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General Information

Unless otherwise stated, all reagents were purchased from commercial suppliers (Sigma-Aldrich, Alfa Aesar,
Fluorochem and Apollo Scientific) and used without further purification. Unless otherwise stated, solvents
were used without prior drying/degassing. Reactions requiring anhydrous conditions are clearly stated and
were conducted after flame-drying of the appropriate reaction vessel (round-bottom two-neck flasks or
Schlenk) and under an inert atmosphere of nitrogen. Dry solvents were purchased from commercial suppliers.
The dry chloroform employed in the fluorination was purchased from Acros and passed on a column of basic
alumina prior to use (to ensure absence of HCI impurities). KF (99.9% trace metal basis from Alfa Aesar) was
used as provided by the supplier (fine powder) and used without pre-drying. CsF (99.9% trace metal basis
from Sigma-Aldrich) was ground prior to the reaction and used without pre-drying. Reactions were monitored
by thin layer chromatography (TLC) on silica gel pre-coated aluminium sheets (Merck Kieselgel 60 Fss
plates). Visualization was accomplished by irradiation with UV light at 254 nm, and/or phosphomolybdic acid
(PMA) stain, and/or cerium ammonium molybdate (CAM) stain, and/or permanganate stain. Flash column
chromatography (FCC) was performed on Merck silica gel (60, particle size 0.040-0.063 mm). Optical
rotations were measured on an Autopol L 2000 (Schmidt-Haensh) at 589 nm, 25 °C. Data are reported as:
[a]o", concentration (c in g/100 mL), and solvent. The absolute configuration of the stilbene-derived products
was determined by X-ray analysis of compound 2g and further confirmed by comparing the optical rotation
values of compound 8 (derived from compound 4) to literature values. The configuration of the other
stilbene-derived products was assigned by analogy to 2g. The absolute configuration of 2t was determined by
comparing the optical rotation values of the corresponding B-fluoropicolinamide derivative to literature values.
The configuration of the other cyclic products (2u—2v) was assigned by analogy to 2t. All NMR spectra were
recorded on Bruker AVIIIHD 400, AVIIIHD 500 or VII 500. *H and *C NMR spectral data are reported as
chemical shifts (o) in parts per million (ppm) relative to the solvent peak using the Bruker internal referencing
procedure (edlock). *°F NMR spectra are referenced relative to CFCls. Data are reported as follows: chemical
shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, pent = pentet, sept = septet, br = broad, m =
multiplet), coupling constants (Hz) and integration. NMR spectra were processed with MestReNova 11.0 or
Topsin 3.5. High resolution mass spectra (HRMS, m/z) were recorded on a Thermo Exactive mass spectrometer
equipped with Waters Acquity liquid chromatography system using either the heated electrospray (HESI-II)
probe for positive electrospray ionization (ESI*) or the atmospheric pressure chemical ionization (APCI)
probe. Infrared spectra were recorded as the neat compound or in solution using a Bruker tensor 27 FT-IR
spectrometer. Absorptions are reported in wavenumber (cmt). Melting points of solids were measured on a
Griffin apparatus and are uncorrected. The enantiomeric ratios were determined by HPLC analysis on a
Shimadzu i-Prominence LC-2030 (PDA detector) employing a chiral stationary phase column specified in the

individual experiment by comparing the samples with the appropriate racemic mixtures.
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Catalyst Synthesis and Characterization

Catalysts 3a—d were prepared according to literature procedures and their analytical data were in agreement
with the literature values.! Catalysts 3e—g and their precursor aniline 6 were unknown: their synthesis and
characterization is therefore described herein.

3,3",5,5"-tetrakis(trifluoromethyl)-[1,1":3",1"'-terphenyl]-5'-amine (6)

NH, A two-neck round bottom flask equipped with a stirring bar and a condenser
O was charged with 3,5-dibromoaniline (2.79 g, 11.11 mmol, 1 equiv.), (3,5-
FoC O O CFs pis(trifluoromethyl)phenyl)boronic acid (10.00 g, 38.91 mmol, 3.50 equiv.),

S-Phos (455 mg, 1.11 mmol, 10 mol%) and K,CO; (7.67 g , 55.55 mmol, 5
o 6 o equiv.) under inert atmosphere. Degassed THF (110 mL) and degassed H.O
(27 mL) were added followed by Pd(OAc). (124 mg, 0.55 mmol, 5 mol%). The reaction mixture was then
stirred overnight under nitrogen at reflux. After cooling to r.t., the mixture was diluted with water and extracted
three times with DCM. The combined organic layers were washed with brine, dried over MgSO. and
evaporated in vacuo. The crude product was purified by FCC (Pentane:DCM = 70:30) to afford a white solid
(4.63 g, 81% yield). 'H NMR (400 MHz, CDCls) 6 = 8.03 (s, 4H), 7.90 (s, 2H), 7.12 (br t, J = 1.7 Hz, 1H),
6.96 (d, J = 1.6 Hz, 2H), 4.03 (br s, 2H); °F NMR (377 MHz, CDCls) 6 = —62.82 (s, 12F); 3C NMR
(101 MHz, CDCls) ¢ = 148.1, 143.2, 140.9, 132.3 (q, Jcr = 33.3 Hz), 127.5, 123.5 (q, Jc_r = 273.0), 121.5,
116.5, 114.1; IR (thin layer film) v (cm™) = 3407, 1624, 1602, 1400, 1309, 1170, 1124, 899, 842, 753, 705;
MP 123 — 124 °C; HRMS (ESI*) m/z calculated for CH12F12N* [M+H]* 518.07726, found 518.07727.

