Supporting Information

Quantitative determination of Pt- catalyzed D-glucose oxidation products using 2D NMR

R. D. Armstrong*†, J. Hirayama†‡, D. W. Knight†, G. J. Hutchings*†.

† Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff, UK, CF10 3AT ‡ Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan

Corresponding authors; ArmstrongR4@Cardiff.ac.uk, Hutch@Cardiff.ac.uk

Directory of Contents

Experimental Procedures

Scheme S1. The pulse sequence used for ¹³C-¹H HMBC NMR experiments.

Figure S1. HPLC elution peaks showing standards of C₆ glucose oxidation products and a mixture thereof – illustrating overlap and co-elution of major reaction products.

Figure S2. ¹H NMR and ¹³C spectra of the product stream of 5% Pt/TiO₂ ^{IMP Red 400} catalysed glucose oxidation at 80 °C showing extensive overlap of resonances.

Figure S3. HMBC NMR 13 C - 1 H spectrum of the product stream of 5% Pt/TiO₂ IMP Red 400 catalysed glucose oxidation at 80 $^{\circ}$ C with false colouring of correlations assigned through analysis of standard solutions.

Table S1. The chemical structures and CAS numbers of C₆ reaction products formed in Ptcatalysed glucose oxidation reactions.

Table S2. Structural assignment of ¹³C-¹H correlations as observed in Fig. 1.

Table S3. C₆ oxidation products of uronic and aldaric acid derivatives of D-glucose showing false coloured HMBC NMR spectra of product streams.

Table S4. Initial rates for catalytic conversion of D-gluconic acid and D-glucono 1,4 lactone as a function of reaction temperature

Figure S4. Annotated ¹³C-¹H HMBC NMR spectrum of D-glucaric acid.

Table S5. Assignment of peaks from Fig. S4 with experimentally calibrated rF values and corresponding R² values.

Table S6. Sensitivity analysis of calibrated rF values from Table S2, with Correlation 8 identified as most suitable for use in quantitative analyses.

Figure S5. Regions of the HMBC spectrum of a D-glucaro 1,4 lactone solution following 65 h equilibration- with peaks false coloured to identify D-glucaric acid, D-glucaro 1,4 lactone and D-glucaro 6,3 lactone.

Table S7. Calibrated ¹H NMR response factors for proton resonances in D-glucaric acid, D-glucaro 1,4 lactone and D-glucaro 1,4 6,3 dilactone.

Table S8. ¹H NMR assignments for D-glucaro 6,3 lactone.

Table S9. Quantified HMBC NMR rFs for ¹³C-¹H correlations in the HMBC spectrum of D-glucaro 6,3 lactone.

Figure S6. Peak area vs mol calibration plots for ¹³C-¹H correlation peaks as determined through glucarate equilibrium studies.

Figure S7. Calibration of α -D-glucopyranose and β - D-glucopyranose in aqueous solutions of D-glucose via equilibrium studies.

Figure S8. A test of rF values determined in Figure S7 via analysis of a series of D-glucose solutions of differing concentration, following equilibration at room temperature.

Table S10. A summary of ¹³C-¹H HMBC NMR correlations used for quantification of C₆ products and unreacted glucose.

Figure S9. The ¹³C-¹H HMBC NMR (a) and ¹³C-¹H HSQC spectra (b) of Pt- catalysed D-glucose oxidation product streams.

Figure S10. Temporal evolution of D-gluconic acid and D-glucono 1,4 lactone in 5% Au/TiO₂ – catalyzed D-glucose oxidation, as quantified by either 13 C- 1 H HMBC NMR or HPLC; a comparative study.

Figure S11. Expanded region of a HMBC NMR 13 C – 1 H spectrum of 5% Pt/TiO₂ $^{IMP \text{ Red } 400}$ catalysed glucose oxidation at 80 $^{\circ}$ C in either D₂O or H₂O false coloured to assign correlations to key C₆ products – highlighting quenching of product correlations due to a strong solvent contribution when H₂O is used as reaction solvent.

Figure S12. Glucose conversion (measured at 24 h on line) as a function of Pt- metal surface area and specific activity as a function of time on line in 5% Pt/TiO₂^{IMP Red 400} catalysed glucose oxidation.

Figure S13. ²H NMR spectra for 5% Pt/TiO₂^{IMP Red 400} catalysed glucose oxidation at 80 °C in either D₂O or H₂O showing no apparent ²H- ¹H exchange.

Table S11. A systematic study of the source of Pt-leaching from 5% Pt/TiO₂ IMP Red 400

Figure S14. Adsorption of leached Pt from aqueous solution onto a series of unmodified catalyst supports.

Figure S15. Observed Pt- leaching under continuous flow trickle bed operation- showing Pt-sequestration by carbon.

Figure S16. Thermogravimetric analyses (TGAs) of as-synthesised 5% Pt/TiO₂^{IMP Red 400} and solid residues following catalytic assessments at reaction temperatures of 60 and 100 °C.

Figure S17. Expanded region of an HMBC-NMR spectrum of the oxidation of glucose using 5 wt. % Pt/TiO₂ $^{\text{IMP Red 400}}$ with NaOH (1 eq. 5.54 mmol) added at t = 0.

Experimental Procedures

Materials and Methods

D-glucaric acid (99.9 %) was prepared from K-glucarate as previously reported. An aqueous solution of K-glucarate (0.05 M, 100 ml) was ion exchanged twice with Amberlyst-15 (H+)(5.0 g). Following filtration the solution was azeotroped with acetonitrile (1.9 l, 5 min) and the solvent was then removed *in vacuo* (50 mbar, 22 °C) to yield pure crystalline D-glucaric acid as an off- white dry solid.

D-Glucaro 1,4: 6,3 dilactone was prepared from K-glucarate as previously reported. [2] Following ion exchange steps (as for D-glucaric acid synthesis) the water solvent was removed *in vacuo* (50 mbar, 50 °C) to yield an orange syrup. This was then dried under vacuum (12 h, 90 °C) to form an orange "glass." This was dissolved in 1,4- dioxane (50 ml) and glucaro 1,4: 6,3 dilactone was precipitated through addition of dichloromethane (50 ml). Recrystallization of this crude

product from 1,4 dioxane : dichloromethane (3:1) yielded D-glucaro 1,4: 6,3 dilactone (NMR pure).

D-Glucaro 1,4 lactone, D-glucono 1,5 lactone, D-glucuronic acid, D-glucurono 6,3 lactone, D-glucose, oxalic acid, tartronic acid, tartaric acid, glyceric acid, formic acid, acetic acid, glycolic acid and fructose (all > 99.6 %) were purchased from Sigma Aldrich and used as received. L-gulurono 6,3 lactone and D-glucono 1,4 lactone was purchased from Carbosynth and used as received.

5- Keto D- gluconic acid potassium salt (> 98 %) and D- gluconic acid Na salt (> 99 %) were purchased from Sigma Aldrich. Aqueous solutions of the desired free acids (of varying concentration) were prepared through ion exchange with Amberlyst- 15 (H⁺) at ambient temperature followed by filtration. L-Guluronic acid Na salt was purchased from Carbosynth and ion exchanged as above prior to analysis.

Catalyst Preparation

Catalysts were prepared via dry chemical vapour impregnation (CVI) from Pt(acac)₂, incipient wetness impregnation from Pt(NO₃)₄ (IWI) and wet impregnation from H₂PtCl₆.4H₂O (IMP).

The procedure for preparation of a 5 wt% Pt/TiO₂ catalyst via CVI is as follows. TiO₂ (P25, 0.95 g) was physically mixed with Pt (acac)₂ (0.1008 g, 0.256 mmol). The resulting dry mixture was transferred to a Schlenk flask and heated under continuous vacuum (1 h, 140 °C). Following this, the sample was heat treated (3 h, 400 °C, 20 °C min⁻¹) in 5% H₂/Ar (30 ml min⁻¹) leading to the descriptor 5% Pt/TiO₂ ^{CVI Red 400}.

