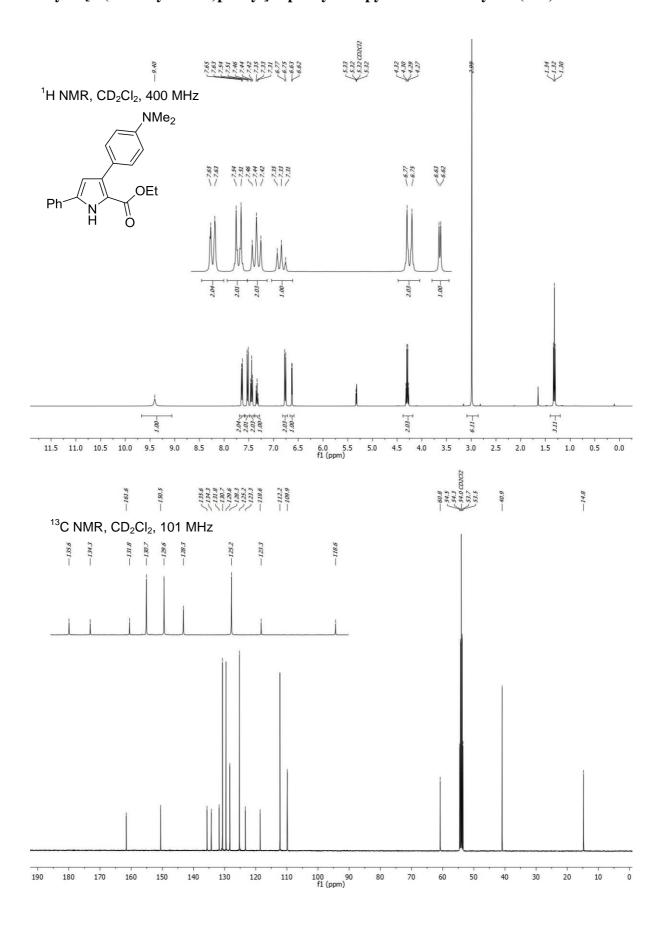

$2\hbox{-}(3\hbox{-}Methoxyphenyl)\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo} [2.2.2] octan\hbox{-}1\hbox{-}yl)\hbox{-}4\hbox{-}phenylbutane-\\ 1,4\hbox{-}dione\ (9c)$

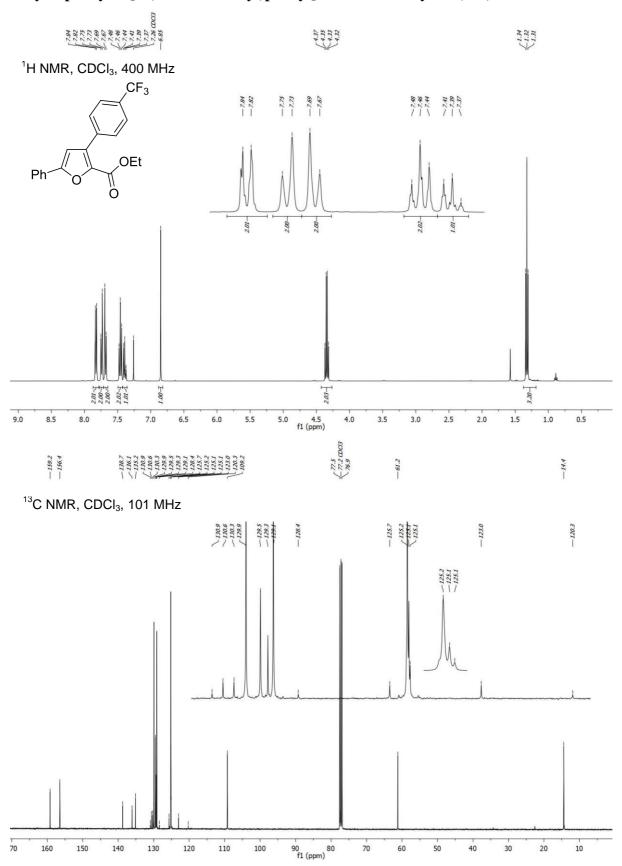
$2\hbox{-}[4\hbox{-}(Dimethylamino)phenyl]\hbox{-}1\hbox{-}(4\hbox{-}methyl\hbox{-}2,6,7\hbox{-}trioxabicyclo}[2.2.2]octan\hbox{-}1\hbox{-}yl)\hbox{-}4\hbox{-}phenylbutane\hbox{-}1,4\hbox{-}dione} \ (9d)$

