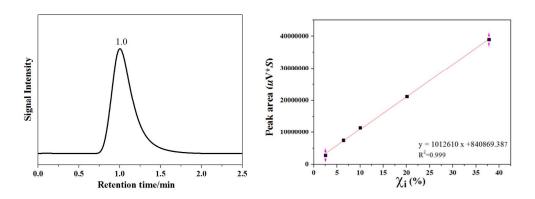
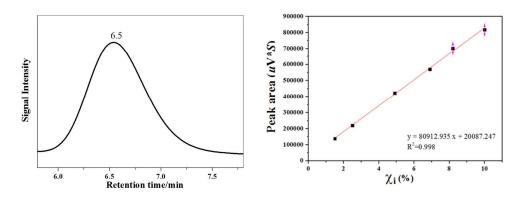
(Supporting Information)

Electrochemical Reduction of CO₂ to CO by Heterogeneous Catalyst of Fe-Porphyrin-Based Metal-Organic Framework

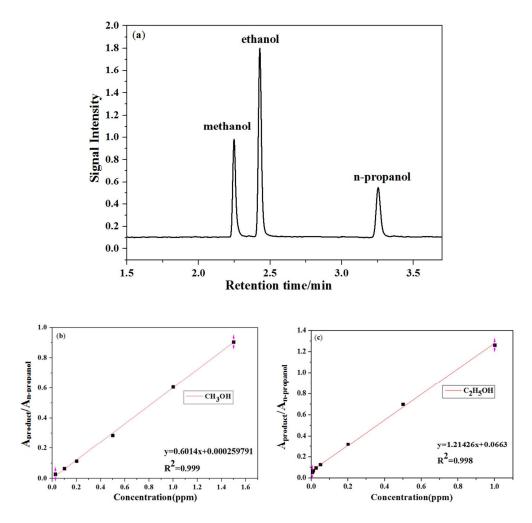
Bao-Xia Dong,* She-Liang Qian, Fan-Yan Bu, Yi-Chen Wu, Li-Gang Feng, Yun-Lei Teng,* Wen-Long Liu, Zong-Wei Li


School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China. Fax: E-mail: bxdong@yzu.edu.cn (B-X. Dong); ylteng@yzu.edu.cn (Y.-L. Teng)

Contents:


- 1. Figure S1. The molecular structure of the Fe-TCPP ligand.
- **2. Figure S2**. Chromatographic peak (left) and standard curve (right) for pure hydrogen established on TDX-01 column for GC analysis.
- **3. Figure S3**. Chromatographic peak (left) and standard curve (right) for pure CO established on TDX-01 column for GC analysis.
- **4. Figure S4**. (a) Chromatographic peaks for pure methanol (2.2 min) and ethanol (2.4 min), as well as standard curves for methanol (b) and ethanol (c) established on PEG-20M column for GC analysis (n-propanol as internal standard).
- **5. Figure S5**. Chromatographic peaks (a) and standard curve (b) for COOH⁻ established on high-end ion chromatography.
- **6. Figure S6**. IR spectra for PCN-222(Fe) and Fe-TCPP.
- **7. Figure S7**. Normalized UV-vis spectra of pure TCPP-Fe and PCN-222(Fe) in CH₂Cl₂ which show a Soret band at 444 nm.
- **8. Figure S8**. CVs of PCN-222 (Fe)/C in CO₂-saturated electrolyte. Insert shows the total charge integrated from the Fe^{III/II} reduction wave ($\Gamma = 1.622 \times 10^{-8}$ mol cm⁻²).
- 9. Table S1. Performance of a selection of existing electrocatalysts
- **10. Figure S9.** CVs of bare CP electrode, carbon black loaded on CP electrode and PCN-222 (Fe)/C loaded on CP in CO₂-saturated electrolyte in the potential range −1.4~1.2 V vs RHE.
- 11. Figure S10. CVs of precursor of Fe-TCCP ligand ($\Gamma = 2.89 \times 10^{-9} \text{ mol cm}^{-2}$), and PCN-222 (Fe)/C loaded on CP in CO₂-saturated electrolyte in the potential range $-0.5 \sim 0.8 \text{ V}$ vs RHE.
- 12. Table S2. Summary of the chronoamperograms experiment parameters
- **13. Figure S11**. Plot of $log(I_{CO})$ vs η for CO production at varying potential, Tafel slope: 188 mV/decade.