The procedure for preparation of 5% wt. % Pt/TiO₂ via wet impregnation (IMP) is as follows. To an aqueous solution of H_2 PtCl₆.4 H_2 O (0.256 mmol, 0.052 M) was added TiO₂ (P25, 0.95 g), with vigorous stirring. The resulting mixture was stirred at 80 °C to form a paste, which was dried (110 °C, 16 h). The sample was then ground in a pestle and mortar and heat treated as described above to yield 5 wt. % Pt/TiO₂^{IMP Red 400}. 5% Au/TiO₂^{IMP Red 400} was prepared from HAuCl_{4 aq} following the same procedure.

The procedure for preparing 5 wt. % Pt/TiO₂ via incipient wetness impregnation (IWI) is as follows. To an aqueous solution of Pt(NO₃)₄ (2.2 ml, 0.256 mmol, 0.116 M) was added TiO₂ (P25, 0.95 g) to form a dry mix. Impregnation was carried out at 110 °C for 16 h. The sample was then ground in a pestle and mortar and heat treated as described previously to yield 5 wt. % Pt/TiO₂ IWI Red 40°.

Catalyst Assessment

Catalytic assessments were carried out in a Teflon lined 50 ml Parr Autoclave reactor according to the following procedure. D-Glucose (0.996 g, 5.53 mmol) were added to a Teflon liner followed by solvent, 10 ml (typically D_2O). The resulting solution was determined to have a total volume of 10.5 ml. Catalyst (typically 40 mg) was then added. The reactor was then sealed, purged 3 times with N_2 and charged with a premixed feed comprising of 20% O_2 in N_2 (total pressure typically 25 bar). The system was then heated to a predefined set point (typically 80 °C) and held for the desired time (typically 24 h). Following this the reactor was cooled to ca. 10 °C and gas phase vented into a gas sampling bag. The liquid phase was then filtered prior to analysis.

Product Analysis

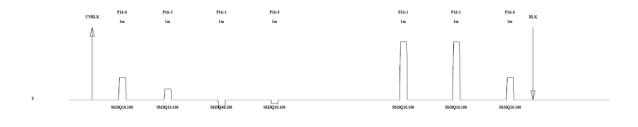
 C_6/C_5 molecules; D-glucose (α & β glucopyranose), D-gluconic acid, D-glucono 1,4 lactone, D-glucaric acid, D-glucaro 1,4 lactone, D-glucaro 6,3 lactone, D-glucaro 1,4: 6,3 dilactone, D-glucuronic acid, D-glucurono 6,3 lactone, L-guluronic acid, L-gulurono 6,3 lactone, tartronic acid and tartaric acid were quantified using a Bruker Avance 500 MHz (11.7 Tesla; multinuclear) NMR spectrometer. Spectral peaks/correlations were normalised to TMS (1 % v/v in CDCl₃) within a sealed ampoule. Standards and reaction solutions were analysed at a constant 0.7 ml volume. TMS (δ ¹H = 0 ppm, δ ¹³C = 0 ppm). The pulse sequence used, a modified version of Bruker hmbcetgpl2nd is shown in Scheme S1.

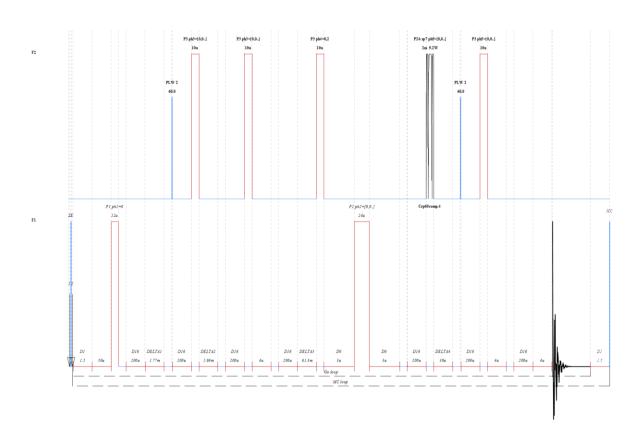
Short chain liquid phase carboxylic acid products; oxalic, glyceric, glycolic and acetic acids were analysed using an Agilent 2000 series HPLC fitted with a MetaCarb 67H column (0.1 M H_3PO_4 and mobile phase, 0.5 ml min⁻¹, 30 °C column) and both RID and DAD detectors.

Gas phase CO₂ was analysed using a Varian 450-GC fitted with an FID, TCD and methaniser (CP-Sil 5CB capillary column, 50 m length, 0.32 mm diameter, carrier gas He). CO₂ was quantified by GC-FID, calibrated versus commercial standards (BOC).

Quantification of leached metals

Microwave Plasma Atomic Emission Spectroscopy (MP-AES) was performed using an Agilent 4100 MP-AES. The Pt content of reaction solutions was analysed using emission lines at 265.95 and 299.79 nm, calibrated versus a commercially available standard. The samples were introduced to the nitrogen plasma using a single pass spray chamber at a pressure of 120 kPa with air injection. Samples were read thrice, with the mean value reported.


Select samples were analysed using an Agilent 7900 ICP-MS instrument, calibrated versus commercial standards.


Catalyst Characterization

CO chemisorption was carried out on a ChemBet TPR/TPD chemisorption analyzer, Quantachrome Industries, fitted with a TCD. Prior to analysis the sample (50 mg) was pretreated in helium (80 ml min $^{-1}$) at 130 °C (1 h). Pulse chemisorption of CO (70 μ l pulse volume) was then carried out at 30 °C.

References

[1] Armstrong, R. D.; Kariuki, B. M.; Knight, D. W.; Hutchings, G. J. How to Synthesise High Purity, Crystalline d-Glucaric Acid Selectively. *European J Org Chem.* 2017, 6811-6814.
[2] Brown, J. M.; Manley-Harris, M.; Field, R. J.; Kiely, D. E. An NMR study of the equilibration of D-glucaric acid with lactone forms in aqueous acid solutions. *J. Carbohydr.* Chem. 2007, 26, 455-467.

Scheme S1. The pulse sequence used for ¹³C-¹H HMBC NMR experiments.

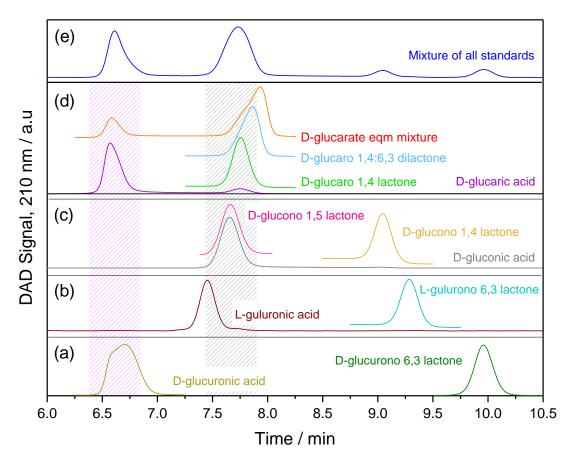


Figure S1. An overlay of DAD signals (measured at λ = 210 nm) for potential C₆ glucose oxidation products showing (a) D-glucuronates, (b) L-guluronates, (c) D-gluconates, (d) D-glucarates and (e) a mixture comprising all standards. Single component mixtures (0.1 M), with the exception of L-guluronates (0.01 M).

Analysis conditions; 10 μ L injection, Metacarb 67H column, 0.5 ml min⁻¹, 30 °C, 0.1 M H₃PO_{4 aq} mobile phase.