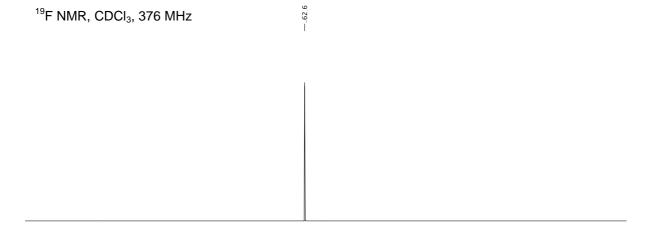

 $Ethyl\ 5-phenyl-3-[4-(trifluoromethyl)phenyl]-1 \textit{H-pyrrole-2-carboxylate}\ (10a)$



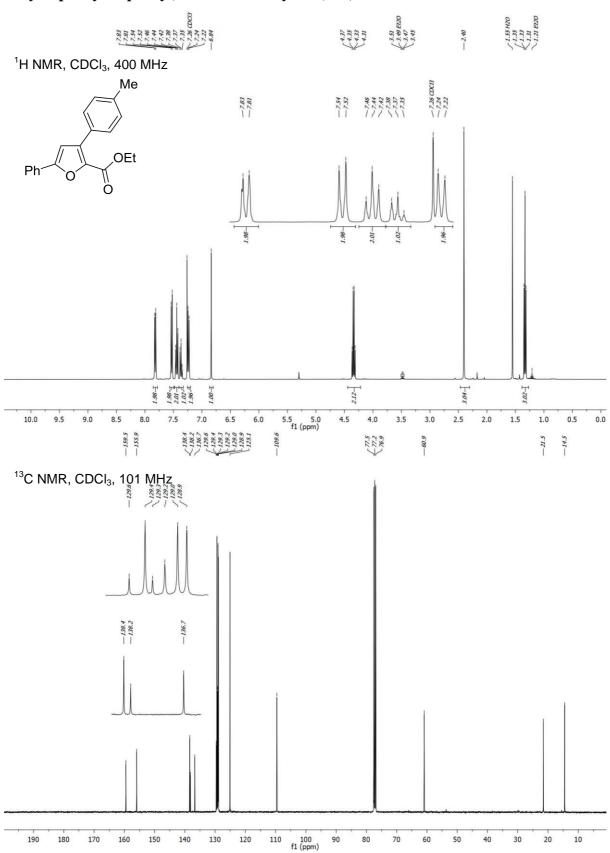
90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

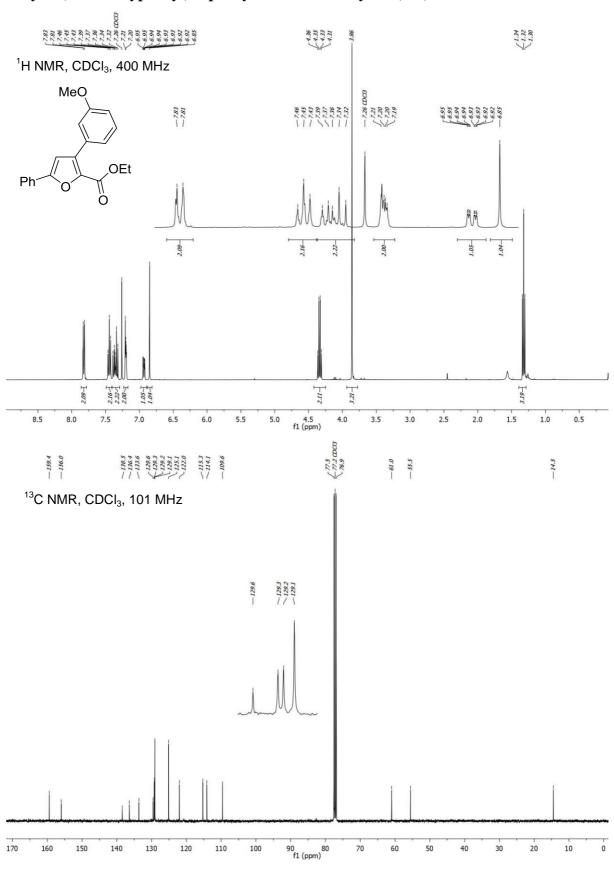

Ethyl 5-phenyl-3-(p-tolyl)-1H-pyrrole-2-carboxylate (10b)