1,1'-([1,1'-binaphthalene]-2,2'-diyl)bis(3-(3,3",5,5" - tetrakis(trifluoromethyl)-[1,1':3",1""-terphenyl]-5'-
ylhurea) (3e)

In a flame-dried two-neck flask under inert atmosphere, triphosgene (874

FsCy J o mg, 2.95 mmol, 0.7 equiv.) was dissolved in DCM (5 mL). To this

OO )OJ\ ZJ 7 ik solution, a 0.2 M solution of aniline 6 (4.36 g, 8.45 mmol, 2 equiv.) in
NN FaC DCM (37 mL) was added at 0 °C. Then NEt; (2.35 mL, 16.88 mmol,

HTH FsQ 4 equiv.) was added dropwise at 0 °C and the reaction mixture was

OO o N\ D CF, allowed to stir at r.t. for 2 h under a flow of nitrogen. (S)-(-)-1,1'-
(Sy-3e € D oFs binaphthyl-2,2'-diamine (1.2 g, 4.22 mmol, 1 equiv.) was then added as

a solid and the reaction stirred at r.t. for 24 h (until TLC showed no
further conversion). The reaction was then quenched by addition of water and the aqueous phase was extracted
with DCM three times. The combined organic layers were washed with brine, dried over MgSO. and
evaporated in vacuo. The crude mixture was then purified by FCC (Pentane:DCM = 80:20 to 0:100, gradient)
to afford a white solid (4.23 g, 73% vyield). *H NMR (400 MHz, DMSO-ds) 6 = 9.33 (br s, 2H), 8.43 (d, J =
9.1 Hz, 2H), 8.14 (d, J = 9.1 Hz, 2H), 8.10 (s, 8H), 8.04 (d, J = 8.3 Hz, 2H), 7.99 (s, 4H), 7.64 (s, 4H), 7.61 (s,
2H), 7.52 (s, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.28 (t, J = 8.0 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H); *F NMR (376
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MHz, DMSO-ds) 6 = —61.4 (s, 24F); 3C NMR (101 MHz, DMSO-ds) 6 = 153.0, 142.2, 141.0, 138.2, 136.2,
132.9, 130.8 (q, Jc—r = 33.0 Hz), 130.3, 128.9, 128.2, 127.3, 126.7, 124.8, 124.6, 123.1 (q, Jcr = 272.8 Hz),
122.8,121.1, 119.6, 119.4, 117.2; IR (thin layer film) v (cm™) = 3361, 1691, 1599, 1569, 1505, 1428, 1396,
1367, 1278, 1220, 1177, 1131, 1107, 900, 866, 844, 824, 747, 705, 682, 638; MP not determined
(decomposition at T >200 °C); HRMS (APCI*) m/z calculated for CesH3s02N4sF24 [M+H]* 1371.2371, found
1371.2368; [a]o® © =-96.7 ° (c = 0.5, CHCl5).

1-methyl-3-(3,3",5,5""-tetrakis(trifluoromethyl)-[1,1':3',1""-terphenyl]-5'-yI)-1-(2"-(3-(3,3"",5,5"'-
tetrakis(trifluoromethyl)-[1,1":3",1""-terphenyl]-5'-yl)ureido)-[1,1'-binaphthalen]-2-yl)urea (3f)

In a flame-dried two-neck flask under inert atmosphere, triphosgene

FsCy (257 mg, 0.87 mmol, 0.7 equiv.) was dissolved in DCM (3 mL). To this

OO )01\ ) 7 solution, a solution of aniline 6 (1.28 g, 2.48 mmol, 2 equiv.) in DCM

N FsC (9 mL) was added at 0 °C. Then NEt3 (692 uL, 4.96 mmol, 4 equiv.) was

YH FsQ added dropwise at 0 °C and the reaction mixture was allowed to stir at

OO AN S r.t. for 2 h under a flow of nitrogen. (S)-N2-methyl-[1,1'-binaphthalene]-

FaC ) 2,2'-diamine?! (363.8 mg, 1.24 mmol, 1 equiv.) was then added as a solid

and the reaction stirred at r.t. for 24 h (until TLC showed no further

conversion). The reaction was then quenched by addition of water and the aqueous phase was extracted with

DCM three times. The combined organic layers were washed with brine, dried over MgSO. and evaporated in

vacuo. The crude mixture was then purified by FCC (Pentane:Et,O = 80:20) to afford a white solid (929.6 mg,

54% yield). *H NMR (500 MHz, DMSO-dg) 6 = 8.77 (br s, 1H), 8.73 (d, J = 7.9 Hz, 1H), 8.43 (d, J = 8.4 Hz,

1H), 8.26 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.8 Hz, 1H), 8.00 (s, 5H), 7.90 — 7.71 (m, 10H), 7.69 (d, J = 7.4 Hz,

1H), 7.58 (s, 1H), 7.51 — 7.44 (m, 3H), 7.38 (br t, J = 6.5 Hz, 1H), 7.33 — 7.18 (m, 5H), 7.12 (d, J = 8.4 Hz,

1H), 6.69 (br d, J = 7.4 Hz, 1H), 2.60 (s, 3H); °F NMR (470 MHz, DMSO-dg) 6 = —61.5 (two overlapped

singlets, 24F); *C NMR (126 MHz, DMSO-ds) [overlapping signals] 6 = 154.0, 152.3, 142.2, 141.8, 140.6,

140.0, 138.0, 137.4, 136.1, 133.7, 133.0, 132.7, 131.9, 131.4 130.6 (g, Jcr = 32.9 Hz), 130.5 (g, Jcr = 32.9

