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EXPERIMENTAL

MATERIALS

2-(Acetoacetoxy)ethyl methacrylate (AAEMA, Sigma-Aldrich) was inhibited with BHT upon
receipt due to high tendency towards autopolymerization, then deinhibited by percolation over
basic alumina immediately prior to use. Methyl methacrylate (MMA), poly(ethylene glycol)
monomethyl ether methacrylate (PEGMA, M, = 500 g/mol, Sigma-Aldrich), and dioxane
(Millipore) were percolated over basic alumina prior to use. Chain transfer agents 4-cyano-4-
(dodecylsulfanylthiocarbonylsulfanyl) pentanoic acid! (CDP) and 4-cyano-4-dithiobenzoyl
pentanoic acid’> (CTP) were synthesized according to literature procedures. Anhydrous p-
toluenesulfonic acid (pTsOH) was prepared by drying the monohydrate (Fisher) in vacuo at 100
°C overnight then recrystallizing from chloroform overnight. Benzylamine (BnNH>, Sigma-
Aldrich) was distilled under vacuum prior to use. p-Anisidine (Sigma-Aldrich) was recrystallized
from boiling 50% aqueous ethanol. p-Nitroaniline was recrystallized from boiling water. 4,4'-
Azobis(4-cyanovaleric acid) (V-501, Wako) was dried in vacuo overnight prior to use.
Azobisisobutyronitrile (AIBN, Sigma, 98%) was recrystallized from ethanol and dried in vacuo

prior to use. All other materials were used as received.

INSTRUMENTATION

Nuclear magnetic resonance (NMR) spectroscopy. '"H NMR spectra were recorded on a Varian
Mercury 300 MHz or a Varian Inova2 500 MHz NMR spectrometer. Deuterated dimethyl sufoxide
(DMSO-ds) and deuterated chloroform (CDCl3) were used as solvents, and the residual solvent

signal served as a reference.

Gel permeation chromatography — multi-angle laser light scattering detection (GPC-
MALLS). Molecular weights and molecular weight distributions were determined via multi-angle
laser light scattering size exclusion chromatography in N, N-dimethylacetamide (DMAc) with 50
mM LiCl at 50 °C and a flow rate of 1.0 mL/min (Agilent isocratic pump, degasser, and

autosampler; ViscoGel I-series 10 1 m guard column and two ViscoGel I-series G3078 mixed bed



columns, with molecular weight ranges 0—20x10° and 0—10x10° g/mol, respectively). Detection
consisted of a Viscotek VE 3210 UV/vis detector, a Wyatt Optilab T-rEX refractive index detector
operating at 658 nm, and a Wyatt miniDAWN Treos light scattering detector operating at 659 nm.

Absolute molecular weights and dispersities were calculated using Wyatt ASTRA software.

Infrared (IR) spectroscopy. Infrared spectra were acquired on a PerkinElmer Spectrum One FT-
IR spectrometer equipped with a PIKE MIRacle single reflection ATR accessory containing a

diamond crystal sample plate. Spectra were processed using PerkinElmer Spectrum 10 software.

Ultraviolet/visible (UV/vis) spectroscopy. Solution UV-vis measurements were performed using

a Molecular Devices SpectraMax M2 Multimode Microplate Reader at 25 °C. Absorbance
measurements were conducted with 200 g L of sample on clear 96-well polypropylene

microplates (Greiner Bio-One).

PROCEDURES

Svynthesis of amine-functional biotin (biotin-NH>)

i i i
HN™ "NH AcCl / MeOH HN” NH N NH2 HN” NH
H H —_—————> H H —_———> H H H
OH rt,1h OMe MeOH, 60 °C, 48 h N
s /\/\n/ s /\/\n/ eOH, , s /\/\n, ~NNH,
(o] lo) o

Biotin-OMe.? A solution of hydrogen chloride in methanol was first prepared by the dropwise
addition of acetyl chloride (2.4 mL) to ice cold methanol (16 mL) over 15 min. This was then
added to a stirred suspension of D-Biotin (2.03 g, 8.20 mmol) in methanol (16 mL) followed by an
additional hour of stirring at room temp, over which time the suspension became homogeneous.
The resultant solution was evaporated to a residue and partitioned between saturated aq. NaHCO3
and 5% MeOH in CH2Cl. The organic layer was isolated, dried over MgSO4, and evaporated
under vacuum to yield product as a white solid (1.74 g, 82% yield).