Ethyl 3-(3-methoxyphenyl)-5-phenyl-1*H*-pyrrole-2-carboxylate (10c)

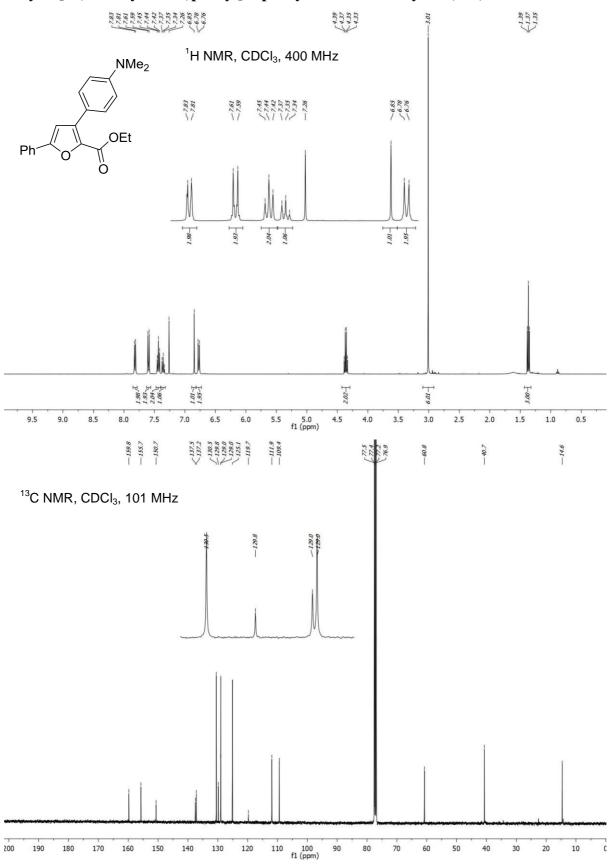


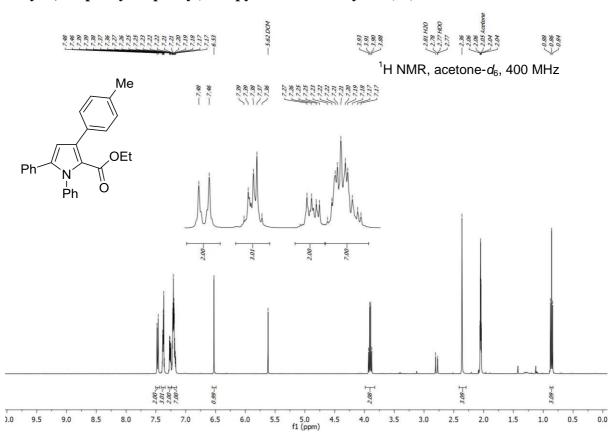
 $Ethyl\ 3\hbox{-}[4\hbox{-}(dimethylamino)phenyl]\hbox{-}5\hbox{-}phenyl\hbox{-}1H\hbox{-}pyrrole\hbox{-}2\hbox{-}carboxylate\ (10d)$