- 14. Figure S12. Current density recorded for 2 h electrolyses (left) and FE analyses (right) at 0.60 V vs RHE using carbon black, Fe-TCPP/C and PCN-222 (Fe)/C, respectively, loaded on CP in CO₂-saturated 0.5 M KHCO₃.
- **15. Table S3**. List of the chronoamperograms experiment parameters for catalysts with different PCN-222(Fe): C ratios
- **16. Figure S13**. SEM images of the PCN-222(Fe)/C composite electrode before and after electrolysis in a side view (a) and top-view (b, c), respectively.
- **17. Figure S14**. Fe2p core level spectra for as-synthesized PCN-222(Fe) and PCN-222(Fe)/C electrode loaded on carbon paper before and after electrolysis at -0.60 V vs RHE for 2 h.
- **18. Figure S15**. Cl2p core level spectra for as-synthesized PCN-222(Fe) and PCN-222(Fe)/C electrode loaded on carbon paper before and after electrolysis at -0.60 V vs RHE for 2 h.
- **19. Figure S16**. C1s core level spectra for as-synthesized PCN-222(Fe) and PCN-222(Fe)/C electrode loaded on carbon paper before and after electrolysis at -0.60 V vs RHE for 2 h.
- **20. Figure S17**. N1s core level spectra for as-synthesized PCN-222(Fe) and PCN-222(Fe)/C electrode loaded on carbon paper before and after electrolysis at -0.60 V vs RHE for 2 h.


Figure S1. The molecular structure of the Fe-TCPP ligand.

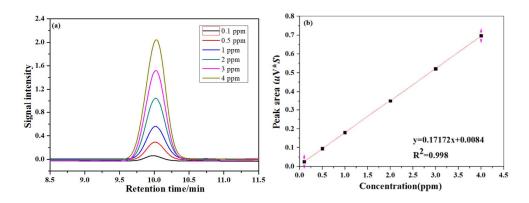

Figure S2. Chromatographic peak (left) and standard curve (right) for pure hydrogen established on TDX-01 column for GC analysis.

Figure S3. Chromatographic peak (left) and standard curve (right) for pure CO established on TDX-01 column for GC analysis.

Figure S4. (a) Chromatographic peaks for pure methanol (2.2 min) and ethanol (2.4 min), as well as standard curves for methanol (b) and ethanol (c) established on PEG-20M column for GC analysis (n-propanol as internal standard).

Figure S5. Chromatographic peaks (a) and standard curve (b) for COOH⁻ established on high-end ion chromatography.

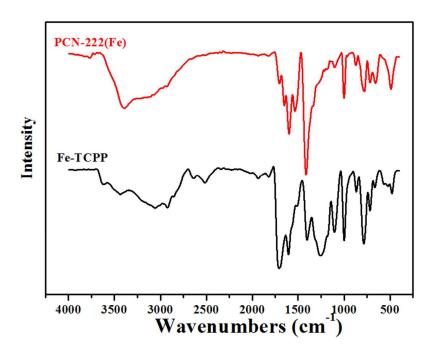
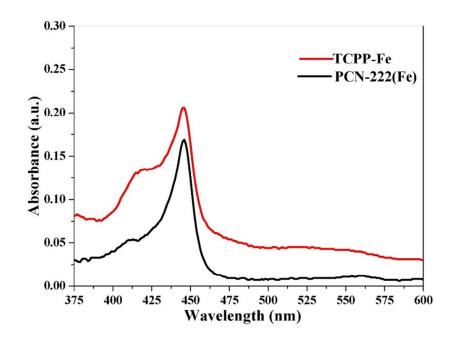
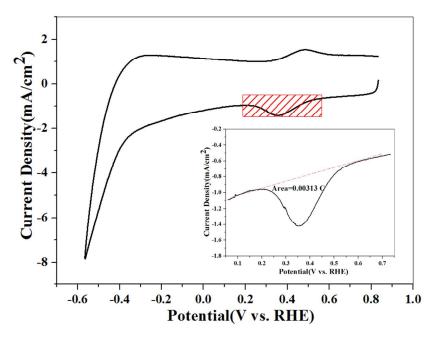




Figure S6. IR spectra for PCN-222(Fe) and Fe-TCPP.

Figure S7. Normalized UV-vis spectra of pure TCPP-Fe and PCN-222(Fe) in CH_2Cl_2 which show a Soret band at 444 nm.