'H NMR (500 MHz, DMSO-de) & 6.44 (s, 1H), 6.36 (s, 1H), 4.31 (dd, J = 8.2, 4.6 Hz, 1H), 4.14

(ddt, J = 7.2, 4.4, 2.3 Hz, 1H), 3.59 (s, OH), 3.10 (dp, J = 7.7, 2.9 Hz, 1H), 2.87 — 2.77 (m, 1H),
2.58 (d,J=12.5 Hz, 1H), 2.30 (t, J= 7.1 Hz, 1H), 1.71 — 1.25 (m, 6H).



Biotin-NH.* Biotin-OMe (1.74 g, 6.74 mmol) was dissolved in methanol (60 mL), ethylene
diamine (25 mL) was added, then the solution was then stirred at 60 °C for 48 h. After this, the
solution was rotavapped to a residue followed by trituration with excess ethyl acetate. Drying in

vacuo yielded product as a light solid (1.79 g, 93% yield).

'"H NMR (500 MHz, DMSO-de) § 7.74 (t, J = 5.7 Hz, 1H), 6.52 — 6.27 (m, 2H), 4.31 (ddt, J =
7.7,5.2, 1.1 Hz, 1H), 4.13 (ddd, J=7.7, 4.4, 1.9 Hz, 1H), 3.10 (ddd, J = 8.6, 6.2, 4.4 Hz, 1H), 3.03
(q,J = 6.2 Hz, 2H), 2.83 (dd, J = 12.4, 5.1 Hz, 1H), 2.60 — 2.52 (m, 3H), 2.06 (t, J = 7.4 Hz, 2H),
1.70 — 1.20 (m, 6H).

3C NMR (126 MHz, DMSO-ds) 0 172.50, 163.17, 61.50, 59.66 , 55.88 , 42.65 , 41.86 , 35.68
,28.68,28.50, 25.76

Svynthesis of amine-functional anthracene’

OH N3
OOO MeCN 18 h DMF 50°C,1h OOO THF 0°C,55h

9-Bromomethyl anthracene. Triphenylphosphine (1.09 g, 4.17 mmol, 1.00 equiv) was dissolved

in dry acetonitrile (10 mL) and purged with Ar for 20 min followed by dropwise addition of
bromine (0.21 mL, 4.17 mmol, 1.00 equiv). Next, 9-anthracenemethanol (1.00 g, 4.80 mmol, 1.15
equiv) was added in a single portion under a blanket of Ar and allowed to react for 1 h (note: 9-
anthracenemethanol is not fully soluble under these conditions). The mixture was then transferred
to the refrigerator overnight. The next day, the mixture was cooled to 0 °C for 30 min followed by
vacuum filtration and washing with excess cold acetonitrile. Drying in vacuo yielded product as a

light yellow solid (0.96 g, 85% yield)

'H NMR (300 MHz, Chloroform-d) 8 8.50 (s, 1H), 8.30 (d, J = 9.0 Hz, 2H), 8.04 (d, J = 8.5 Hz,
2H), 7.65 (dd, J = 8.9, 6.6 Hz, 2H), 7.50 (dd, J = 8.5, 6.6 Hz, 2H), 5.55 (s, 2H).

9-Azidomethyl anthracene. In a 100-mL round bottom flask, 9-bromomethylanthracene (0.96 g,
3.55 mmol, 1.00 equiv) was dissolved in degassed DMF (25 mL) followed by addition of sodium



azide (0.92 g, 14.2 mmol, 4.00 equiv) in a single portion. The reaction was then heated to 50 °C
and stirred for 1 h. After this, the reaction was cooled to rt then partitioned between diethyl ether
(50 mL) and DI water (50 mL). The organic layer was isolated then washed with deionized (DI)
water (4 x 50 mL) and brine (50 mL) before drying over MgSOs. Filtration, evaporation, and
drying in vacuo yielded product as a yellow solid (0.76 g, 91% yield).