Hz), 129.5, 128.9, 128.2, 127.7, 127.4, 127.1, 126.9, 126.7, 125.8, 124.8, 124.3, 123.1 (q, Jc_r = 273.2 H2),

123.0 (g, Jcr = 272.9 Hz), 120.9 (m), 120.7, 120.5, 119.8 (overlapped), 119.3, 118.6, 116.4, 36.2; IR (thin

layer film) v (cm™) = 3330, 1599, 1551, 1507, 1468, 1428, 1397, 1367, 1279, 1180, 1132, 900, 865, 844, 825,

751, 705, 683, 639; MP not determined (decomposition at T >200 °C);; HRMS (APCI*) m/z calculated for
Ce7H3702N4F24 [M+H]* 1385.2578, found 1385.2525; [a]o® ™ = -106.9 ° (c = 0.5, CHCl5).
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1-ethyl-3-(3,3",5,5" -tetrakis(trifluoromethyl)-[1,1':3",1"-terphenyl]-5'-y)-1-(2'-(3-(3,3"",5,5"'-
tetrakis(trifluoromethyl)-[1,1':3',1"'-terphenyl]-5'-yl)ureido)-[1,1'-binaphthalen]-2-yl)urea (3g)

To a solution of 3e (4.05 g, 2.95 mmol, 1 equiv.) in acetone (0.1 M,

FsCy CF30F3 29 mL) were added iodoethane (4.74 mL, 59 mmol, 20 equiv.) and

OO )OJ\ ) 7 K2COs3 (4.076 g, 29.5 mmol, 10 equiv.). The reaction mixture was stirred
NN FsC at r.t. for 72 h. After filtration on celite, the solvent was evaporated in

HYH FsG vacuo. To the crude mixture were added DCM and H;O. The aqueous

OO AN D CF,4 phase was then extracted with DCM three times. The combined organic
(S)-3g FaC layers were washed with brine, dried over MgSO, and evaporated in

CF,
vacuo. The crude mixture was purified by FCC (Pentane:EtOAc = 100:0

to 80:20, gradient) to afford a white solid (2.10 g, 51% yield). *H NMR (500 MHz, CDCl3) § = 8.49 (br s,
1H), 8.15 (d, J = 8.9 Hz, 1H), 8.08 (d, J = 9.3 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.84
(s, 4H), 7.77 (s, 2H), 7.74 (s, 2H), 7.72 (s, 4H), 7.64 (d, J = 8.7 Hz, 1H), 7.59 (s, 2H), 7.56 (t, J = 7.5 Hz, 1H),
7.44 (t,J=7.1 Hz, 1H), 7.33 (t, J = 7.1 Hz, 1H), 7.30 (s, 3H), 7.21 (s, 3H), 7.15 (d, J = 8.4 Hz, 1H), 7.05 (s,
1H), 6.96 (d, J = 8.4 Hz, 1H), 6.72 (s, 1H), 3.44 — 3.33 (m, 1H), 3.07 (br s, 1H), 1.05 (t, J = 7.0 Hz, 3H); 1°F
NMR (470 MHz, CDCl3) 6 = —62.9 (s, 12F), —63.0 (s, 12F); **C NMR (126 MHz, CDClI;) [overlapping
signals] 0 = 156.1, 152.7, 142.2, 141.6, 140.1, 139.9, 139.8, 139.7, 138.6, 135.3, 133.9, 133.4, 133.3, 132.3
(9, Jcr = 33.0 Hz), 132.0 (g, Jcr = 33.0 Hz), 131.9, 130.8, 130.3, 128.7, 128.5, 128.1, 127.8, 127.4, 127.1,
127.0, 126.7, 125.3,123.2 (q, Jcr = 273.0 HZz), 123.1 (q, Jcr = 272.9 HZ), 121.6 (M), 121.5 (m), 121.3, 120.7,
120.3, 120.0 119.9, 118.2, 44.4, 13.6; IR (thin layer film) v (cm™) = 3323, 2929, 1600, 1756, 1507, 1469,
1367, 1279, 1179, 1132, 901, 845, 706, 683; MP not determined (decomposition at T >200 °C); HRMS
(APCI") m/z calculated for CegHzgO2N4sF24 [M+H]* 1399.2684, found 1399.2690; [a]p® ¢ =-116.1° (¢ =0.5,
CHCls).

N. B. When the same procedure used for the synthesis of catalyst 3f was used to prepare 3g, only very poor
yields were obtained (<10% yield).
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Optimization of Reaction Conditions

Despite our efforts, the isolation of alternative starting materials based on the stilbene backbone (bromides or
mesylates) proved to be challenging due to their instability. We therefore focused our investigation on

chlorides.

Table S1: Catalyst Screening

N (S)-3a-g (5 mol%) N

- Cl KF (3 equiv.)
O DCM (0.25 M), 24 h O

rac-1a (0.05 mmol) (S,S)-2a

A A

CFs CFs
Q /@CF o
LS Do O3 D

NN () N
R H (S)-3b:R=Me RN FsC (S)-3e:R=H
H H (S)-3¢c:R=Et H H (S)-3FR=Me
O NYN (S)-3d:R="Pr N\n/N FaG (S)-3g:R=Et
CF
O 5 e OO AN
Fs CF;

Entry Catalyst Yield® e.r.P

1 (S)-3a  >99%  55:45
2 (5)-3b  98%  85:15
3 (S)-3¢  >99%  86:14
4 (5)-3d  83%  86:14
5 (§)-3e  77%  55:45
6 (8-3f 2%  88:12
7 (5-39  80% 90.5:9.5

Reaction conditions: 0.05 mmol of rac-1a, KF (3 equiv.) and (S)-3 (5 mol%) were stirred in DCM at 900 rpm
at r.t. for 24h. * Determined by '°F NMR using 4-fluoroanisole as internal standard; ® e.r.= enantiomeric ratio,

determined by HPLC using a chiral stationary phase.
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Table S2: Concentration and Nucleophile Equivalents Screening

ij (S)-3g (5 mol%) j,},f OO )O]\ !’