Figure S8. CVs of PCN-222 (Fe)/C in CO₂-saturated electrolyte. Insert shows the total charge integrated from the Fe^{III/II} reduction wave ($\Gamma = 1.622 \times 10^{-8} \text{ mol cm}^{-2}$).

Calculation of the surface concentration of electrochemically active PCN-222(Fe) sites. Integration of the peak area under the Fe^{III/II} reduction wave leads to the charge that passed to reduce Fe(III) to Fe(II), $Q_{\text{CV}} = 0.00313$ C. The surface concentration, Γ , is calculated using the following equation: $\Gamma = Q_{\text{CV}}/nFA$ (1). Here, n is the number electrons transferred for the redox couple (n=1), F is the Faraday constant, and A is the surface area of the electrode. It gives surface concentration of electroactive PCN-222(Fe): $\Gamma = 1.622 \times 10^{-8}$ mol cm⁻².

The amount of surface-active PCN-222 (Fe) sites is calculated by assuming a one-electron redox process: $n = Q/F = 3.2 \times 10^{-8}$ mol.

The total amount of PCN-222 (Fe) is calculated as follows: $n_{\text{total}} = m/M = 2.0/2571.5 = 7.8 \times 10^{-7}$ mol.

Then, the surface fraction of electrochemically active PCN-222 (Fe) sites is determined as follows:

 $\chi = n/n_{\text{total}} = 4.17\%$

 Table S1. Performance of a selection of existing electrocatalysts

Catalyst	Electrolyte	Product	Potential [overpotential]/V	J/mA cm ⁻²	FE %	TOF/ molecules ·site ⁻¹ ·s ⁻¹	TOF/	$\Gamma \times 10^{-8}$ / mol cm ⁻²	Ref
DOV. 63-57	0.5 M VHCO	CO	-0.60 V vs RHE [0.494]	1.15	91	0.336 ^{M1}	0.014 M1	1 (22	This
PCN-222(Fe)	0.5 M KHCO ₃	СО			80.4	0.286 ^{M1}	0.012 M1	1.622	work
FeTDHPP HO OH HO OH HO OH	DMF+2 M H ₂ O	СО	-1.16 V vs NHE [0.47]	0.31	94	n.r.	11	n.r.	(1)
CoFPc (perfluorinated cobalt phthalocyanine)	0.5 M NaHCO ₃	СО	-0.80 V vs RHE [0.68]	~4.2	93	1.61	0.13~ 2.1 ^{M1}	1.3	(2)
Carbazole-functionlised FETCPP	0.1 M Bu ₄ NBF ₄ /dichlo romethane	СО	n.r.	n.r.	n.r.	n.r.	n.r.	0.023	(3)
CAT _{pyr} -CNT	0.5 M NaHCO ₃	СО	–1.03 V vs NHE [0.48]	~0.6	93	0.04	0.04 ^{M1}	0.1~2.5	(4)
PorCu		СО	–0.676 V vs RHE	~1	10	n.r.	n.r.		
HO OH HO HO HO POrCu	0.5 M NaHCO ₃	CH ₄	–0.976 V vs RHE	~13.2	27	4.3 ^{M2}		n.r.	(5)
		C ₂ H ₄	-0.976 V vs RHE	~8.4	17	1.8 ^{M2}		n.r.	
Co-TPP-CNT	0.5 M KHCO ₃	СО	-1.15 V vs SCE [0.35]	0.59	83	n.r.	n.r.	17	(6)

N N N N N N N N N N N N N N N N N N N			-1.35 V vs SCE [0.55]	3.2	91		0.078 M1		
Fe-TPP-CNT	0.5 M KHCO ₃	СО	-1.35 V vs SCE [0.55]	0.9	64	n.r.	n.r.	n.r.	
PorZn M=2n, PorZn M=2t, H,Por	$0.1~\mathrm{M}$ TBAPF ₆ /DMF/ H ₂ O	СО	–1.7 V vs SHE	2.1	95	14.4 ^{M2}		n.r.	(7)
Co-Pc/CNT (2.5%)	0.5 M KHCO ₃	СО	-0.63 V vs RHE [0.51]	10	92	2.7 ^{M2}		n.r.	
Co-Pc-CN/CNT (3.5%)	0.5 M KHCO ₃	СО	-0.63 V vs RHE [0.51]	15	98	4.1 ^{M2}		n.r.	(8)
NC NC CV	0.5 M KHCO ₃	СО	-0.46 V vs RHE [0.34]	5.6	88	1.4 ^{M2}		n.r.	
CoPPc/CNT	0.5 M NaHCO ₃	СО	-0.61 V vs RHE [0.50]	20	90	1.36 ^{M3}		n.r.	(9)
Cu-Pc	0.5 M VIICO	CH ₄	–1.06 V vs RHE [0.94]	13	66	0.39 ^{M4}			(10)
HKUST-1	- 0.5 M KHCO ₃	CH ₄	-1.16 V vs RHE [1.04]	4.4	27	n.r.	n.r.		(10)