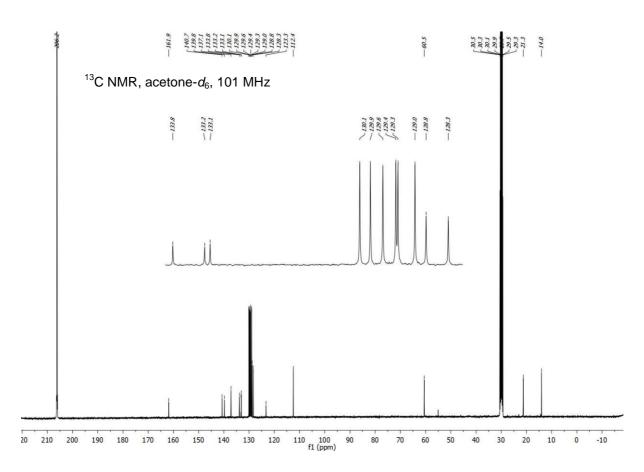

 $Ethyl\ 5-phenyl-3-[4-(trifluoromethyl)phenyl] furan-2-carboxylate\ (11a)$



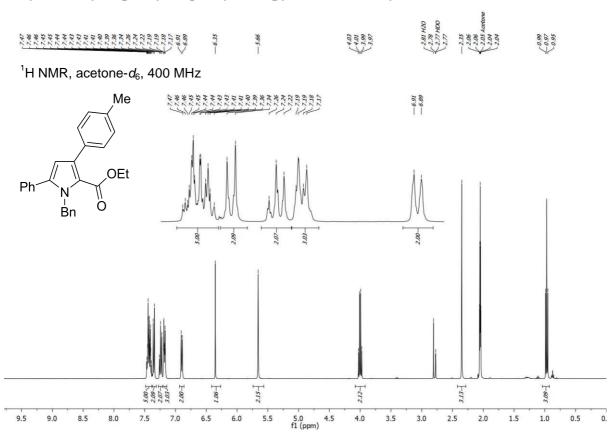
90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

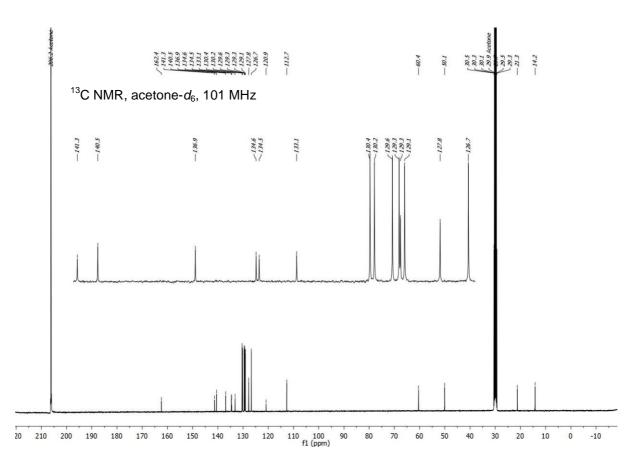

Ethyl 5-phenyl-3-(p-tolyl)furan-2-carboxylate (11b)

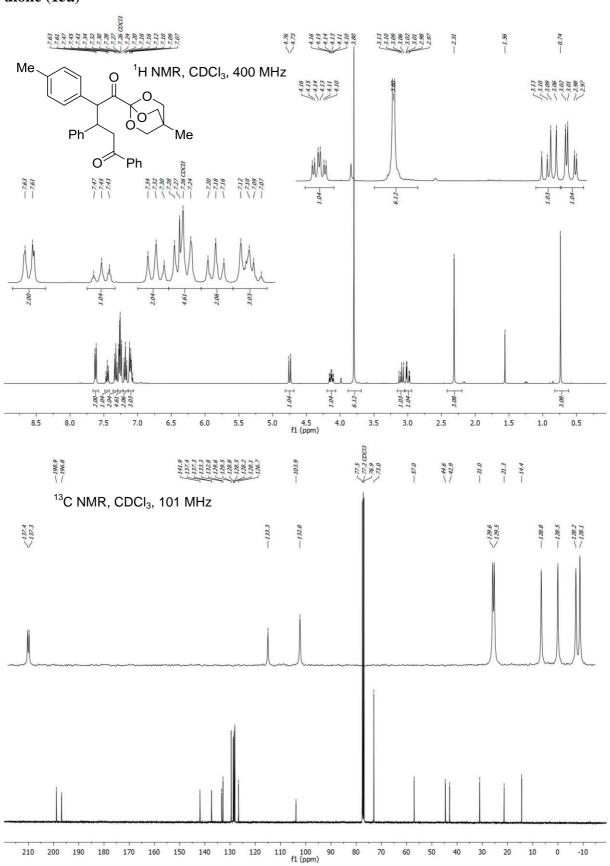

Ethyl 3-(3-methoxyphenyl)-5-phenylfuran-2-carboxylate (11c)