'"H NMR (300 MHz, Chloroform-d) 6 8.52 (d, J= 1.1 Hz, 1H), 8.30 (dq, J = 8.9, 1.0 Hz, 2H),
8.06 (ddt, J=28.3, 1.4, 0.7 Hz, 2H), 7.66 — 7.45 (m, 2H), 5.34 (s, 2H), 1.66 (s, 2H).

Note: As azides are potentially explosive, this reaction should be conducted behind a blast
shield to ensure safety. Additionally, this reaction produces extremely hazardous aqueous
sodium azide waste that should be destroyed by treatment with freshly prepared nitrous acid
prior to disposal (refer to the following resource for information on safe destruction of

azides: https://www.drs.illinois.edu/SafetyLibrary/SodiumAzide).

9-Aminomethyl anthracene. Under an Ar atmosphere, triphenylphosphine (0.93 g, 3.6 mmol,
1.10 equiv) was added to a 0 °C solution of 9-azidomethyl anthracene (0.76 g, 3.2 mmol, 1.00
equiv) in THF (6 mL). The reaction was stirred for 4.5 h while being allowed to warm to room
temp, then 0.4 mL DI water was added followed by an additional hour of stirring. Next, diethyl
ether (30 mL) was added and the solution cooled to 0 °C. Slow addition of 10% aq. HCI (4 mL)
resulted in precipitation of the amine hydrochloride salt that was then filtered and washed with
minimal cold 50/50 acetone/H20. Solids were transferred to an Erlenmeyer flask, taken up in ethyl
acetate (50 mL), then neutralized with excess ammonium hydroxide. The resultant solution was
washed with DI water (25 mL), the aqueous layer extracted with ethyl acetate (2 x 30 mL), then
the combined organic fractions washed a final time with DI water (60 mL). The organic phase was
dried over MgSOs, filtered, and evaporated. Drying overnight in vacuo yielded the product as a
yellow solid (0.40 g, 60% yield).

'H NMR (500 MHz, Chloroform-d) & 8.43 (s, 1H), 8.37 (dq, J = 8.9, 1.0 Hz, 2H), 8.05 (ddt, J =

8.4,1.5,0.7 Hz, 2H), 7.58 (ddd, /= 8.9, 6.5, 1.4 Hz, 2H), 7.51 (ddd, /= 8.5, 6.5, 1.1 Hz, 2H), 4.86
(s, 2H).

3C NMR (126 MHz, Chloroform-d) 6 134.67, 131.72, 129.35, 129.31, 126.92, 126.16, 124.99,
123.75, 38.30.



Svynthesis of /N-Boc-ethylenediamine

O o

PN B B
|.|2N/\/NH2 r fo) N/\/NH2
CHzclz, 0°C —r.t. H
24 h

Ethylenediamine (76.5 mL, 1.15 mol, 10.0 equiv) was dissolved in dichloromethane (500 mL) and
cooled to 0 °C with an ice bath. A solution of di-tert-butyl dicarbonate (25.0 g, 0.115 mol, 1.00
equiv) in dichloromethane (250 mL) was then added dropwise over 3 h followed by stirring
overnight at room temp. The organic phase was isolated and washed with brine (4 x 500 mL) then
collected and dried over MgSO4 followed by filtration and evaporation to a viscous yellow oil.
The crude was purified by vacuum distillation to yield the product as a clear oil (12.2 g, 66%
yield).

'"H NMR (300 MHz, Chloroform-d) 6 4.91 (s, 1H), 3.15 (q, J = 6.0 Hz, 2H), 2.78 (t, J = 6.0 Hz,
2H), 1.43 (d, J= 1.5 Hz, 9H), 1.18 (s, 2H).

Svynthesis of ethyl 3-(hexylamino)-2-butenoate

NN

A~ NN T~ AN

pTsOH, EtOAc, 5 h

Ethyl acetoacetate (4.9 mL, 38 mmol, 1.0 equiv) and p-toluenesulfonic acid monohydrate (0.73 g,
3.8 mmol, 0.10 equiv) were dissolved in ethyl acetate (100 mL) followed by addition of
hexylamine (25.2 mL, 192 mmol, 5.00 equiv). After stirring at room temp for 5 h, glacial acetic
acid (12 mL) was slowly added to protonate the remaining hexylamine, then the organic layer was
transferred to a separatory funnel and washed with DI water (4 x 100 mL) and brine (100 mL).
The organic phase was then dried over MgSOs, filtered, and evaporated to a light-yellow oil.
Purification by vacuum distillation afforded product as a clear oil (6.56 g, 80% yield).