[Cu(cyclam)]Cl ₂		$\mathrm{CH_4}$	–1.26 V vs RHE [1.14]	2.8	15	n.r.	n.r.		
COF-366-Co	0.5 M KHCO ₃	СО	-0.67 V vs RHE [0.55]	1.8	90	0.69 ^{M2}	0.027 M2	1	(11)
[Al ₂ (OH) ₂ TCPP-Co]MOF (TCPP-Co)	0.5 M KHCO ₃	СО	–0.7 V vs RHE [0.58]	1	76	0.056 ^{M2}		11	(12)
Fe_MOF-525	1 M TBAPF ₆ /CH ₃ C N	СО	-1.3 V vs NHE [0.65]	2.3	54	0.018 ^{M5}		6.2	(13)

n.r.—not reported

M1-M5: different methods for calculating the TOF, as illustrated in the following context.

About the calculation of the turnover number (TON) and turnover frequency (TOF) in the heterogeneous catalysis:

Method 1:

TON is defined as the total moles of carbon product formed (n_{prod}) divided by total moles of catalyst employed in the electrolysis (n_{cat}) : TON = n_{prod}/n_{cat} (2)

TOF is defined as TON per unit time: TOF = TON/t= $n_{prod}/(n_{cat}t)$ (3), where t is the electrolysis time. ¹¹

We use this method for evaluating the catalysts in this work.

Method 2:

The electrochemical double-layer (EDL) capacitance can be calculated by the equation below: C=i/v (4), where i is the current (mA) and v is the scan rate (mV s⁻¹). The EDL capacitance, based on the CV measurements in the CO₂ saturated solution, could be derived from the slope of the

linear regression in the current-scan rate plot. TOF can be calculated by the equation: TOF=j/nem = kj/nCV (5), where j is the partial current (mA) resulting from CO production, n is the number of electrons transferred to produce one CO molecule (n=2), e is the elementary charge (1.602×10^{-19} C), m is the actual number of the exposed catalyst molecules, k is the number of elementary charges adsorbed on each molecule, C is the EDL capacitance (mF) and V is the potential window (V) of the CV measurements. Assuming one exposed catalyst molecule contributes to the EDL capacitance by adsorbing one elementary charge (e.g. a K⁺ ion), we have k=1 and the TOFs for CO₂-to-CO conversion can be calculated.

Method 3:

TOF is defined as the mole of reduction product generated per electrocatalytic active site per unit time. Assuming that all catalyst sites are involved in the CO₂ reduction reaction electrocatalysis:

$$TOF = j_{tot} \times FE_{CO}/2F \times n_{tot}(6)$$

In reality, only surface catalyst sites are involved in CO₂ reduction reaction electrocatalysis. The corrected TOF is defined as follows: $TOF_{corrected} = TOF/f$ (7), where f is the surface fraction of electrochemically active catalyst sites $(f=n/n_{tot})$.

TON is defined as the mole of reduction product generated per electrocatalytic active site over a given period of time.

TON = $Q \times FE_{\text{CO(average)}}/2F \times n_{\text{tot}}(8)$, where Q is the total reduction charge pass during the bulk electrocatalysis, and $FE_{\text{CO(average)}}$ is the estimated average CO faradaic efficiency during the bulk electrocatalysis.

When normalized to the number of electrocatalytically active catalyst sites on the surface: $TON_{corrected} = TON/f(9)$.