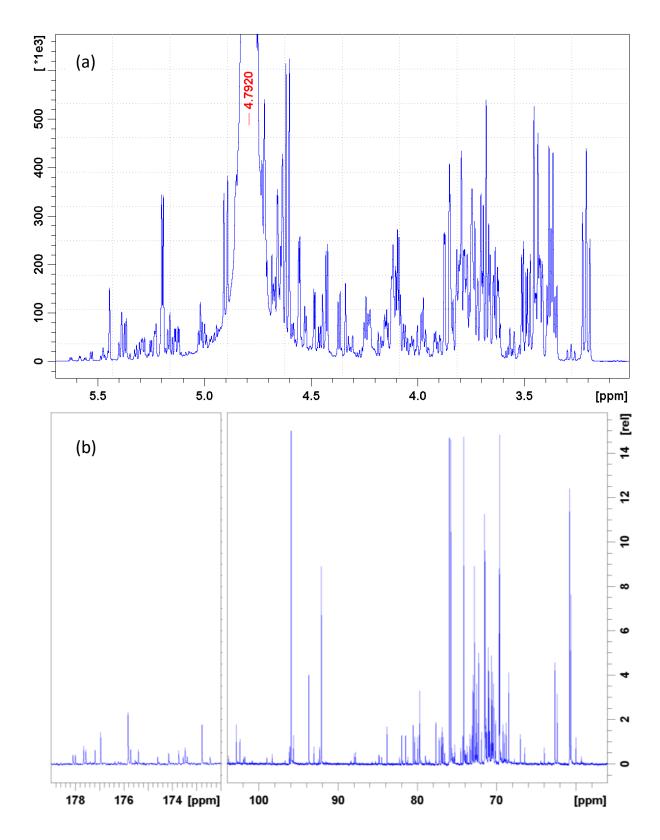


Figure S2. 1 H NMR (a), and 13 C spectra (b) normalised to TMS at δ = 0 ppm, D₂O lock. Reaction conditions; 40 mg 5% Pt/TiO₂ $^{IMP\ Red\ 400}$, 1000 rpm, P(O₂) = 20 bar, 80 $^{\circ}$ C, 24 h, [D-glucose] = 0.554 M (D-glucose/ Pt = 540 : 1 mol : mol)

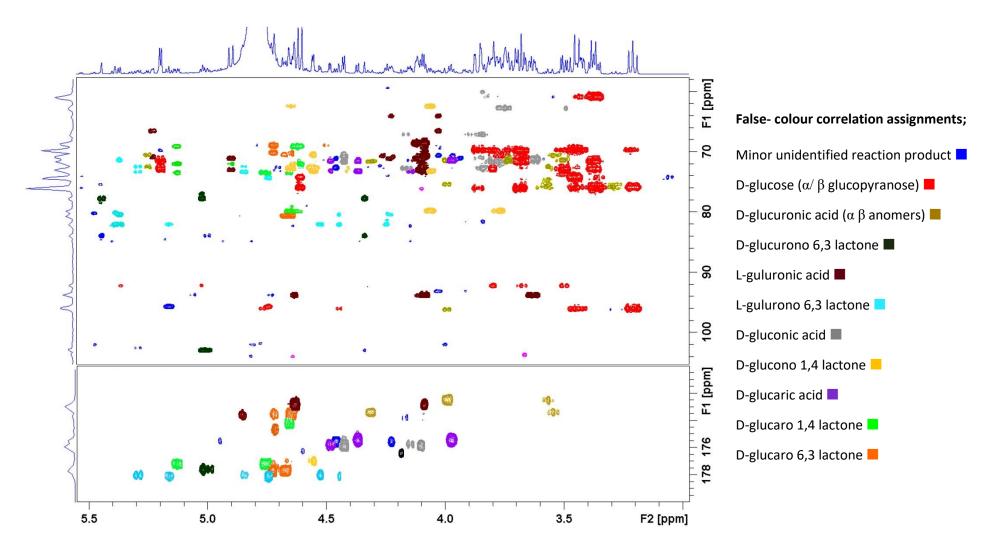


Figure S₃. HMBC NMR spectra false coloured to show correlations corresponding to glucose and C₆ oxidation products thereof. Assignments based on analysis of standards and spectra calibrated to TMS at δ ¹H = 0 ppm δ ¹³C = 0 ppm, D₂O lock. Reaction conditions; 40 mg 5% Pt/TiO₂^{IMP Red 400}, 1000 rpm, P(O₂) = 20 bar, 80 °C, 24 h, [D-glucose] = 0.554 M (D-glucose/Pt = 540 : 1 mol : mol)

Table S1. The chemical structures of C_6 Glucose oxidation reaction products identified in

Figure S₃.

Figure S3. Product	CAS number	Structure
α-D- glucopyranose	492-62-6	HOH ₂ C HOW OH
β-D- glucopyranose	492-61-5	HOH ₂ C HOWOOH
α-D- glucuronic acid	70021-34-0	HOOC HOW OH
β -D- glucuronic acid	23018-83-9	HO OH HOOC
D-glucurono 6,3 lactone	32449-92-6	O OH HO HO
L-guluronic acid	1986-15-8	он он о но но но
L-Gulurono-6,3-lactone	14474-04-5	HO OH
D-gluconic acid	526-95-4	OH OH OH OH OH OH

D-glucono 1,5- lactone	90-80-2	HOH ₂ C HOW OH
D-gluconic acid 1,4- lactone	1198-69-2	OH OH HO
D-glucaric acid	87-73-0	О ОН ОН НО ЭН ОН О
D-glucaro 1,4 lactone	5027-63-4	HO H HO ₂ C HO OH
D-glucaro 6,3 lactone	2782-04-9	HO, H, O OH
D-glucaro 1,4 : 6,3 dilactone	826-91-5	HO H OH

Table S2. Structural assignment of $^{13}\text{C-}^{1}\text{H}$ correlations as observed in Fig. 1.

Species	Structure	¹³ C- ¹ H correlation(s)	Assignment
α-D- glucopyranos e	HOH ₂ C, HO'''OH	[udd] 22 Pt 92 92 92 98 58 5.2 5.0 4.8 4.6 F2 [ppm]	δ ¹ H, 5.20 ppm (H ₁) δ ¹³ C, 71.6 ppm (C ₃) δ ¹³ C, 72.9 ppm (C ₂)
β-D- glucopyranos e	HOH ₂ C O H ₁ HO OH	(add) 14 22 72 92 92 98 88 88 52 5.2 5.0 4.8 4.6 F2 (ppm)	δ¹H, 4.60 ppm (H ₁) δ¹³C, 74.3 ppm (C ₃) δ¹³C, 75.9 ppm (C ₂)
α-D- glucuronic acid	HOOC HOWOH HO OH	E PZ	δ¹H, 5.25 ppm (H₁) δ¹³C, 70.6 ppm (C₃) δ¹³C, 72.4 ppm (C₂)
β-D- glucuronic acid	HOOC HO'' OH	5.2 5.0 4.8 4.6 F2 (ppm)	$δ$ ¹ H, 4.31 ppm ($\mathbf{H_1}$) $δ$ ¹³ C, 71.5 ppm (C_3 , C_2)

D-glucurono 6,3 lactone	O OH H ₂ H ₃ HO HO	E E E E E E E E E E E E E E E E E E E	δ¹H, 5.02 ppm (H₂) δ¹H, 4.34 ppm (H₃) δ¹³C, 77.7 ppm (C₄)
D-gluconic acid	OH OH HO	[udd] 13 ZZ PZ 9Z	δ¹H, 4.42 ppm (H ₂) δ¹³C, 70.7 ppm (C ₃) δ¹³C, 71.5 ppm (C ₄)
D-glucono 1,4 lactone	OH HO HO HO HO HO HO	22 7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	δ¹H, 4.65 ppm (H₂) δ¹H, 4.55 ppm (H₃,4) δ¹³C, 70.4 ppm (C₅) δ¹³C, 72.65 ppm (C₂) δ¹³C, 73.2 ppm (C₃)
L-guluronic acid	HOOC, OHOOH OH	E E E E E E E E E E E E E E E E E E E	δ¹H, 4.89 ppm (H₁) δ¹³C, 71.1 ppm (C₂) δ¹³C, 72.9 ppm (C₃)
L-gulurono 6,3 lactone	HO H_3 H_4 H_5 H_4 H_5 H_4 H_5	E P P P P P P P P P P P P P P P P P P P	δ¹H, 5.37 ppm (H ₅) δ¹H, 5.16 ppm (H ₃) δ¹³C, 72.9 ppm (C ₄) δ¹³C, 80.4 ppm (C ₃) δ¹³C, 82.0 ppm (C ₅)

