Electronic Supplementary Material (ESM)

Environmentally sustainable synthesis of CoFe$_2$O$_4$-TiO$_2$/rGO ternary photocatalyst: A highly efficient and stable photocatalyst for high production of hydrogen (Solar Fuel)

Hafeez Yusuf Hafeez,a Sandeep Kumar Lakhera,b Naresh Narayanan,a,b Subramaniam Harish,c Yasuhiro Hayakawa,c Byeong-Kyu Lee,d and Bernardshaw Neppolian,*a

aSRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, Tamil Nadu, India.

bDepartment of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai- 603203, Tamil Nadu, India.

cResearch Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8011, Japan.

dDepartment of Civil and Environmental Engineering, University of Ulsan (UOU), Daehak-ro 93, Nam-gu, Ulsan 44610, South Korea.

CONTENTS

Section S1: Apparent Quantum Yield (AQY) efficiency Calculation

Figure S1. FE-SEM images of (a) TiO$_2$ and (b) CoFe$_2$O$_4$-TiO$_2$/rGO n photocatalysts and (c) EDS pattern and elemental mapping of CoFe$_2$O$_4$-TiO$_2$/rGO photocatalysts

Figure S2. Impedance measurement of TiO$_2$, CoFe$_2$O$_4$-TiO$_2$ and CoFe$_2$O$_4$-TiO$_2$/rGO photocatalysts

Figure S3. Photocurrent studies of TiO$_2$, CoFe$_2$O$_4$-TiO$_2$ and CoFe$_2$O$_4$-TiO$_2$/rGO photocatalysts

Table S1. Photocatalytic H$_2$ production comparison with existing TiO$_2$ based materials
Section S1: Apparent Quantum Yield (A.Q.Y) efficiency Calculation

We have calculated the quantum efficiency in order to compare the photocatalytic activity of photocatalysts by using 400 nm band pass filter.

A.Q.Y Calculation details

The energy of one photon \(E_{\text{photon}} \) with wavelength of \(\lambda_{\text{inc}} \) (nm) is calculated using the following equation.

\[
E_{\text{photon}} = \frac{hc}{\lambda_{\text{inc}}}
\]

Total energy of the incident light \(E_{\text{total}} \)

\[
E_{\text{total}} = P St
\]

Therefore,

Quantum yield (Q.Y.)

\[
Q.Y(\%) = \frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100
\]

Or

\[
A.Q.Y(\%) = \frac{2 \times (\text{Number of } H_2 \text{ molecules evolved})}{\text{Number of incident photons}} \times 100
\]

\[
A.Q.Y(\%) = \frac{2 \times M \times N_A \times h \times c}{P \times S \times t \times \lambda_{\text{inc}}} \times 100
\]

Where

\[
M = \text{Amount of hydrogen produced in } \frac{\text{mol}}{\text{time}} = 2732 \mu\text{mol/h}
\]

\[
N_A = \text{Avogadro Number} = 6.022 \times 10^{23}
\]

\[
c = \text{Speed of light} = 3 \times 10^8 \text{ m/s}^{-2}
\]

\[
h = \text{Planck’s constant} = 6.626 \times 10^{-34} \text{ Js}
\]

\[
P = \text{Power density of the incident monochromatic light} = 100 \text{ mW/cm}^2
\]

\[
S = \text{Irradiated area to produce } M \text{ (mol) of hydrogen} = 35 \text{ cm}^2
\]

\[
t = \text{Irradiated time} = 1 \text{ h} = 3600 \text{ s}
\]

\[
\lambda_{\text{inc}} = \text{wavelength of the incident monochromatic light} = 400 \text{ nm} = 400 \times 10^{-9} \text{ m}
\]
A.Q.Y (%) = \frac{2 \times 2732 \times 10^{-6} \times 6.022 \times 10^{23} \times 6.626 \times 10^{-34} \times 3 \times 10^8}{100 \times 10^{-3} \times 35 \times 3600 \times 400 \times 10^{-9}} \times 100

A.Q.Y (%) = 12.97 %

Figure S1. FE-SEM images of (a) TiO$_2$ and (b) CoFe$_2$O$_4$-TiO$_2$/rGO n photocatalysts and (c) EDS pattern and elemental mapping of CoFe$_2$O$_4$-TiO$_2$/rGO photocatalyst
Figure S2. Impedance measurement of TiO$_2$, CoFe$_2$O$_4$-TiO$_2$ and CoFe$_2$O$_4$-TiO$_2$/rGO photocatalysts

Figure S3. Photocurrent studies of TiO$_2$, CoFe$_2$O$_4$-TiO$_2$ and CoFe$_2$O$_4$-TiO$_2$/rGO photocatalysts
<table>
<thead>
<tr>
<th>Photocatalysts</th>
<th>Co-catalysts</th>
<th>Hole Scavengers</th>
<th>Irradiation Source</th>
<th>H₂ production (μmol g⁻¹ h⁻¹)</th>
<th>Ref (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂</td>
<td>CoFe₂O₄/rGO</td>
<td>Glycerol</td>
<td>250 Xe Lamp</td>
<td>76559</td>
<td>This</td>
</tr>
</tbody>
</table>
REFERENCES