Method 4:

To calculate the TOF for the CuPc catalyst, the number of surface sites was estimated based on the size and geometry of the metallic Cu clusters using the equation below:

$$\mu = MN = M \frac{\alpha m N_{\rm A}}{M_{\rm CuPc}}$$
 (10)

where μ denotes the number of surface sites, M denotes the percentage of surface Cu atoms in a Cu clusters, N denotes the total number of Cu atoms in all the Cu clusters on the electrode, α denotes the percentage of CuPc molecules that have restructured to Cu clusters, m denotes the original mass loading of CuPc (60 μ g cm⁻²), N_A denotes the Avogadro constant, and M_{CuPc} denotes the molecular mass of CuPc (576.07 g mol⁻¹). Here, α =80% based on the XAS results. Consider that the Cu clusters are 2 nm cuboctahedra containing 162 surface Cu atoms and a total of 309 Cu atoms, M=0.524. Consequently, μ =2.63×10¹⁶ sites per cm². TOF was clculated using the equation below:

$$TOF = \frac{j}{ne\mu}$$
 (11)

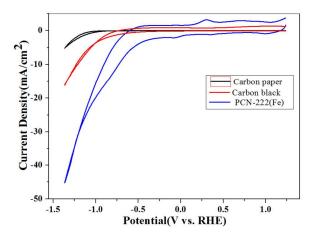
where j is the partial current density for CH₄ formation, n is the number of electrons needed to reduce on CO₂ molecule to CH₄, and 3 is the elementary charge. j, n, and e are 13 mA cm⁻¹, 8, and

 1.602×10^{16} C, respectively. Therefore, the TOF of CH₄ for the CuPc catalyst at -1.06 V vs RHE is 0.39 molecules sites⁻¹ s^{-1.10}

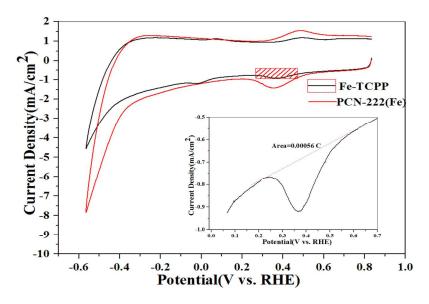
Method 5:

Foot of the wave analysis allows the use of meausred CVs of catalytic reactions in order to determine TOF and TON, regardless of any side-effects such as substrate consuption, which may interfere with the obtained results at high current densities. We could extract TOF vs η Tafel plots for a specific homogeneous molecular catalyst.

A second order catalytic reaction rate (k) could be calculated using the following relation:


$$\frac{i}{i_p^0} = \frac{2.24\sqrt{\frac{RT}{FV}2kC_{CO_2}}}{1 + \exp[\frac{F}{RT}(E - E_{Fe \text{ I/0}})]}$$
(12)

where i is the catalytic current under CO_2 at a given applied potential E, i_p^0 is the current under N_2 at the catalyst formal potential $E_{Fe\ I/0}$. R is gas constant, T is temperature, F is Faraday constant, and v is CV scan rate. C_{CO2} is 0.23 M in DMF.


By plotting $\frac{\frac{i}{\sqrt{p}}}{\sqrt{p}}$ vs $1/1 + \exp[\frac{F}{RT}(E - E_{Fe \, 1/0})]$, and fitting the early linear portion of the curve, one can calculate k from the curve's slope.

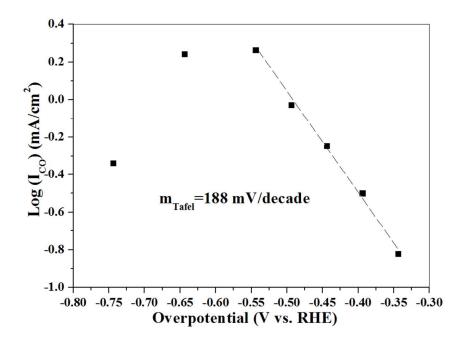
Then, TOF for each overpotential, η , could be obtained using:

$$TOF = \frac{2k}{1 + \exp\left[\frac{F}{RT} \left(E_{CO_2/CO} - E_{Fe \ 1/0} - \eta\right)\right]}$$
(13)

Figure S9. CVs of bare CP electrode, carbon black loaded on CP electrode and PCN-222 (Fe)/C loaded on CP in CO₂-saturated electrolyte in the potential range −1.4~1.2 V vs RHE.

Figure S10. CVs of precursor of Fe-TCCP ligand ($\Gamma = 2.89 \times 10^{-9} \text{ mol cm}^{-2}$), and PCN-222 (Fe)/C loaded on CP in CO₂-saturated electrolyte in the potential range $-0.5 \sim 0.8 \text{ V}$ vs RHE.

The amount of surface-active Fe-TCPP sites is calculated by assuming a one-electron redox process: $n = Q/F = 5.78 \times 10^{-9}$ mol.