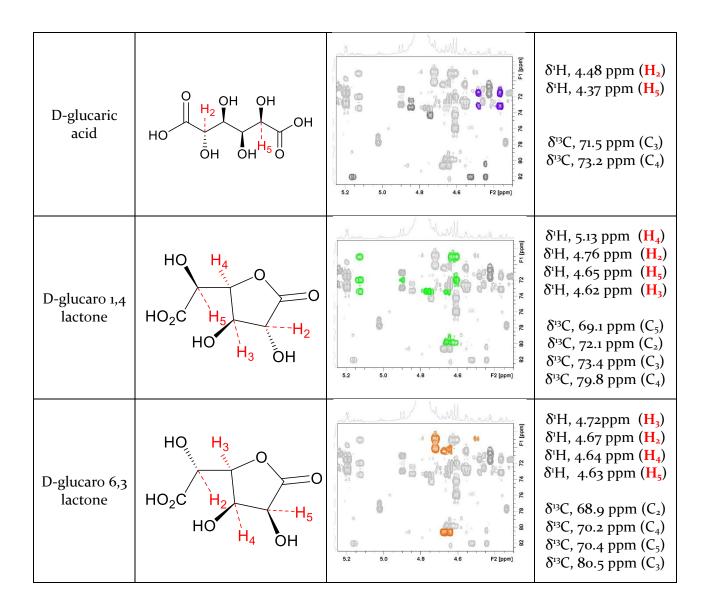
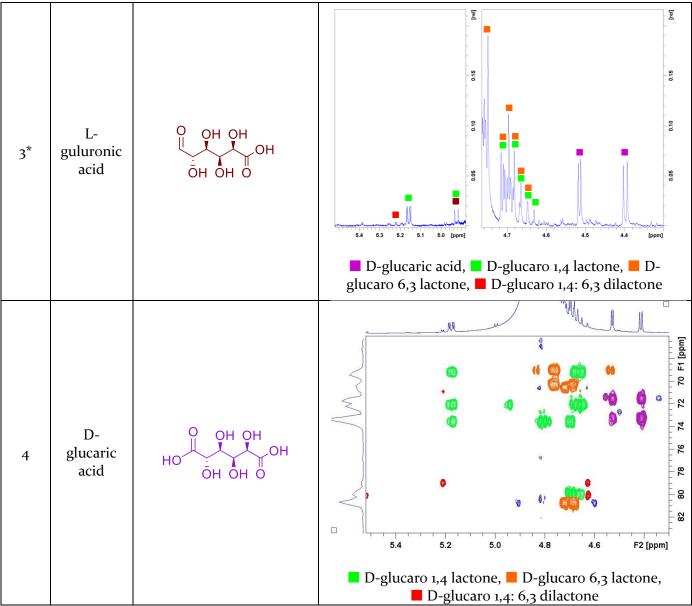



Table S_3 . C_6 oxidation products of uronic and aldaric acid derivatives of D-glucose showing false coloured HMBC NMR spectra of product streams.

Entry	Substrate	Structure & assignment	HMBC NMR spectrum of product stream
1	α-D- glucuronic acid	ноос но он	2
	β -D- glucuronic acid	HOOC HO OH	D-glucurono 6,3 lactone, D-glucaric acid, D-glucaro 1,4 lactone, D-glucaro 6,3 lactone
2	D- gluconic acid	OH OH OH OH O	Glucono 1,4- lactone D-glucaric acid, D-glucaro 1,4 lactone, D-glucaro 6,3 lactone, L-Guluronic acid, L-gulurono-6,3-lactone,

Conditions; 5 % Pt/TiO₂ IMP Red 400 (40 mg), [Substrate] = 0.1 M (D₂O), 80 °C, 1000 rpm, P(20 % O₂/N₂)=25 bar, 24 h. *[L-guluronic acid] = 0.01 M, 2 h, 0.1 M DCl added prior to solvent suppressed ¹H NMR analysis (Entry 3).

Table S4 Initial rates for catalytic conversion of D-gluconic acid and D-glucono 1,4 lactone as a function of reaction temperature

Entry	Substrate	Temp / °C	χ/%	$mol \chi kg_{cat}^{-1}$ h^{-1}	Major Products (% Yield)
1		75	29.5	2.1	D-glucono 1,4 lactone (15.3 %) L-guluronic acid (3.6 %)
2	D-gluconic Acid	90	61.5	4.3	D-glucono 1,4 lactone (25.7 %) L-guluronic acid (8.3 %)
3*		90	35.2	2.5	D-glucono 1,4 lactone (29.6 %) L-guluronic acid (3.7 %)
4	D-glucono	75	28.2	2.0	D-gluconic acid (22.9%) L-guluronic acid (1.0 %)
5	1,4 lactone	90	50.3	3.5	D-gluconic acid (43.4 %) L-guluronic acid (3.0 %)

Reaction conditions; 40 mg 5% Pt/TiO₂^{IMP Red 400}, 1000 rpm, P(20 % O₂ / N₂) = 25 bar, 1 h, [substrate] = 0.028 M (0.28 mmol in D₂O). *Entry 3; P(N₂) = 25 bar.

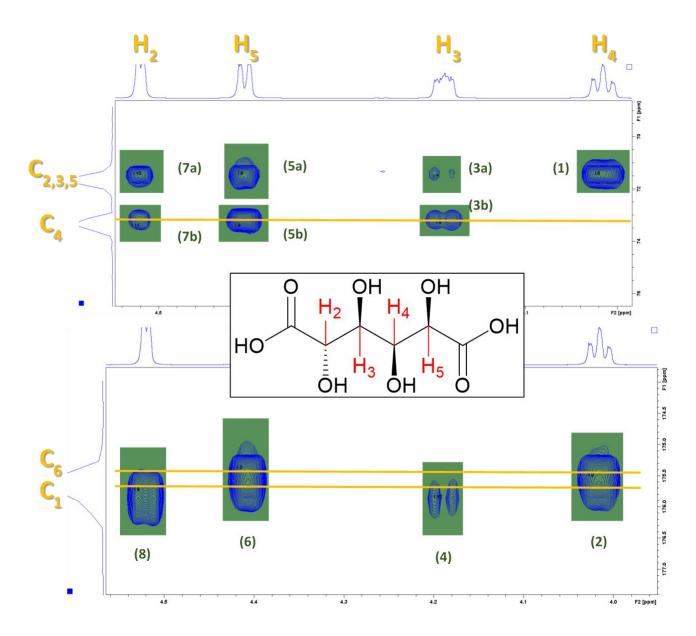


Figure S4. The HMBC NMR assignment of D-glucaric acid, synthesised in 99.9 % purity as previously reported in *European. J. Org. Chem.* **2018**, 45, 6811.

Table S₅. Calibration of HMBC correlations from Fig. S₄, with areas normalised to TMS internal standard.

Assignment	1	2	3 a	3 b	4	5 a	5 b	6	7 a	7 b	8
$\delta^{\scriptscriptstyle{1}}H$	4	4	3	3	3	5	5	5	2	2	2
$\delta^{13}C$	3+5	6	2	4	1	3	4	6	3	4	1
$^{[a]}rF$	88348	67250	_	9747	-	33681	59134	82291	10447	-	29491
R ²	0.994	0.996	-	0.964	-	0.990	0.992	0.995	0.947	-	0.998

^[a] Spectra integrated using TopSpin 3.5 nmr processing software. rF as relative counts per mol, normalised to TMS internal standard peak at δ ¹H = 0 ppm, δ ¹³C = 0 ppm. Only the most intense peaks were calibrated for as, at the lowest [D-glucaric acid] (0.0065 M, 1% yield) correlations 7a, 7b, 3a, 3b and 4 were too low in intensity for objective integration.

Table S6. Sensitivity analysis of rFs derived via HMBC NMR calibrations shown in Table 2, showing selection of correlation 8 for quantitative analyses.

Simulated χ	% Deviation from theoretical peak volume (as calculated using calibrated rF values)						
Glucose / %	1	2	5a	5b	6	8	
9.0 @ 100% <i>S</i> (D-dlucaric Acid)	27.4	19.2	17.7	15.0	13.8	2.1	
25	10.1	12.7	12.1	9.4	7.6	3.8	
50	-4·4*	9.0	10.2	6.9	9.8	1.1	
75	26.0	29.1	6.2	17.9	24.7	5.2	
100	19.0	26.0	11.8	22.5	26.2	3.8	

Fixed [D-glucaric acid] = 0.05 M. Variable D-glucose / Gluconic acid- γ - lactone such that the total concentration of organics = 0.554 M. * (-) indicates a peak with lower integrated area than expected based on [glucaric acid] and rF.