'H NMR (500 MHz, DMSO-ds) & 8.51 (s, 1H), 4.34 (s, 1H), 3.95 (tt, J = 7.0, 3.5 Hz, 2H), 3.19

(d, J = 6.7 Hz, 2H), 1.89 (d, J = 2.4 Hz, 3H), 1.48 (dd, J = 9.9, 4.7 Hz, 2H), 1.35 — 1.22 (m, 7H),
1.14 (td, J = 7.1, 2.3 Hz, 3H), 0.88 (dt, J = 8.1, 4.4 Hz, 3H).



Reaction Kkinetics of enamine formation from ethyl acetoacetate

A solution of ethyl acetoacetate (30 [1L, 0.23 mmol, 1.0 equiv) and pTsOH (2.2 mg, 0.012 mmol,
0.050 equiv) in 0.5 mL DMSO-ds were transferred to an NMR tube, then amine (1.2 mmol, 5.0
equiv) was added to initiate reaction. Scans were taken every 5 min for 75 min, and conversion

was determined by integration of either the [] was or the O-CH> resonance of ethyl acetoacetate.

Reaction Kinetics of enamine exchange

©/\NH2 (10 equiv.)

pTsOH (0 - 10 mol %)

fo) HN/\/\/\ DMSO-dg, r.t. - 100 °C fo) HN/\©
/\OM ~ /\OM

A solution of ethyl 3-(hexylamino)-2-butenoate (50 mg, 0.23 mmol enamine) and pTsOH (0 mmol

—2.34 mmol) in 0.5 mL DMSO-ds was transferred to a quartz NMR tube, then benzylamine (0.20
mL, 1.17 mmol) was added. "H NMR spectra were continuously acquired every 1 min for 30 min
while maintaining the instrument at either 25, 60, 80, or 100 °C. Conversion was determined by

integration of the [J NM3 resonance of the initial N-hexyl enamine.

RAFT polymerization of AAEMA

o HO,C sﬂ\© HO,C S\n,Ph
n
o NC S
> Ho o

2 V-70, dioxane, 30 °C

o)
o 0y 0O
AAEMA (4.0 mL, 20 mmol, 75 equiv), CTP (74.9 mg, 0.268 mmol, 1.0 equiv.), V-70 (16.5 mg,

0.0536 mmol, 0.2 equiv), and a small amount of trioxane internal standard were combined in a



graduated cylinder and diluted to a volume of 10 mL with dioxane. The solution was transferred
to a 25-mL Schlenk flask that was sealed and purged for 40 min with Ar over ice. After purging,
the flask was transferred to an oil bath heated to 30 °C and allowed to react for 8 h. Polymer was
purified by 3x precipitation into diethyl ether followed by drying in vacuo to yield PAAEMA-
DTB as a sticky red solid (conversion = 66 %, M, = 12,700 g/mol, b = 1.02).

Note: PAAEMA should be kept cold to improve handling.

Kinetics of AAEMA polymerization. The polymerization was performed as above, except
aliquots were withdrawn every hour under an Ar atmosphere for analysis. Conversion of AAEMA
was determined by 'H NMR spectroscopy, and molecular weights and dispersities were

determined by GPC-MALLS.

Photoinduced end-group removal

O

N 1
P
HO,C s\n,Ph O o™ on HO,C H

S
(o) o > o (o)

H DMSO, 365 nm, 18 h H

In a 25-mL Schlenk flask, PAAEMA-DTB (2.00 g, 0.158 mmol end-groups) and ethylpiperidine
hyposphosphite (0.28 g, 1.58 mmol) were dissolved in DMSO (20 mL) and purged with Ar for 40
min. The solution was then irradiated for 18 h with 365 nm UV light at a luminous intensity of 7.0
mW/cm? in a USpicy® nail dryer. Polymer was purified by dialysis against THF for 48 h, then
precipitation into ether. Drying in vacuo yielded PAAEMA-H as a light yellow solid (M, = 12,600
g/mol, b = 1.04).