The total amount of Fe-TCPP is calculated as follows: $n_{\text{total}} = m/M = 0.67/844.6 = 7.9 \times 10^{-7} \text{ mol.}$

Then, the surface fraction of electrochemically active PCN-222(Fe) sites is determined as follows:

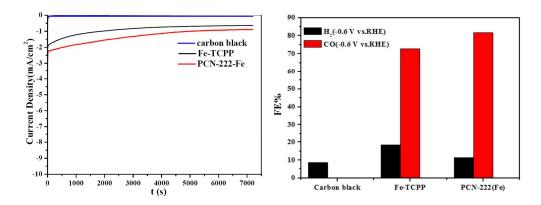
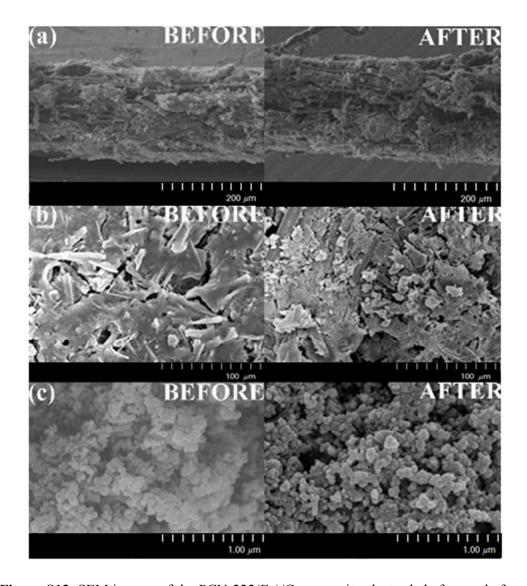

 $\chi = n/n_{\text{total}} = 0.73\%$

 Table S2. Summary of the chronoamperograms experiment parameters

vs Ag/AgCl	-1.085	-1.135	-1.185	-1.235	-1.285	-1.385	-1.485
vs RHE/V	-0.45	-0.50	-0.55	-0.60	-0.65	-0.75	-0.85
η/mV	344	394	444	494	544	644	744
Current density/mAcm ⁻²	0.23	0.46	0.71	1.15	2.330	3.46	4.08
<i>Q</i> / C	3.35	6.63	10.15	16.60	33.55	49.77	58.80
X _{H2} %	0.02	0.04	0.06	0.20	0.40	2.0	6.01
FE _{H2} %	4.70	4.75	4.65	9.48	11.27	38.01	80.49
X _{CO} %	0.32	0.69	1.16	1.92	3.52	3.4	1.04
FE _{CO} %	75.26	82.46	89.84	91.23	82.54	53.81	13.93
C _{MeOH/ppm}	0.198	0.394	0.509	0.192	0.50	1.57	0.986
FE _{MeOH} %	6.42	6.45	5.45	1.26	1.62	3.44	1.82
C _{EtOH/ppm}	0.224	0.269	0.136	0.116	1.21	1.67	1.52
FE _{EtOH} %	10.12	6.14	2.03	1.06	5.45	5.07	3.92
FE _{total} /%	96.50	99.80	101.97	103.03	100.88	100.33	100.16
n _{CO} /mol	1.3*10 ⁻⁵	2.82*10 ⁻⁵	4.73*10 ⁻⁵	7.84*10 ⁻⁵	1.43*10 ⁻⁴	1.39*10 ⁻⁴	4.25*10 ⁻⁵
TON (n _{co} /n _{pcn222})	16.7	36.2	60.6	100.7	183	178	54.4
TON _{corrected} per site	400	858	1453	2414	4388	4268	1304
TOF/h ⁻¹	8.35	18.1	30.3	50.4	91.5	89	27.2
TOF/s ⁻¹	0.0023	0.0050	0.0084	0.0140	0.0254	0.0247	0.0075
TOF _{corrected} / site ⁻¹ ·s ⁻¹	0.055	0.120	0.201	0.336	0.609	0.592	0.180


Figure S11. Plot of $log(I_{CO})$ vs η for CO production at varying potential, Tafel slope: 188 mV/decade.