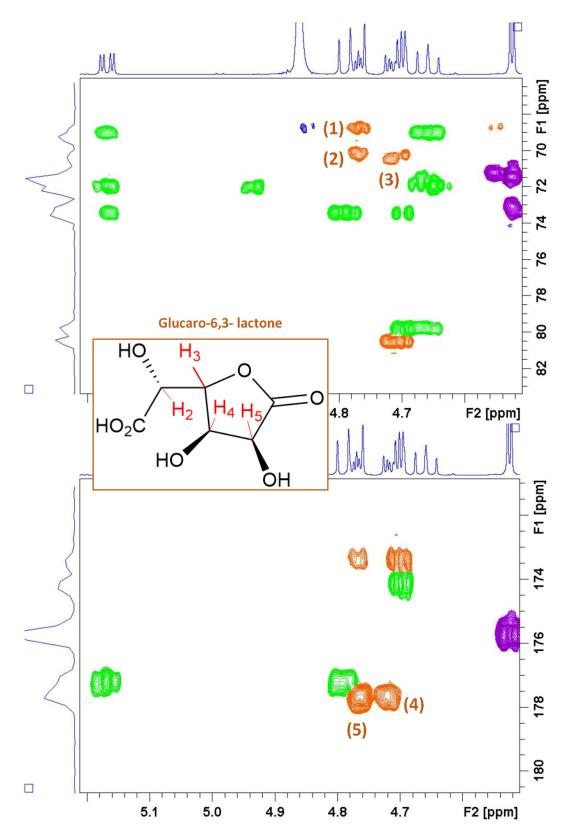


Figure S₅. The assigned HMBC NMR spectrum of an equilibrium mixture of ■ D-glucaric acid, ■ D-glucaro 1,4 lactone, ■ D- glucaro 6,3 lactone and ■ D- glucaro 1,4:6,3 lactone. Equilibrated at STP, 6₅ h. [D-glucaro 1,4 lactone = 0.1 M], D-glucao 1,4 lactone : DCl = 1:1 mol/mol.

Cross calibration of D-glucaro 6,3 lactone through equilibration studies.

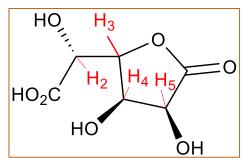

Single component 'H NMR standards comprising; D-glucaric acid, D-glucaro 1,4 lactone or D-glucaro 1,4:6,3 lactone of varying concentrations were collected. 'H NMR resonances were normalised to TMS at δ 'H = 0.0 ppm and linear rFs determined.

Table S7. Quantified 'H NMR rFs for protons in glucarate derivative products

products						
Product	¹ H resonance / ppm	rF / counts mol ⁻¹	R ²			
	4.02	38273	0.997			
Glucaric Acid	4.18	38736	0.997			
Giucarie Aciu	4.40	38582	0.997			
	4.52	39212	0.997			
Glucaro-1,4- lactone	4.66	20840	0.998			
	4.70	23379	0.995			
	5.16	28590	0.995			
	4.63	34967	0.998			
Glucaro- 1,4 6,3- lactone	5.00	36330	0.999			
	5.22	35726	0.999			
	5.53	35633	0.999			

Solutions of known [D-glucaro 1,4 lactone] were then prepared. 1 H NMR spectra were collected at t = 0 to determine accurate concentrations. 13 C and 1 H chemical shifts for D-glucaro 6,3 lactone are assigned in Table S7.

Table S8. ¹H NMR assignments for D- glucaro 6,3 lactone

δ ^{1}H / ppm	δ ¹³ C / ppm
-	177.7
4.72	68.8
4.77	80.5
4.71	70.2
4.69	70.4
-	173.4
	- 4.72 4.77

To the NMR tube was then added DCl (D-glucaro 1,4 lactone : DCl = 1 : 1 mol/mol). Solutions were equibrated under ambient conditions for 96 h, with 'H NMR and HMBC NMR spectra collected at 24 h intervals. Through quantification of molecules in Table S4 via 'H NMR, the [D-glucaro 6,3 lactone] was calculated for each NMR analysis. In this way, the [D-glucaro 6,3 lactone] was calculated. Plotting of HMBC correlation areas for D-glucaro 6,3 lactone vs mol afforded a rF for each correlation as shown in Table S8 and Fig. S6. Note, correlation assignment is as in Figure S5.

Table S9. Quantified HMBC NMR rFs for ¹³C-¹H peaks in D-glucaro 6,3 lactone

Assignment -		Correlatio	on no. (as assign	ned in Fig S	5)
Assignment –	1	2	3	4	5
δ ¹ H / ppm	4.77	4.77	4.71 / 4.69	4.72	4.77
H no.*	3	3	4/ 5	2	3
δ $^{\scriptscriptstyle 13}$ C / ppm	68.8	70.4	70.4 / 70.2	177.7	177.7
C no.*	2	4	5 / 4	1	1
$^{[a]}{ m rF}$	14272	11695	18591	22773	50322
R²	0.999	0.988	0.995	0.996	0.999

Spectra integrated using TopSpin 3.5 nmr processing software. rF as relative counts per mol. * Carbon and hydrogen assignment as in inset of Fig. S₅.

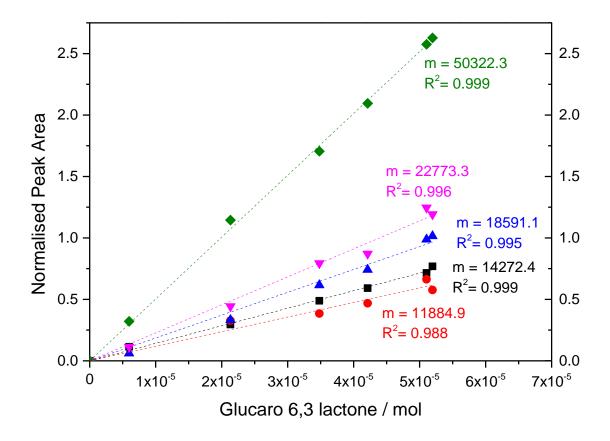


Figure S6. Calibration plots for correlation features within the HMBC spectrum of D-glucaro 6,3 lactone showing linear regressions.