MF (3-10 equiv.)

O cl Foo NN
CHCl5 (0.1-0.5 M), r.t. O 5 H H
h o D oorh
| OO N

rac-1a (0.05 mmol) (5.5)-2a FsCA) o
(S-3g CF,
Entry MF MF (equiv.) Concentration (M) Time (h) Yield? e.r.p
1 KF 3 0.25 5 14% 89.5:10.5
2 KF 5 0.25 5 18% 90.5:9.5
3 KF 10 0.25 5 55% 90.5:9.5
4 KF 3 0.1 24 20% 90:10
5 KF 3 0.5 5 59% 90:10
6 KF 5 0.5 5 87% 90.5:9.5
7 KF 5 0.5 24 >99% 90.5:9.5
8 CsF 3 0.25 24 >99% 91:9

Reaction conditions: 0.05 mmol of rac-1a, MF, (5)-3g (5 mol%) in dry CHCI; (filtered on basic alumina to
remove residual HCI), stirring at 900 rpm at r.t. for the indicated time. * Determined by ""F NMR using 4-
fluoroanisole as internal standard; ® e.r.= enantiomeric ratio, determined by HPLC using a chiral stationary

phase.
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Table S3: Solvent and Temperature Screening

S LS
N (S)-3 (5 mol%) N § OO S
e Cl KF (3-5 equiv.) “F NN FoC
O Solvent, T, 24 h O oo FoC
O SRl -
rac-1a (0.05 mmol) (S,S)-2a ; 139 £,c 3
CFs
Entry  Solvent (Concentration/M) KF (equiv.) Temperature (°C) Yield @ er.?
1 CH3CN (0.25) 3 r.t. 9% -
2 1,2-difluorobenzene(0.25) 3 r.t. 95% 937
3 a,o,o-trifluorotoluene (0.25) 3 r.t. 98% 937
4 DCM (0.25) 3 r.t. 80% 90.5:9.5
5 Chlorobenzene (0.25) 3 r.t. 17% 937
6 CHClI; (0.25)¢ 3 r.t. 80% 90.5:9.5
7 CHCI5(0.25) 3 r.t. 52% 85:15
8 Toluene (0.25) 3 r.t. 36% 937
9 1,2-difluorobenzene (0.5) 5 0 58% 94:6
10 a,a,a-trifluorotoluene (0.5) 5 0 7% 94.6
11 DCM (0.5) 5 0 80% 93:7
12 CHCI; (0.5) ¢ 5 0 98% 93.5:6.5
13 CHCl; (0.5) ¢d 5 -10 72% 94.5:5.5
14 CHCl; (0.5) ¢d 5 -15 71%¢ 95:5

Reaction conditions: 0.05 mmol of rac-1a, KF (3-5 equiv., as reported), (5)-3g (5 mol%), stirring at 900 rpm
at the indicated temperature for 24 h. ® Determined by '"F NMR using 4-fluoroanisole as internal standard;
® e.r.= enantiomeric ratio, determined by HPLC using a chiral stationary phase; ¢ Dry CHCl;, filtered on basic

alumina to remove residual HCI; ¢ 10 mol% of (S)-3g were used; © isolated yield after 72 h.
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Table S4: Optimization of Reaction Conditions for Aliphatic Substrates

T
=
-
=
T

h Ph . CF3

o}
_ MR eoN W=~
Br KF (5 equiv.) WF . Et H FsC
| solvent (0.5 M), r.t., 24 h : H H
( ) : N\n/N FsC
RRY2t | OO AN o

kN (S)-3g (5 mol%)

rac-1t

0.1 mmol ! CF3
( ) ; )39 FaC ) o
Entry Solvent Yield 2 er.?

1 1,2-difluorobenzene 28% 83.5:16.5

2 a,o,a-trifluorotoluene 47% 85.5:14.5

3 DCM 25% 84.5:15.5

4 Chlorobenzene 12% -

5 CHCIs* 20% 83.5:16.5

6 Toluene traces -

Reaction conditions: 0.1 mmol of rac-1t, KF (5 equiv.), (5)-3g (5 mol%) stirring at 900 rpm at r.t. for 24 h.
4 Determined by 'F NMR using 4-fluoroanisole as internal standard; ° e.r.= enantiomeric ratio, determined by

HPLC using a chiral stationary phase; ¢ Dry CHCls, filtered on basic alumina to remove residual HCI.

N. B. Under similar conditions, the corresponding aliphatic chloride starting materials were unreactive. We

therefore selected f-aminobromides as substrates.
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Table S5: Optimization of the Reaction Conditions for the Multi-Decagram Scale

CF4
O CFs
N (S)-39 (5-0.5 mol%) OO
B cl KF (3 equiv.) H F3C
O O DCM (0.5-2 M), r.t. OO H F3C
CF3
rac-1g (S,S)- -2g - F3C
»3 CF4
Entry Massof 1g  Concentration  Catalyst Time (h) Yield @ e.r.?
(mmol of 1g) (M) Loading
1 0.017 g (0.05) 0.25 5 48 >99% 92.5:75
2 0.017 g (0.05) 0.25 2 48 >99% 92:8
3 0.017 g (0.05) 0.25 1 48 >99% 92:8
4 0.017 g (0.05) 0.25 0.5 72 95% 91:9
6 0.167 g (0.5) 0.5 0.5 13 23% 91.5:85
7 0.167 g (0.5) 1 0.5 13 64% 92.5:7.5
8 0.167 g (0.5) 2 0.5 13 85% 92:8
9 1.09(3.34) 2 0.5 24 83% 91:9
10 559(18.3) 2 0.5 72 95% 92:8
11 50.0 g (167.2) 2 0.5 72 95% (66%)° 92:8 (97:3)°