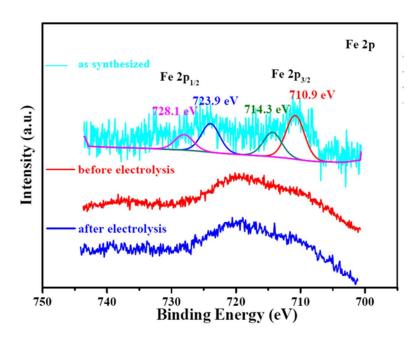
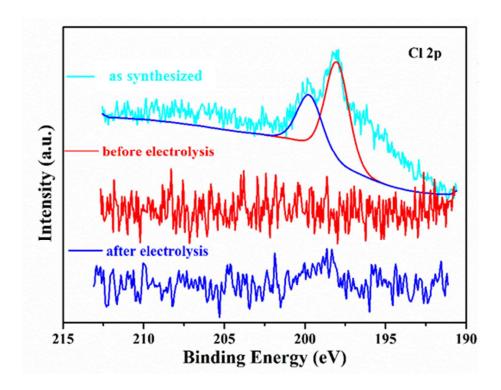
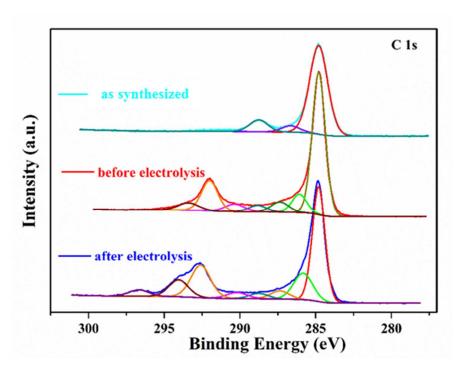

Figure S12. Current density recorded for 2 h electrolyses (left) and FE analyses (right) at -0.60 V vs RHE using carbon black, Fe-TCPP/C and PCN-222 (Fe)/C, respectively, loaded on CP in CO₂-saturated 0.5 M KHCO₃.

Table S3. List of the chronoamperograms experiment parameters for catalysts with different PCN-222(Fe): C ratios


PCN-222(Fe): C	1:3	1:2	1:1	2:1	3:1
FE _{H2} %	25.5	9.48	29.2	27.7	43.6
$FE_{ m CO}\%$	82.5	91.2	64.6	69.5	52.9
$X_{\rm CO}\%$	1.94	1.92	1.29	1.20	0.69
$n_{\rm CO}/{ m mol}$	7.92×10^{-5}	7.84×10^{-5}	5.27×10^{-5}	4.90×10^{-5}	2.82×10^{-5}
Q/C	18.49	16.6	15.7	13.65	10.29
j/mA cm ⁻²	1.28	1.15	1.09	0.94	0.71
$Q_{CV}\!/C$	0.00026	0.00313	0.00070	0.00033	0.00030
$\Gamma/mol\ cm^{-2}$	1.34×10^{-9}	1.62×10^{-8}	3.60×10 ⁻⁹	1.72×10 ⁻⁹	1.54×10^{-9}
$n_{(active\ pcn222)}/mol$	2.68×10 ⁻⁹	3.24×10^{-8}	7.20×10 ⁻⁹	3.44×10 ⁻⁹	3.08×10^{-9}
$n_{ m pcn222}/mol$	5.83×10^{-7}	7.78×10^{-7}	1.16×10^{-6}	1.56×10^{-6}	1.75×10^{-6}
$\chi(n_{active}/n_{total})$	0.46%	4.17%	0.62%	0.22%	0.18%
$TON(n_{co}/n_{pcn222})$	135.8	100.7	45.4	31.4	16.1
TON _{corrected} /site ⁻¹	29521	2414	7322	14272	8944


Figure S13. SEM images of the PCN-222(Fe)/C composite electrode before and after electrolysis in a side view (a) and top-view (b, c), respectively.

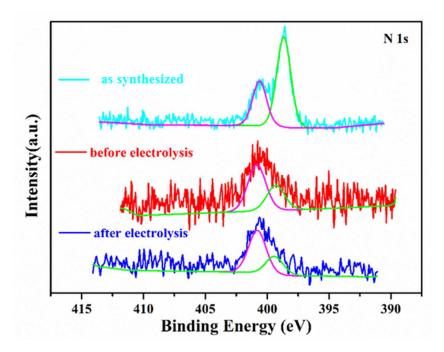

Figure S14. Fe2p core level spectra for as-synthesized PCN-222(Fe) and PCN-222(Fe)/C electrode loaded on carbon paper before and after electrolysis at – 0.60 V vs RHE for 2 h.