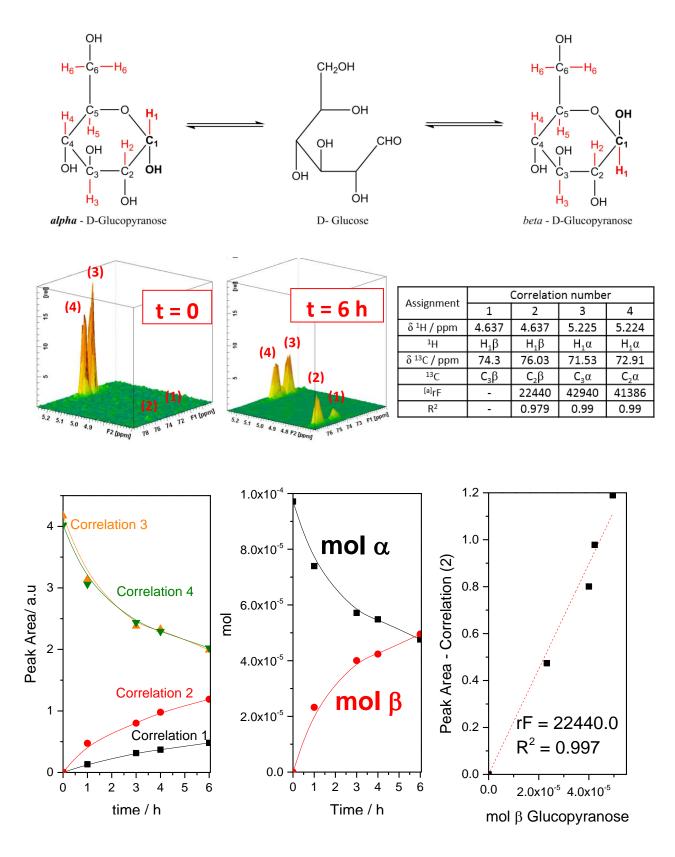
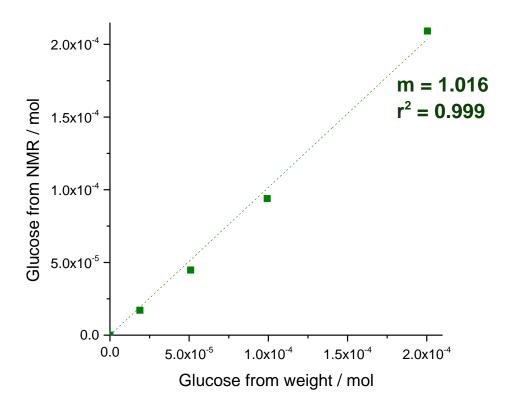
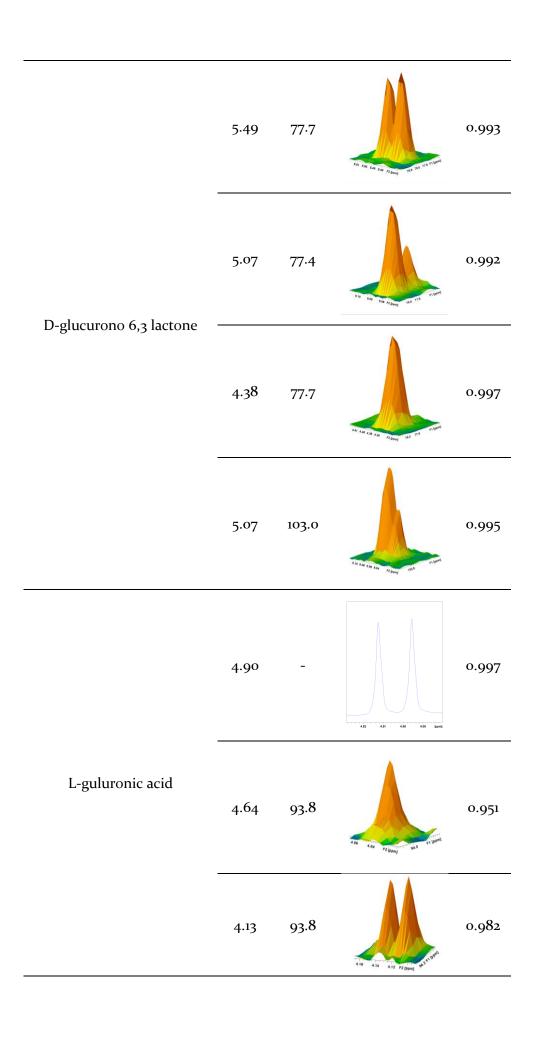
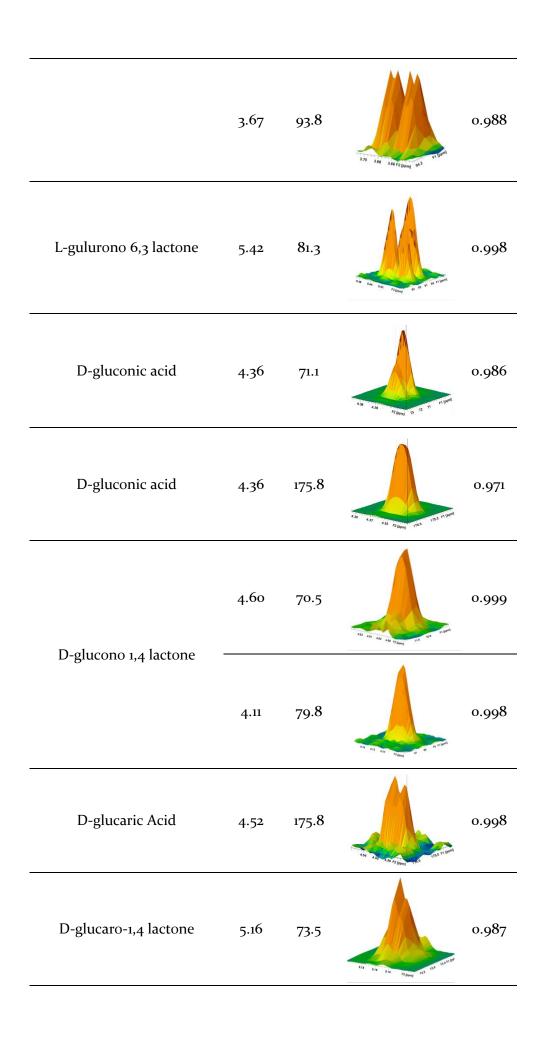


Figure S7 Cross calibration of β - D-glucopyranose using HMBC NMR through equilibration studies, showing data from calibration at [D-glucose] = 0.2 M.

For HMBC NMR correlations for α - D-glucopyranose were calibrated using Route (i) as, upon addition to D₂O, the t=0 D-glucose solution solution contains 100 % α -D-glucopyranose.


Figure S8. Testing of α -D-glucopyranose and β - D-glucopyranose HMBC NMR calibrations through analysis of equilibriated solutions of varying [D-glucose].

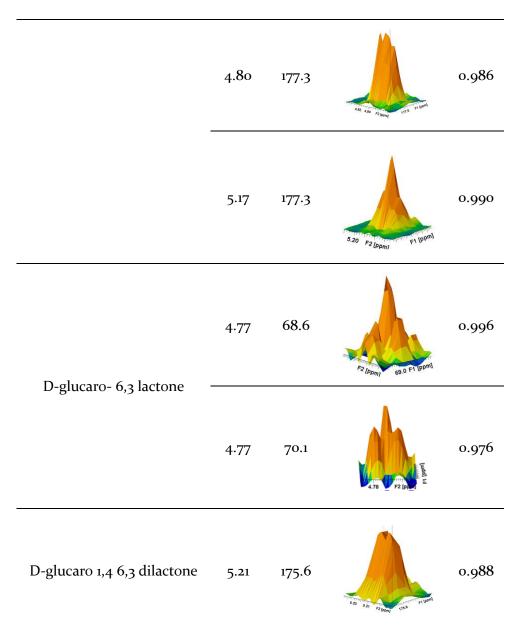

Solutions equilibrated at room temperature for 72 h. [D-glucose] = 0.05 M - 0.4 M at t=0.

Table S10. A summary of ¹³C-¹H HMBC NMR correlations used for quantification of C₆ products and unreacted glucose.

Compound	$\delta^{\scriptscriptstyle 1}H$	$\delta^{13}C$	Peak Shape	\mathbb{R}^2
D- α- glucopyranose	5.23	71.5	6.23 5.23 72 Broad 11.5 V Horn	-
D- β glucopyranose	4.64	76.o	The Part of the Pa	0.979
D- α-glucuronic acid	5.29	71.6	5.32 F2 (ppm) TA F1 (ppm)	1.000
	3.60	172.6	362 P2 (Dpay 1728 F1 (Dpan)	0.995
D- β- glucuronic Acid	4.03	75.4	4.04 F2 (ppm) T6.5 F1 (ppm)	0.996
	4.03	96.2	4.05 F2 lopmy 9TO F1 [ppm]	0.998
	4.03	172.6	4.08 F3 [ppm]	0.996

 $^{^{[}a]}$ As determined through sensitivity analyses. Note, where multiplet peaks (split in the F_1 or F_2 axis) were used (see Peak Shape), stated chemical shifts (13 C and 1 H) correspond to the centre of the integrated region.