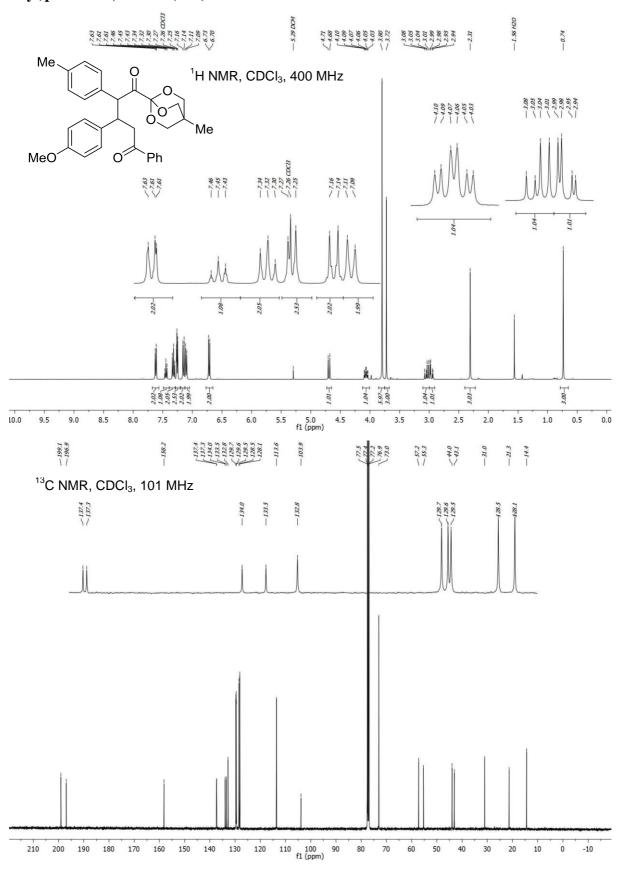
Ethyl 3-[4-(dimethylamino)phenyl]-5-phenylfuran-2-carboxylate (11d)