Reaction conditions: rac-1g, KF (3 equiv.), (5)-3g, in DCM stirring at 900 rpm at r.t. for the indicated time.
2 Determined by 'F NMR using 4-fluoroanisole as internal standard; ° e.r.= enantiomeric ratio, determined by

HPLC using a chiral stationary phase; ¢ In parenthesis: yield and e.r. after a single recrystallization.
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General Procedure for the Asymmetric Nucleophilic Fluorination of Aziridinium lons

R ()39 NR;
R~ X KF (5.equiv.) or CsF (3 equiv.) R'/\KF
R' CHCIj3 or a,a,o-trifluorotoluene R’
X =-Cl rac-1a-s 1a—v
-Br rac-1t-v

Method A, fluorination with KF: In a vial equipped with a magnetic stirring bar were sequentially added the

substrate (1 equiv.), the catalyst, KF (5 equiv.) and dry CHCI; or a,a,a-trifluorotoluene (0.5 M, pre-cooled at
the same temperature as the reaction). The vial was sealed and the reaction mixture was stirred at 900 rpm at
the appropriate temperature for the indicated time. The crude mixture was then filtered through a small plug
of silica (and eluted with cold DCM/EtOAc = 1:1), evaporated to dryness under reduced pressure and directly
purified by FCC. For reaction optimization the crude mixture was analyzed by 'H and °F NMR
(4-fluoroanisole as internal standard) to determine the yield; an aliquot of the reaction mixture was purified by
preparative TLC and analyzed by HPLC (chiral stationary phase) to determine the e.r.

Method B, fluorination with CsF: In a vial equipped with a magnetic stirring bar were sequentially added the

substrate (1 equiv.), catalyst 3g, CsF (3 equiv.) and dry CHCI; or a,o,a-trifluorotoluene (0.25 M, pre-cooled
at the same temperature as the reaction). The vial was sealed and the reaction mixture was stirred at 900 rpm
at the appropriate temperature for the indicated time. The crude mixture was then filtered through a small plug
of silica (and eluted with cold DCM/EtOACc = 1:1), evaporated to dryness under reduced pressure and directly
purified by FCC.

Note: KF (99.9% trace metal basis from Alfa Aesar) was used as provided (fine powder) by the supplier and
used without pre-drying. CsF (99.9% trace metal basis from Sigma-Aldrich) was ground prior to the reaction
and used without pre-drying. The dry chloroform was passed on a column of basic alumina prior to use to
ensure absence of HCI impurities. a,a,a-trifluorotoluene was used as provided by the supplier without further

drying/purification.

Racemate synthesis: The racemic reference products for HPLC analysis were obtained using the same

procedure as above (KF or CsF, 3 equiv.) and Schreiner’s urea catalyst (r.t.). Alternatively, the starting material
was reacted with AgF (1.2 equiv.) in CHsCN at 60 °C for 2 h.
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Substrates Synthesis and Characterization

B-Aminoalcohols

B-Aminoalcohols 7a—v were prepared by heating the corresponding meso epoxides? in the presence of the
appropriate secondary amine either with a Lewis acid (7a, 1-q, s-v) (method A) or neat (7b—k, r) (method B).
For the synthesis of 7b and 7i, the hydrochloride salt of the amine was used and details for the release of the

free amine are given in the single experiment.

General Procedure for the Synthesis of f-Aminoalcohols: Method A

R. .R
o Y(OTf)3 (0.2 equiv.) N
R'/ﬂ RoNH (3 equiv.) R./\rOH

R’ THF (0.5 M) R

reflux
rac-7Ta, I-p, s-v

Following a slightly modified procedure from the one reported by Yamamoto,® in a flame-dried two-neck
round bottom flask, the cis-epoxide (1 equiv.), the amine (3 equiv.) and Y(OTf)3 (0.2 equiv.) were refluxed in
anhydrous THF (0.5 M) under inert atmosphere until complete conversion of the epoxide (14—72 h, monitored
by TLC). The reaction mixture was then cooled to r.t. and the solvent evaporated in vacuo. The residue was
re-dissolved in EtOAc washed with a saturated solution of NaHCOs. The layers were separated and the
aqueous phase was extracted twice with EtOAc. The combined organic layers were dried over MgSOs., filtered

and concentrated under reduced pressure. The crude product was purified by FCC over silica gel.

General Procedure for the Synthesis of f-Aminoalcohols: Method B

R. _R
o N
R,NH (3-5 equiv.) “_ LOH
Ar/ﬂ 2 Ar/\(
Ar 100-110 °C Ar
rac-Tb—k, r

In a pressure tube, the cis-epoxide was dissolved in 3-5 equivalents of the amine and stirred at 100-110 °C
until complete conversion of the starting material (14—-48 h, monitored by TLC). The excess amine was then

removed by evaporation under reduced pressure and the crude product was directly purified by FCC over silica

gel.

rac-2-(diallylamino)-1,2-diphenylethan-1-ol (7a)

\L f Alcohol 7a was prepared following the general procedure (method A, 48 h), from cis-stilbene
N oxide (3.5, 17.8 mmol, 1 equiv.) and diallylamine (6.6 mL, 53.5 mmol, 3 equiv.). Purification