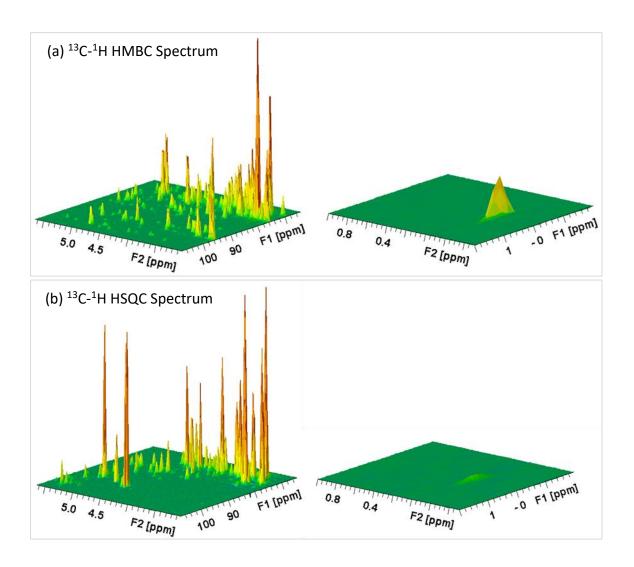


Figure S9. The 13 C- 1 H HMBC NMR (a) and 13 C- 1 H HSQC spectra (b) of Pt- catalysed D-glucose oxidation product streams showing relative intensity of TMS peaks at δ 1 H = 0 ppm δ 13 C = 0 ppm, D₂O lock. Note, spectral regions in either (a) or (b) are shown at the same signal to noise zoom. Spectra are presented in this way to highlight the greater suitability of 13 C- 1 H HMBC for TMS- normalised quantitative analyses.

Reaction conditions; 40 mg 5% Pt/TiO₂^{IMP Red 400}, 1000 rpm, P(O₂) = 20 bar, 80 °C, 24 h, [D-glucose] = 0.554 M (D-glucose/ Pt = 540 : 1 mol : mol). 2D NMR Bruker NMR programs used were (a) hmbcetgp12nd.2 and (b) hsqcedetgpsp.3.

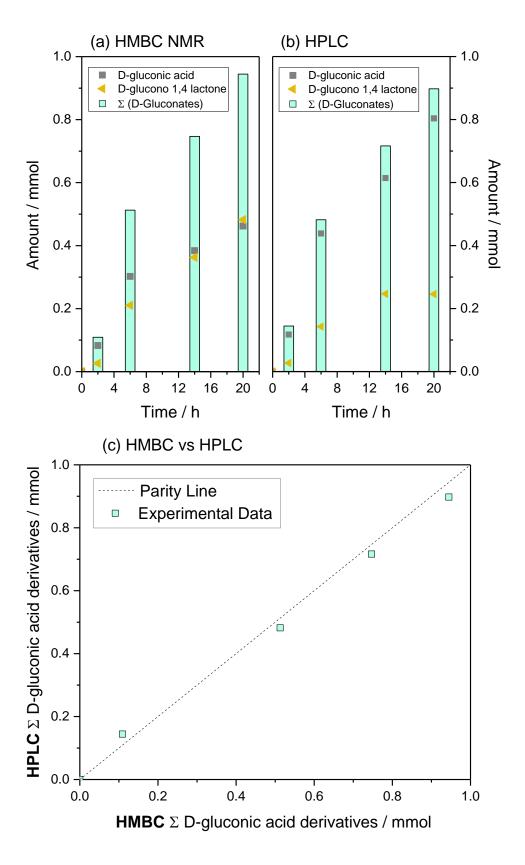


Figure S10. Temporal evolution of D-gluconic acid and D-glucono 1,4 lactone in 5% Au/TiO₂ – catalyzed D-glucose oxidation, as quantified by $^{13}C^{-1}H$ HMBC NMR (a) and HPLC (b).

Reaction conditions; 80 mg 5% Au/TiO₂ IMP Red 400, 1000 rpm, P(20% O₂/N₂) = 25 bar, 80 °C, [D-glucose] = 0.554 M (D-glucose/ Au = 272 : 1 mol : mol).

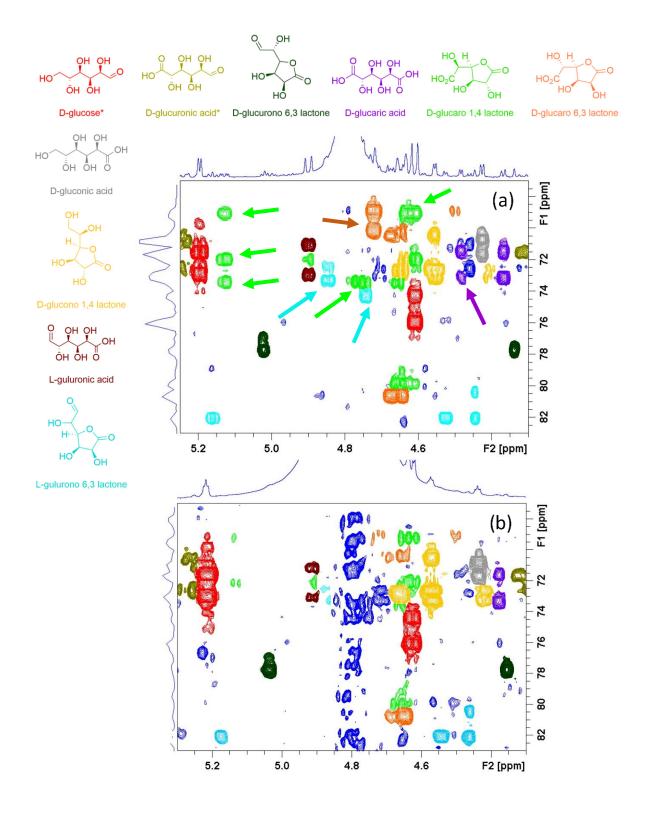


Figure S11. Expanded region of an HMBC-NMR spectrum of the oxidation of glucose using 5 wt. % Pt/TiO_2 IMP Red 400 and O_2 in either (a) D_2O or (b) H_2O . The structures of key gluconate, glucoronate, guluronate and glucarate products are shown. F1 axis is the ¹³C spectrum, F2 is the ¹H spectrum.

Conditions; 5 % Pt/TiO₂ IMP Red 400 (40 mg), [D-glucose] = 0.554 M, 80 °C, 1000 rpm, P(O₂) = 20 bar, 24 h.

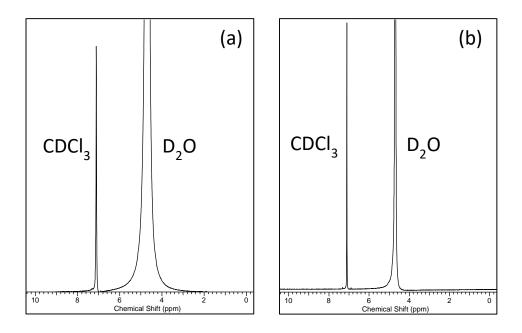


Figure S12. ^{2}H NMR spectra for D-glucose oxidation reactions carried out in (a) $D_{2}O$ or (b) $H_{2}O$.

Conditions; 5 % Pt/TiO₂ IMP Red 400 (40 mg), [D-glucose] = 0.554 M, 80 °C, 1000 rpm, P(O₂) = 20 bar, 24 h. 10 ml solvent.

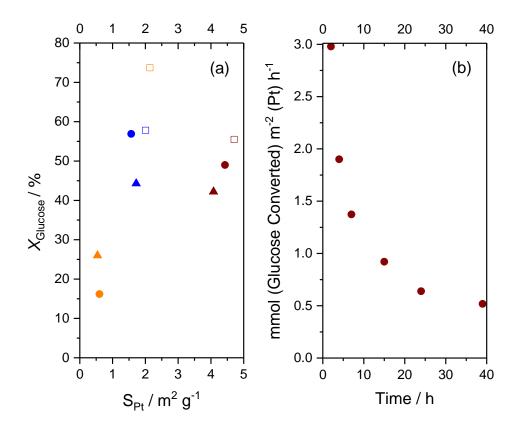


Figure S₁₃. Glucose conversion (measured at 24 h on line) as a function of Pt- metal surface area (a) and specific activity as a function of time on line in $5 \% \text{ Pt/TiO}_2^{\text{IMP Red 400}}$ catalysed glucose oxidation (b)

Test conditions; Catalyst (40 mg), 80 °C, 1000 rpm, [D-Glucose] = 0.554 M (5.54 mmol), 10 ml D_2O , $P(20 \% O_2/N_2) = 25$ bar.

```
Showing; \blacktriangle 5% Pt/TiO<sub>2</sub><sup>IWI</sup>, \bullet 5% Pt/TiO<sub>2</sub><sup>IMP</sup>, \square 5% Pt/TiO<sub>2</sub><sup>CVI</sup>, \blacktriangle 5% Pt/SiO<sub>2</sub><sup>IWI</sup>, \bullet 5% Pt/SiO<sub>2</sub><sup>IWI</sup>, \bullet 5% Pt/SiO<sub>2</sub><sup>IWI</sup>, \bullet 5% Pt/C WI, \bullet 5% Pt/C WI, \bullet 5% Pt/C WI, \bullet 5% Pt/C IMP, \square 5% Pt/C CVI
```

Table S11. A systematic study of the source of Pt-leaching from 5% Pt/TiO $_{\rm 2}^{\rm IMP~Red~400}$

Entry	Mass Cat / mg	P(N₂) / bar	P(O ₂) / bar	[D-glucose] / M	$\chi_{\rm glucose}$ / $\%^{[a]}$	[Pt] / ppm ^[b]
1	40 ^[c]	О	20	0.554	О	0
2	40	О	20	0	-	О
3	40	20	0	0.554	О	О
4	40	0	10	0.554	59.5	11.3

 $^{^{[}a]}$ Determined by HMBC NMR, $^{[b]}$ Determined by MPAES. $^{[c]}$ 40 mg TiO $_{\!2}$ (P25). Conditions; 80 °C, 1000 rpm, 10 ml D $_{\!2}$ O, 24 h.