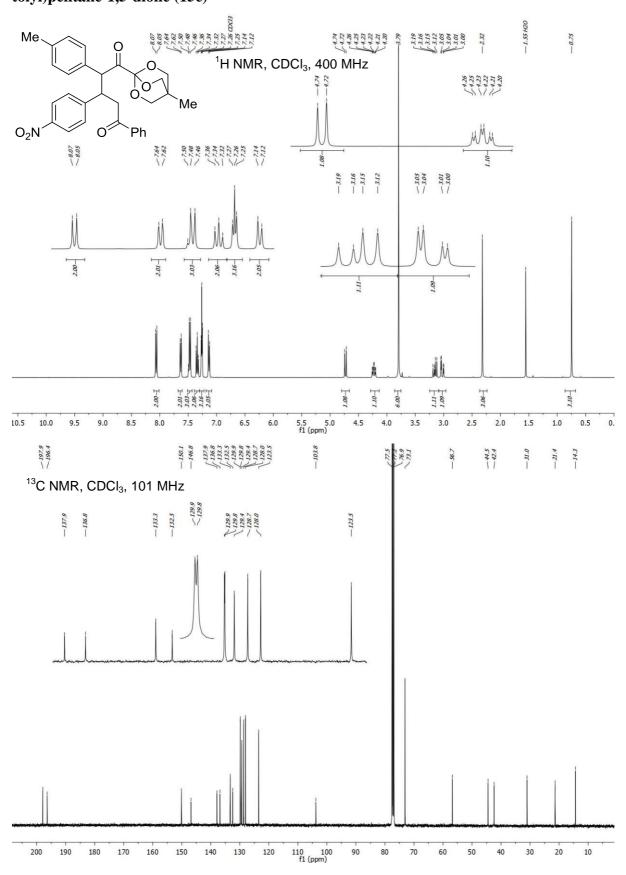


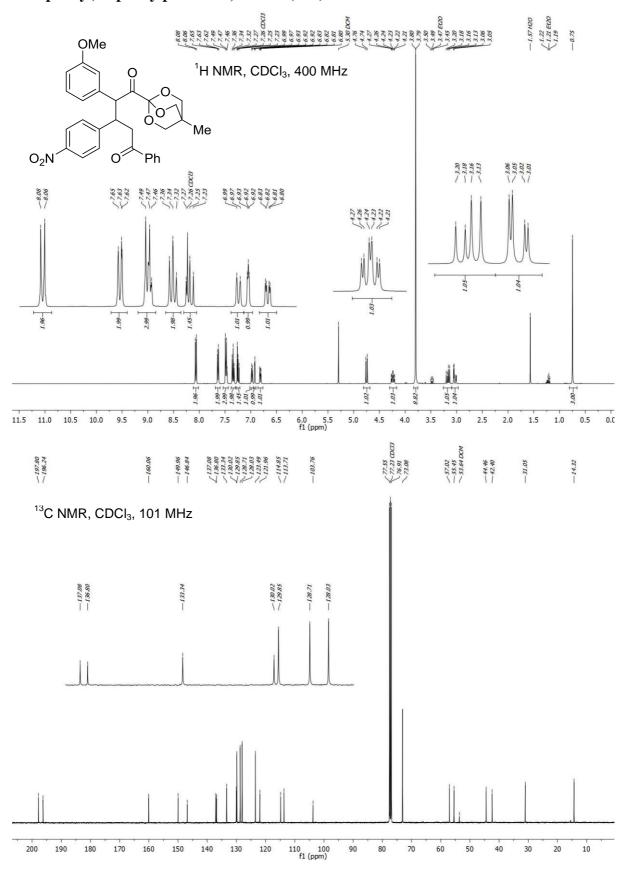

Ethyl 1,5-diphenyl-3-(p-tolyl)-1H-pyrrole-2-carboxylate (12)

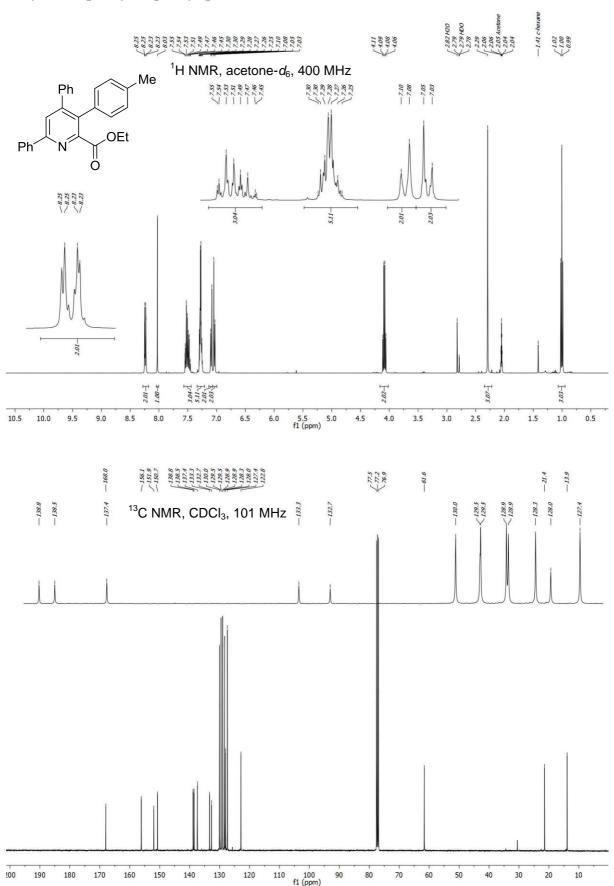


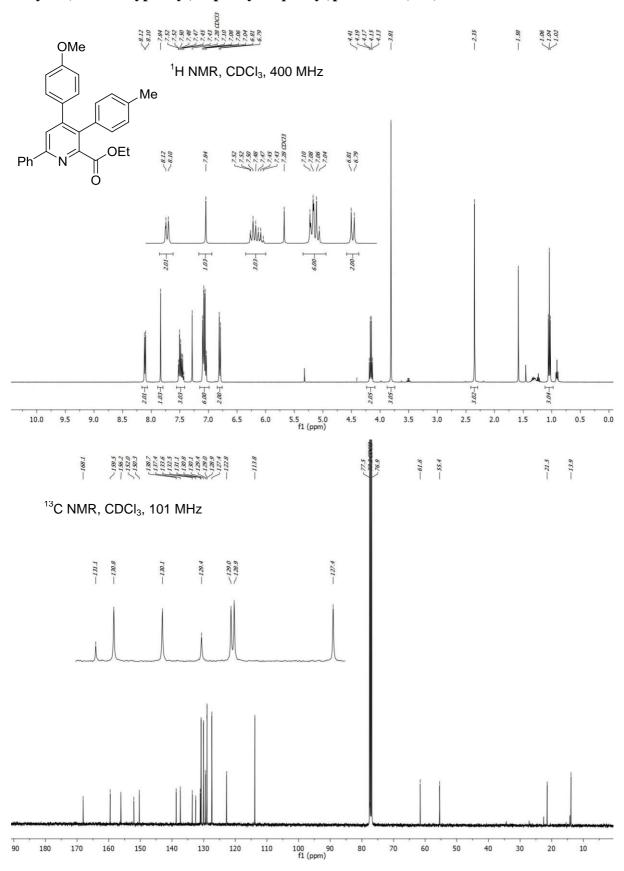
 $Ethyl \ 1-benzyl-5-phenyl-3-(p-tolyl)-1 \\ H-pyrrole-2-carboxylate \ (13)$