O O by FCC(Pentane:Et,O = 98:2) afforded the title compound as a pale yellow solid (3.26 g, 63%
‘ yield). *H NMR (400 MHz, CDCls) § = 7.36 — 7.06 (m, 10H), 5.92 (tdd, J = 14.0, 8.6, 4.1 Hz,

2H), 5.25 (d, J = 13.7 Hz, 4H), 5.09 — 5.04 (m, 2H), 3.92 (d, J = 10.3 Hz, 1H), 3.54 (ddt, J =

rac-7a
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13.9,4.1, 2.0 Hz, 2H), 2.68 (dd, J = 14.0, 8.6 Hz, 2H); 3C NMR (101 MHz, CDCls) = 141.6, 136.3, 133.6,
130.2, 128.1, 128.0, 127.8, 127.5, 127.5, 118.3, 71.1, 69.8, 52.8; IR (thin layer film) v (cm™) = 3356, 3064,
3030, 2824, 1642, 1493, 1451, 1400, 1335, 1081, 1053, 972, 757, 698, 607; MP 44 — 46 °C; HRMS (ESI)
m/z calculated for CoH24NO* [M+H]* 294.18524, found 294.18507.

rac-2-(dimethylamino)-1,2-diphenylethan-1-ol (7b)

In a pressure tube, dimethylamine hydrochloride (2.45 g, 30 mmol, 5 equiv.) and sodium
oH hydroxide (2.4 g, 60 mmol, 10 equiv.) were dissolved in 30 mL of MeOH/Water (1:1) and

O ‘ stirred at 0 °C for 10 min before addition of cis-stilbene oxide (1.2 g, 6.0 mmol, 1 equiv.).

N

The pressure tube was sealed, and the reaction stirred at 65 °C overnight. The reaction

rac-Tb mixture was then allowed to cool to r.t. and extracted with EtOAc. The combined organic
layers were washed with brine, dried on MgSO., and evaporated to dryness. Purification by FCC
(Pentane:EtOAc = 90:10 to 80:20, gradient) afforded 7b as a white solid (1.20 g, 83% vyield). *H NMR (400
MHz, CDCls) 6 = 7.23 — 7.10 (m, 5H), 7.10 — 6.90 (m, 5H), 4.91 (d, J = 10.3 Hz, 1H), 3.47 (d, J = 10.3 Hz,
1H), 2.16 (s, 6H); *C NMR (101 MHz, CDCls) § = 141.5, 132.4, 130.2, 128.0, 127.8, 127.8, 127.4, 127.4,
75.9, 71.1, 40.9; IR (thin layer film) v (cm™) = 3291, 3030, 2941, 2903, 2869, 2835, 2789, 1602, 1493, 1474,
1079, 1051, 1036, 877, 700; MP 88 —91 °C; HRMS (ESI*) m/z calculated for C16H20NO* [M+H]* 242.15394,

found 242.15385.

rac-1,2-diphenyl-2-(pyrrolidin-1-yl)ethan-1-ol (7c)
O Alcohol 7c was prepared following the general procedure (method B, 14 h), from cis-stilbene
N oxide (2.0 g, 10.2 mmol, 1 equiv.) and pyrrolidine (4.0 mL, 51 mmol, 5 equiv.). Purification
O " by FCC (DCM:MeOH = 98:2) afforded the title compound as a white solid (2.27 g, 83% yield).
‘ 'H NMR (400 MHz, CDCls) 6 = 7.40 — 7.24 (m, 5H), 7.22 — 7.10 (m, 5H), 5.29 (br s, 1H),
rac-Tc 5.02 (d, J=9.9 Hz, 1H), 3.85 (d, J = 10.0 Hz, 1H), 2.72 — 2.62 (m, 2H), 2.57 — 2.44 (m, 2H),
1.79 — 1.64 (m, 4H); 3C NMR (101 MHz, CDCl3) 6 = 141.9, 133.5, 130.4, 128.0, 127.9, 127.7, 127.4, 127.3,
72.1,71.8, 48.1, 22.8; IR (thin layer film) v (cm™) = 3370, 3027, 2954, 2925, 1620, 1452, 1261, 1081, 1056,
701; MP 80 — 81 °C; HRMS (ESI*) m/z calculated for C1sH2NO* [M+H]* 268.16959, found 268.16949.

Spectroscopic data were in agreement with the ones previously reported in literature.*
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rac-2-morpholino-1,2-diphenylethan-1-ol (7d)
o Alcohol 7d was prepared following the general procedure (method B, 24 h), from cis-stilbene
[N] oxide (1.00 g, 5.0 mmol, 1 equiv.) and morpholine (2.2 mL, 25 mmol, 5 equiv.). Purification
A JOH by FCC (Hexane:EtOAc = 100:0 to 60:40, gradient) afforded the title compound as a white
O O solid (1.22 g, 86% yield). *H NMR (500 MHz, CDCls) § = 7.35 - 7.23 (m, 5H), 7.23 - 7.15
(m, 3H), 7.14 — 7.09 (m, 2H), 5.13 (br s, 1 H), 5.11 (d, J = 10.3 Hz, 1H), 3.84 (ddd, J = 9.8,
6.4, 3.0 Hz, 2H), 3.79 (ddd, J = 11.0, 6.4, 2.9 Hz, 2H), 3.61 (d, J = 10.3 Hz, 1H), 2.81 — 2.65
(m, 2H), 2.49 - 2.39 (m, 2H); *C NMR (126 MHz, CDCls) [overlapped signals] 6 = 141.2, 132.7, 130.0, 128.0
(overlapped), 127.6, 127.4, 76.9, 70.4, 67.4, 49.3 (br); IR (thin layer film) v (cm™) = 3352, 3030, 2912, 2851,
1452, 1402, 1115, 1028, 994, 912, 873, 700; HRMS (ESI*) m/z calculated for C1gH22NO," [M+H]* 284.16451,