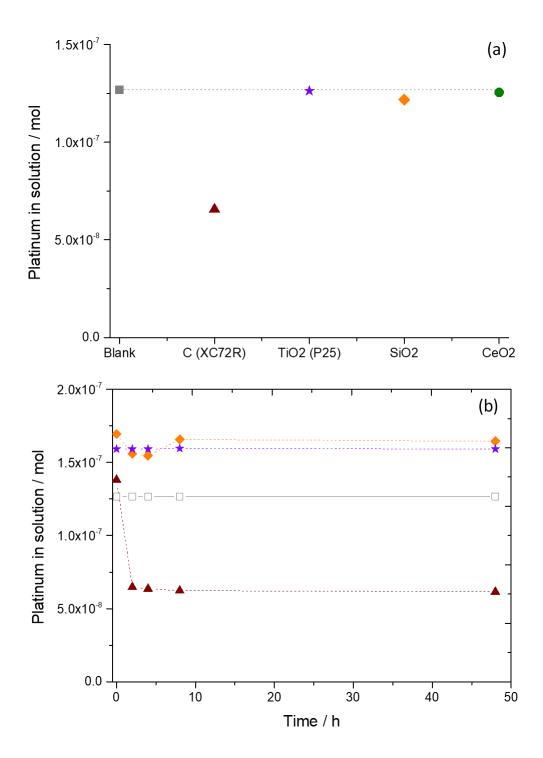


Figure S14. Adsorption of leached Pt from aqueous solution onto a series of unmodified catalyst supports at (a) 24 h and (b) as a function of time.

Step 1. Test conditions; 5% Pt/C^{IMP Red 400} (40 mg), 72 h, 80 °C, 1000 rpm, [D-Glucose] = 0.554 M, 10 ml, $P(O_2)$ = 4 bar to yield Solution 1. Step 2. 8 ml reaction aqueous Pt solution (Solution 1), 40 mg "bare" support, 48 h, 80 °C, 1000 rpm, $P(O_2)$ = 4 bar. \square Control, \blacktriangle carbon (Vulcan, $XC_{72}R$), \bigstar TiO₂ (Degussa, P_{25}), \spadesuit SiO₂ (Divasil 635)

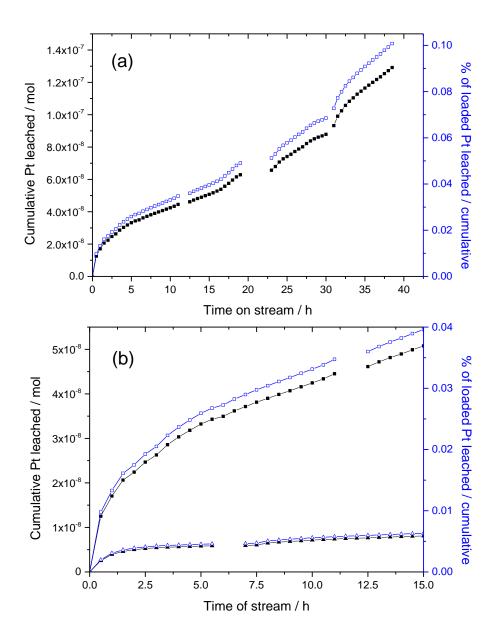


Figure S₁₅. Observed Pt- leaching under continuous flow operation as determined by ICP-MS for 5% Pt/TiO₂ ^{IMP Red 400} ($\blacksquare\Box$) and a dual bed comprising (i) 5% Pt/TiO₂ ^{IMP Red 400} + (ii) carbon extrudates ($\blacktriangle\Delta$).

Reaction conditions: P(synthetic air) = 20 bar, gas flow rate = 20 ml min⁻¹, [Glucose] = 0.554 M, liquid flow rate 0.166 ml min⁻¹ (10 ml h⁻¹), 80 °C, 0.5 g 5% Pt/TiO₂ ^{IMP Red 400} and where applicable carbon extrudates (0.5 g). For ON/OFF experiments shown in Fig S13 ab, the catalyst bed was purged with H_2O and N_2 prior to OFF periods.

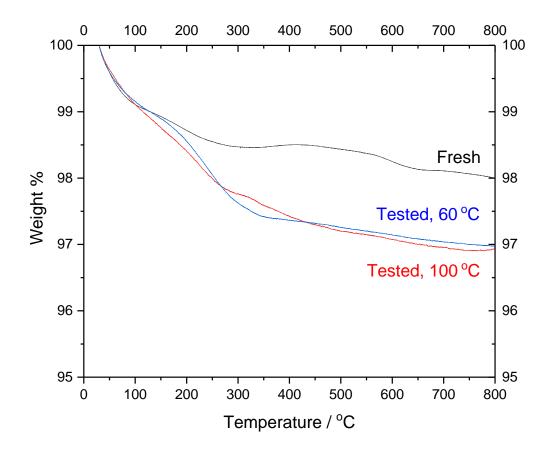


Figure S16. Thermogravimetric analyses (TGAs) of as-synthesised 5% Pt/TiO $_2$ ^{IMP Red 400} and solid residues following catalytic assessments at reaction temperatures of 60 and 100 °C.

Catalyst assessment conditions; 5 % Pt/TiO₂^{IMP Red 400} (40 mg), [D-glucose] = 0.554 M (5.54 mmol in D₂O), 24 h, 1000 rpm, P(20% O₂/ N₂) = 25 bar.

TGA conditions; 30 – 800 °C, 5 °C min⁻¹, 20 ml min⁻¹ air.

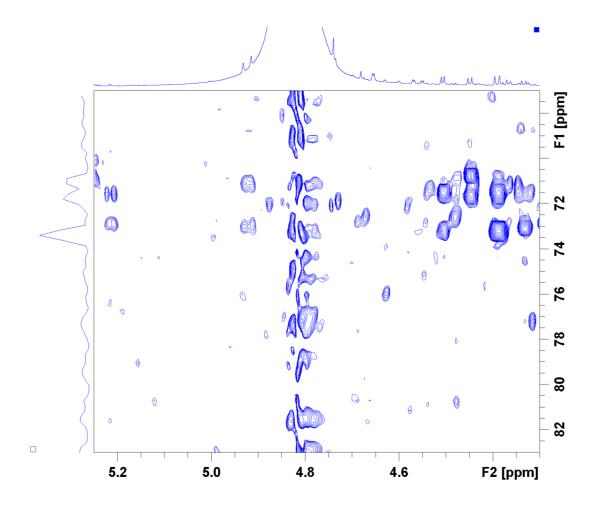


Figure S17. Expanded region of an HMBC-NMR spectrum of the oxidation of glucose using 5 wt. % Pt/TiO₂ $^{IMP\ Red\ 400}$ with NaOH (1 eq. 5.54 mmol) added at t = 0. F1 axis is the 13 C spectrum, F2 is the 1 H spectrum.

Conditions; 5 % Pt/TiO₂ IMP Red 400 (40 mg), [D-glucose] = 0.554 M (D₂O), 80 °C, 1000 rpm, P(O₂) = 20 bar, 24 h.