Figure S15. Cl2p core level spectra for as-synthesized PCN-222(Fe) and PCN-222(Fe)/C electrode loaded on carbon paper before and after electrolysis at -0.60 V vs RHE for 2 h.

Figure S16. C1s core level spectra for as-synthesized PCN-222(Fe) and PCN-222(Fe)/C electrode loaded on carbon paper before and after electrolysis at -0.60 V vs RHE for 2 h.

Figure S17. N1s core level spectra for as-synthesized PCN-222(Fe) and PCN-222(Fe)/C electrode loaded on carbon paper before and after electrolysis at -0.60 V vs RHE for 2 h.

References:

- (1) Costentin, C.; Drouet, S.; Robert, M.; Savéant, J. M. A Local Proton Source Enhances CO₂ Electroreduction to CO by a Molecular Fe Catalyst. *Science* **2012**, *338*, 90–94.
- (2) Morlanés, N.; Takanabe, K.; Rodionov, V. Simultaneous Reduction of CO₂ and Splitting of H₂O by a Single Immobilized Cobalt Phthalocyanine Electrocatalyst. ACS Catal. 2016, 6, 3092–3095.
- (3) Hu, X.-M.; Salmi, Z.; Lillethorup, M.; Pedersen, E. B.; Robert, M.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Controlled Electropolymerisation of a Carbazole-Functionalised Iron Porphyrin Electrocatalyst for CO₂ Reduction. *Chem. Commun.* **2016**, *52*, 5864–5867.
- (4) Maurin, A.; Robert, M. Noncovalent Immobilization of a Molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO₂-to-CO conversion in water. *J. Am. Chem. Soc.* 2016, 138, 2492–2495.
- (5) Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO₂ Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. *J. Am. Chem. Soc.* 2016, 138, 8076–8079.
- (6) Hu, X.-M.; Rénne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced Catalytic Activity of Cobalt Porphyrin in CO₂ Electroreduction upon Immobilization on Carbon Materials. *Angew. Chem. Int. Ed.* 2017, 56, 6468–6472.
- (7) Wu, Y. -S.; Jiang, J. -B.; Weng, Z.; Wang, M. -Y.; Broere, D. L. J.; Zhong, Y. -R.; Brudvig, G. W.; Feng, Z. -X.; Wang, H. -L. Electroreduction of CO₂ Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center. ACS Cent. Sci. 2017, 3, 847–852.
- (8) Zhang, X.; Wu, Z. -S.; Zhang, X.; Li, L. -W.; Li, Y. -Y.; Xu, H. -M.; Li, X. -X.; Yu, X.- L.; Zhang, Z. -S.; Liang, Y. -Y. Wang, H. -L. Highly Selective and Active CO₂ Reduction Electrocatalysts Based on Cobalt Phthalocyanine/Carbon Nanotube Hybrid Structures. *Nature Commun.* 2017, 8, 14675.
- (9) Han, N.; Wang, Y.; Ma, L.; Wen, J. -G.; Li, J.; Zheng, H. -C.; Nie, K.- Q.; Wang, X. -X.; Zhao, F. -P.; Li, Y. -F.; Fan, J.; Zhong, J.; Wu, T. -P.; Miller, D. J.; Lu, J.; Lee, S. T.; Li, Y. -G. Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO₂ Reduction. *Chem* 2017, 3, 652–664.
- (10) Weng, Z.; Wu, Y. -S.; Wang, M. -Y.; Jiang, J. -B.; Yang, K.; Huo, S. -J.; Wang, X. -F.; Ma, Q.; Brudvig, G. -W.; Batista, V. -S.; Liang, Y. -Y.; Feng, Z. -X.; Wang, H. -L. Active Sites of Copper-Complex Catalytic Materials for Electrochemical Carbon Dioxide Reduction. *Nat. Commun.* 2018, *9*, 415–423.
- (11) Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R. Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO₂ Reduction in Water. *Science* 2015, 349, 1208–1213.
- (12) Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. -J.; Yaghi, O. M.; Yang, P. Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide. *J. Am. Chem. Soc.* **2015**, *137*, 14129–14135.
- (13) Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-Porphyrin-Based Metal-Organic Framework Films as High-Surface Concentration,

- Heterogeneous Catalysts for Electrochemical Reduction of CO₂. ACS Catal. **2015**, *5*, 6302–6309.
- (14) Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.M. Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis. *J. Am. Chem. Soc.* **2012**, 134, 11235–11242.