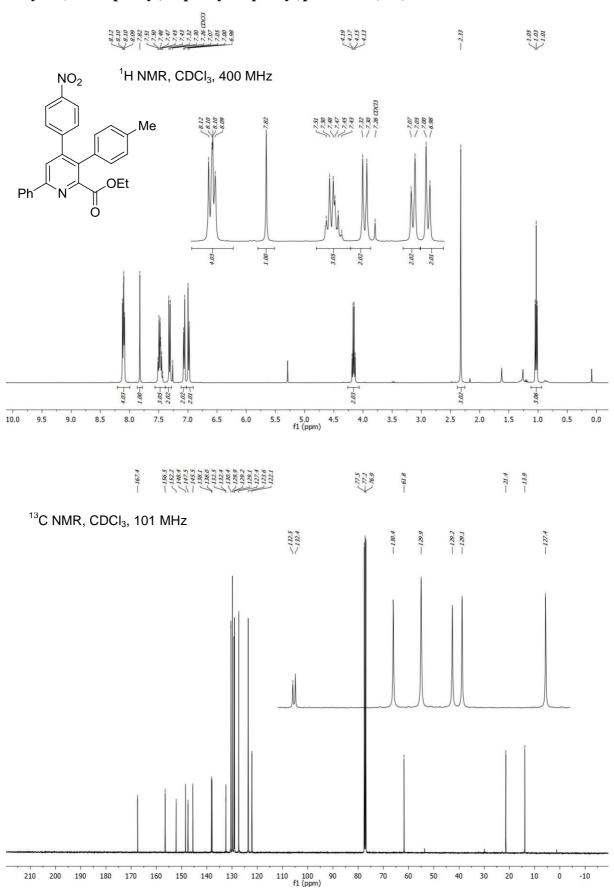


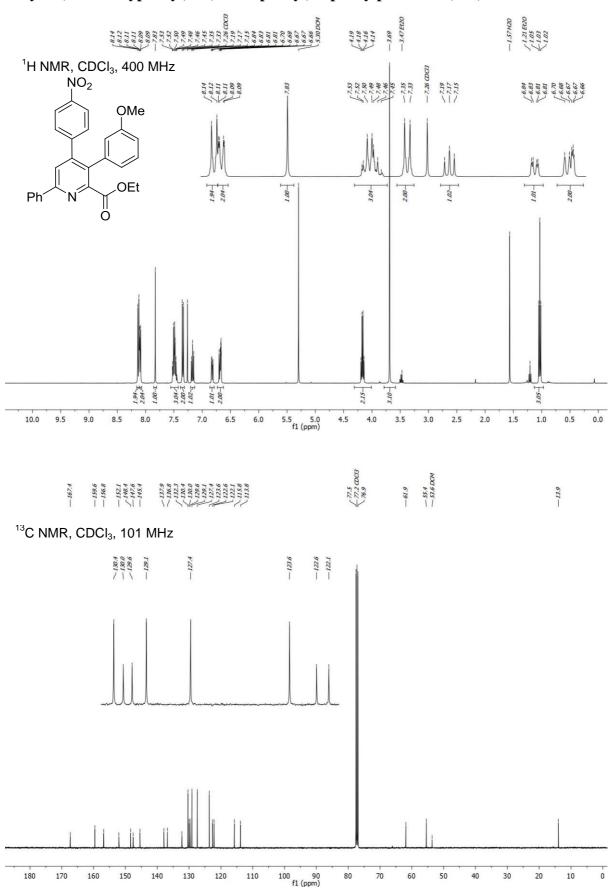

1-(4-Methyl-2,6,7-trioxabicyclo[2.2.2] octan-1-yl)-3,5-diphenyl-2-(\$p\$-tolyl) pentane-1,5-dione~(15a)