Amine functionalization of PAAEMA-H

HO,C H R-NH, HO,C n H
NC " pTSOH (5 mol %) NC T oo
oo -
DMSO, 6 h

PAAEMA-H (50 mg, 0.23 mmol [Imketoester) and pTsOH were dissolved in DMSO (0.5 mL),
then amine (1.15 mmol) was added in a single portion. The solution was stirred at room temp for
6 h, then the functional polymer was purified by dialysis for 48 h against THF followed by
precipitation into diethyl ether.

Amine exchange of PAAEMA-R

HO,C H ANNNH, HO,C H

NC n pTsOH (5 mol %), DMSO NC n
o Yo 100 °C, 24 h o Yo

04,0 0y, 0
N N
R SSNNNF

PAAEMA-R (20 mg), pTsOH (5 mol% relative to enamine groups), and either hexylamine or

benzylamine (various equivalents) were dissolved in 0.5 mL DMSO and heated to 80 °C with
stirring overnight. Polymer was purified by dialysis against THF for 48 h followed by precipitation

into ether.
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SUPPLEMENTARY FIGURES
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Figure S1. (A) Kinetic plot depicting pseudo-1* order conversion of AAEMA; (B) plot of linear
PAAEMA molecular weight growth with monomer conversion (blue markers) with overlaid
theoretical molecular weights (orange line), and plot of constant low dispersities throughout
polymerization (orange markers); (C) overlaid GPC traces depicting growth of a symmetric,
unimodal molecular weight distribution with time.
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Figure S2. Synthesis of AAEMA-containing copolymers by RAFT polymerization with
corresponding GPC traces depicting well-defined copolymers.
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Figure S3. Trithiocarbonate end-group removal by treatment with excess initiator at elevated
temperatures. Overlaid GPC traces of the polymer before (blue trace) and after (orange trace)

reaction indicate a broadening of the molecular weight distribution, possibly due to chain transfer
to the PAAEMA [Ipossibly
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Figure S4. Spectroscopic characterization of photoinduced end-group removal of dithiobenozyl-
terminated PAAEMA; (A) offline UV-Vis spectrum before (red trace) and after (blue trace) end-
group removal depicting disappearance of the dithiobenzoate [1—[lis spectrum before (red trace)
an'H NMR spectrum before (red trace) and after (blue trace) end-group removal with inset
depicting the disappearance of dithiobenzoate aromatic proton resonances.
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Figure S5. Optimization of the reaction between ethyl acetoacetate and benzylamine by in situ
NMR analysis. Conversion of ethyl acetoacetate was determined by monitoring the disappearance
of the depicted peak relative to an internal trioxane standard.
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Figure S6. Overlaid IR spectrum of PAAEMA-H (blue trace) and PAAEMA-Bn (blue trace) with
diagnostic changes in the spectrum depicted in the inset. A significant reduction in the carbonyl
absorbance region is observed corresponding to consumption of pendent ketones, and new
absorbances corresponding to N-H bending and C=C stretching modes of newly formed enamines
are observed.
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Figure S7. Fluorescence spectrum of PEGMA-PAAEMA before and after functionalization with
9-(aminomethyl)anthracene (left) and image of fluorescence under long-wave UV irradiation

(right).
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Figure S8. Kinetics of N-substituent exchange at 80 °C with varying equivalents of pTsOH
catalyst. The reaction proceeds at an appreciable rate with no added catalyst (orange markers), but
is accelerated with addition of increasing concentrations of catalyst.
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Figure S9. Exchange of pendent N-isopropyl substituents for N-benzyl substituents through
dynamic enaminone exchange. Quantitative conversion of isopropyl substituents was observed
presumably due to suppression of the reverse reaction of isopropylamine due to its steric bulk.
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Figure S10. Exchange of pendent N-allyl substituents for N-hexyl substituents through dynamic
enaminone exchange. Reactions were conducted open to air to promote volatilization of liberated
allylamine and drive exchange to the hexyl product.
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Table S1. Efficiency of functional exchange on PAAEMA-R as a function of initial /V-
substituent

Conversion of initial R-group (%)

Entry Equiv hexyl-NH:  Theo. Conversion (%) R=Bn R=Ph R =Allyl R = Isopropyl

1 1.1 52 65 97 71 &3
2 2.0 67 78 99 &3 97
3 5.0 &3 91 >99 91 >99
4 10 91 95 >99 95 >99
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