found 284.16437. Spectroscopic data were in agreement with the ones previously reported in literature.®

rac-7d

rac-2-(4-cyclohexylpiperazin-1-yl)-1,2-diphenylethan-1-ol (7¢)
Cy Alcohol 7e was prepared following the general procedure (method B, 14 h), dissolving cis-
[Nj stilbene oxide (1.00 g, 5.0 mmol, 1 equiv.) and 1-cyclohexylpiperazine (2.50 g, 15 mmol, 3
N o equiv.) in 5 mL of EtOH. Purification by FCC (Pentane:EtOAc = 80:20 with 3% NEts) afforded
O the title compound as a white solid (1.57 g, 86% yield). *H NMR (500 MHz, DMSO-ds, 70
O °C) 0 = 7.48 — 7.27 (m, 10H), 5.29 (d, J = 9.9 Hz, 1H), 5.08 (br s, 1H), 3.87 (d, J = 9.9 Hz,
rac-Te 1H), 2.85 - 2.69 (m, 6H), 2.57 — 2.50 (m, 2H), 2.40 — 2.33 (m, 1H), 2.00 — 1.86 (m, 4H), 1.77
(dt, J = 12.8, 2.9 Hz, 1H), 1.48 — 1.23 (m, 5H); 3C NMR (126 MHz, DMSO-ds, 70 °C) ¢ = 142.0, 133.7,
129.5, 127.2, 127.2, 127.0, 126.8, 126.5, 74.7, 69.6, 62.1, 48.8, 48.6, 28.2, 25.6, 24.8; IR (thin layer film)
v (cm™) = 3335, 2922, 2851, 1405, 1187, 1148, 1000, 977, 703; MP 153 — 157 °C; HRMS (ESI*) m/z
calculated for Cp4H33sN,O" [M+H]* 365.25984, found 365.25830.

rac-2-(4-benzylpiperazin-1-yl)-1,2-diphenylethan-1-ol (7f)
Ph Alcohol 7f was prepared following the general procedure (method B, 14 h), from cis-stilbene
l\ll/ oxide (1.00 g, 5.0 mmol, 1 equiv.) and 1-benzylpiperazine (2.6 mL, 15 mmol, 3 equiv.).
[Nj Purification by FCC (Pentane:EtOAc = 95:5 to 90:10, gradient) afforded the title compound
“OH a5 g pale yellow solid (1.40 g, 75% yield). *H NMR (500 MHz, CDCl3) 6 = 7.37 — 7.23 (m,
O ‘ 10H), 7.22 — 7.14 (m, 3H), 7.13 — 7.08 (m, 2H), 5.24 (br s, 1H), 5.09 (d, J = 10.3 Hz, 1H),
3.63 (d, J=10.3 Hz, 1H), 3.57- 3.50 (m, 2H), 2.90 — 2.31 (m, 8H); *C NMR (126 MHz,
CDCls) 0 =141.5,138.0, 133.1, 130.0, 129.3, 128.3, 128.0, 128.0, 127.9, 127.5, 127.4, 127 .2,
76.4, 70.5, 63.2, 53.6, 49.6 (br); IR (thin layer film) v (cm™) = 3327, 3030, 2934, 2853, 1725, 1452, 1408,
1271, 1091, 1052, 1025, 700; MP 135 — 137 °C; HRMS (ESI*) m/z calculated for CasHoN,O* [M+H]*

373.22744, found 373.22736.

rac-Tf
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rac-1,2-diphenyl-2-(piperidin-1-yl)ethan-1-ol (7g)
Alcohol 7g was prepared following the general procedure (method B, 14 h), from cis-
O stilbene oxide (2.32 g, 11.8 mmol, 1 equiv.) and piperidine (6.0 mL, 59 mmol, 5 equiv.).
Y on Purification by FCC (Pentane:Et,O = 100:0 to 90:10, gradient with 4% of NEts) afforded
O the title compound as a white solid (2.22 g, 67% yield). For the multi-decagram scale
‘ reaction: cis-stilbene (91.7 g, 0.47 mol, 1 equiv.) was dissolved in piperidine (184 mL,
rac-Tg 1.4 mol, 4 equiv.) and refluxed for 24 h. The reaction was then cooled to r.t. and the excess
amine was removed under vacuum. Hexane was added and after stirring for 15 min, the solution was filtered
and the solid was washed with cold hexane. The brown solid was then dried overnight under vacuum and
directly used for the successive step without any further purification (111.7 g, 0.40 mol, 85% yield). *H NMR
(500 MHz, CDCls) 6 = 7.32 — 7.22 (m, 5H), 7.20 — 7.09 (m, 5H), 5.36 (br s, 1H), 5.06 (d, J = 10.3 Hz, 1H),
3.56 (d, J = 10.3 Hz, 1H), 2.67 (br s, 2H), 2.31 (br s, 2H), 1.81 — 1.58 (m, 4H), 1.48 — 1.25 (m, 2H); 3C NMR
(126 MHz, CDCls) 6 = 141.8, 133.5, 130.1, 128.0, 127.9, 127.7, 127.4, 127.4,77.2,70.5, 50.4, 26.7, 24.4; IR
(thin layer film) v (cm™) = 3320, 3030, 2933, 2852, 1452, 1407, 1217, 1195, 1156, 1088, 1052, 1025, 984,

875, 758, 745, 700; MP 96 — 97 °C; HRMS (ESI*) m/z calculated for C1gH24NO* [M+H]* 282.18524, found
282.18495.

