Supporting Information for

Amphiphilic cellulose nanocrystals for enhanced Pickering emulsion stabilizations

Chunxia Tang¹, Stewart Spinney¹, Zengqian Shi¹, Juntao Tang¹,²*, Baoliang Peng,³ Jianhui Luo³
Kam C. Tam¹*

¹Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada

²College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China

³Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Key Laboratory of Nano Chemistry, Key Laboratory of Oilfield Chemistry, CNPC, Beijing 100083, P. R. China

Figures 4
Figure S1. Surface tension of CNC-PS reacted for 1 day (black) and 3 days (red)

Figure S2. pH and conductivity titration curves of selectively end carboxylated CNC
Figure S3. Zeta Potential of CNC-PS (0.5 wt%) with various salt concentration

Figure S4. Creaming profiles of toluene in water emulsion stabilized by CNC-PS with various reaction conditions (Left) room temperature and PS Mn=5000; (Middle) room temperature and PS Mn=10000; and (Right) 70 ℃ PS Mn=5000 at different concentrations.