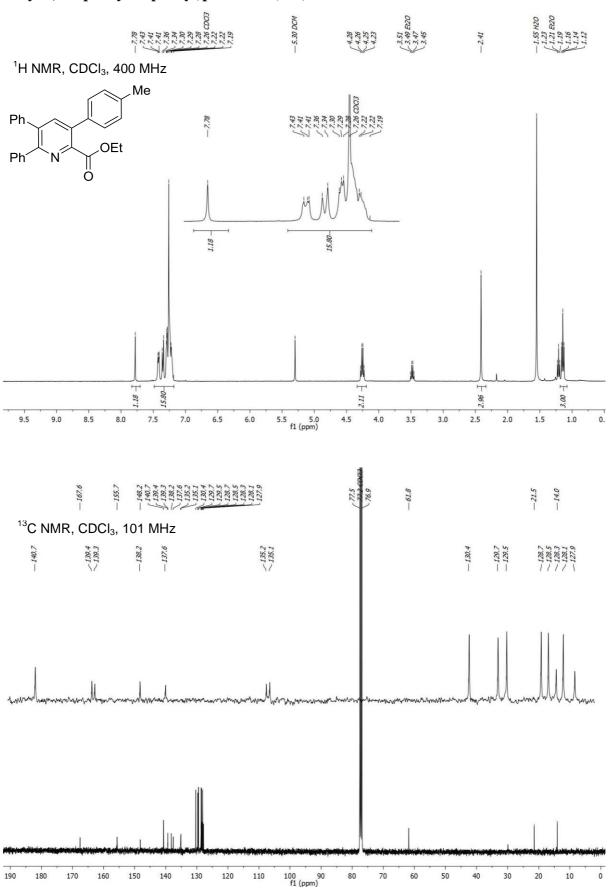

3-(4-Methoxyphenyl)-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2] octan-1-yl)-5-phenyl-2-(p-tolyl) pentane-1,5-dione (15b)

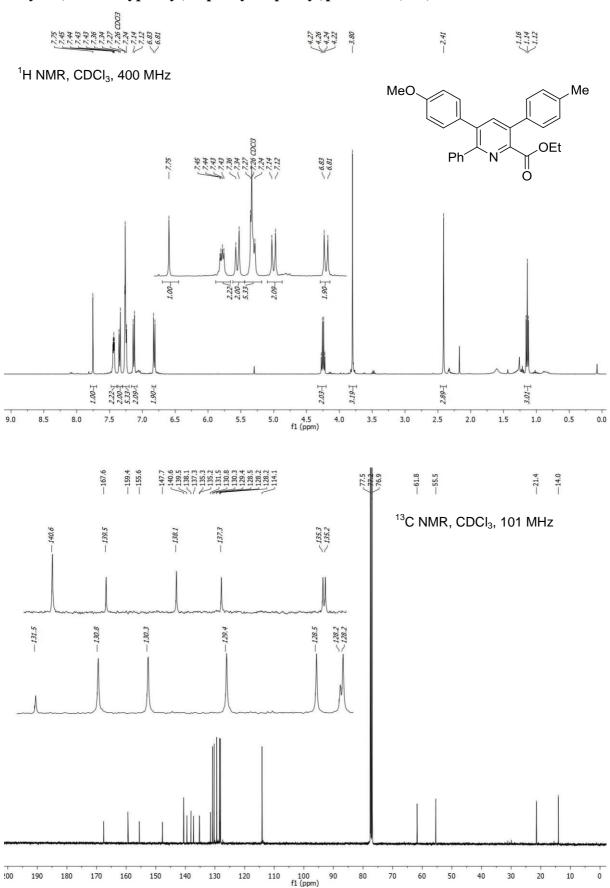

1-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-3-(4-nitrophenyl)-5-phenyl-2-(p-tolyl) pentane-1,5-dione (15c)


2-(3-Methoxyphenyl)-1-(4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl)-3-(4-nitrophenyl)-5-phenylpentane-1,5-dione (15d)


Ethyl 4,6-diphenyl-3-(p-tolyl)picolinate (16a)


Ethyl 4-(4-methoxyphenyl)-6-phenyl-3-(p-tolyl)picolinate (16b)


Ethyl 4-(4-nitrophenyl)-6-phenyl-3-(p-tolyl)picolinate (16c)


Ethyl 3-(3-methoxyphenyl)-4-(4-nitrophenyl)-6-phenylpicolinate (16d)

Ethyl 5,6-diphenyl-3-(p-tolyl)picolinate (17a)

Ethyl 5-(4-methoxyphenyl)-6-phenyl-3-(p-tolyl)picolinate (17b)