rac-2-(isoindolin-2-yl)-1,2-diphenylethan-1-ol (7h)
In an extraction funnel, isoindoline hydrochloride (2.1 g, 13.5 mmol, 3 equiv.) was dissolved
in Et,O and washed with NaOH (1 M). Phases were separated and the aqueous phase was
N extracted twice with Et,O. The combined organic phases were dried over MgSOQs, filtered and
~_OH concentrated in vacuo. The residue was dissolved in 3 mL of EtOH and transferred into a
O pressure tube. Cis-stilbene oxide (785 mg, 4.0 mmol, 1 equiv.) was added and the pressure
O tube sealed. The reaction mixture was stirred at 100 °C overnight. VVolatiles were evaporated
in vacuo and the crude product was purified by FCC (Pentane:Et,O = 100:0 to 90:10,
gradient) to afford 7h as a brown solid (1.18 g, 94% yield). *H NMR (400 MHz, CDCl3) § = 7.25 — 7.14 (m,
4H), 7.14 — 7.03 (m, 10H), 5.05 (d, J = 9.5 Hz, 1H), 4.03 — 3.90 (m, 5H); *C NMR (101 MHz, CDCls) 6 =
141.5, 139.2, 134.3, 130.2, 128.2, 128.0, 127.8, 127.4, 127.3, 126.8, 122.4, 72.4, 72.1, 54.0; IR (thin layer
film) v (cm™*) = 3366, 3029, 2894, 2803, 1493, 1453, 1398, 1188, 1112, 1075, 909, 741, 700; MP 131 - 132 °C;
HRMS (ESI*) m/z calculated for C22H22NO* [M+H]* 316.16959, found 316.16907.

rac-Th

rac-2-(3,4-dihydroisoquinolin-2(1H)-yl)-1,2-diphenylethan-1-ol (7i)
Alcohol 7i was prepared following the general procedure (method B, 14 h), from cis-stilbene
oxide (1.0 g, 5.0 mmol,1 equiv.) and tetrahydroisoquinoline (3.2 mL, 25 mmol, 5 equiv.).
Purification by FCC (Pentane:EtOAc = 100:0 to 97:3, gradient) afforded the title compound
O OH " asan ivory solid (1.55 g, 94% vield). *H NMR (400 MHz, CDCls); § = 7.35— 7.12 (m, 13H),
O 7.07 (dd, J = 6.4, 2.5 Hz, 1H), 5.24 (d, J = 10.3 Hz, 1H), 5.18 (br s, 1H), 4.00 — 3.80 (m, 2H),
3.70 (d, J=14.5 Hz, 1H), 3.19 — 3.09 (m, 1H), 3.10 — 2.96 (m, 2H), 2.59 (ddd, J =11.8, 7.3,

iz
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5.1 Hz, 1H); C NMR (101 MHz, CDClIs) [overlapping signals] 6 = 141.4, 134.7, 134.1, 133.0, 130.1, 128.8,
128.1, 128.0, 127.5 (overlapped), 126.7, 126.3, 125.8, 76.3, 70.9, 52.1, 46.6, 29.9; IR (thin layer film) v (cm’
1y = 3350, 3028, 2916, 2832, 1495, 1453, 1403, 1193, 1127, 1086, 1048, 909, 760, 739, 700; MP 117 — 121
°C; HRMS (ESI*) m/z calculated for C23H2sNO™ [M+H]* 330.18634, found 330.18497 .

rac-2-(allyl(methyl)amino)-1,2-diphenylethan-1-ol (7])

Alcohol 7j was prepared following the general procedure (method B, 48 h), from cis-stilbene
- f oxide (1.0 g, 5.0 mmol, 1 equiv.) and N-Allylmethylamine (2.4 mL, 25 mmol, 5 equiv.).
on Purification by FCC (Pentane:EtOAc = 98:2 to 90:10, gradient) afforded the title compound
O as a white solid (1.16 g, 87% yield). *H NMR (500 MHz, CDCl3) § = 7.31 — 7.22 (m, 5H),
O 7.20 - 7.10 (m, 5H), 6.00 — 5.87 (m, 1H), 5.25 - 5.23 (m, 1H), 5.22 — 5.20 (m, 1H), 5.06 (d,
rac-7j J=10.4 Hz, 1H), 3.75 (d, J = 10.4 Hz, 1H), 3.18 (dd, J = 13.5, 5.6, Hz, 1H), 2.95 (dd, J =
13.5, 7.3 Hz, 1H), 2.26 (s, 3H); *C NMR (126 MHz, CDCl;) ¢ = 141.6, 136.1, 133.0, 130.2, 128.0, 128.0,
127.8,127.5,127.5,118.1, 73.8, 71.0, 57.5, 37.0; IR (thin layer film) v (cm™*) = 3329, 3030, 2881, 1643, 1493,
1452, 1399, 1335, 1274, 1185, 1127, 1081, 1034, 1013, 921, 757, 699. MP 63 — 64 °C; HRMS (ESI*) m/z

calculated for C1gH2,NO* [M+H]* 268.16959, found 268.16915.

nmz

rac-2-(methyl(prop-2-yn-1-yl)amino)-1,2-diphenylethan-1-ol (7k)
J' Alcohol 7k was prepared following the general procedure (method B, 48 h), from cis-stilbene
- oxide (750 mg, 3.8 mmol, 1 equiv.) and N-Methylpropargylamine (1.3 mL, 15 mmol, 4
“_ _oH €quiv.). Purification by FCC (Pentane:EtOAc = 98:2 to 90:10, gradient) afforded the title
O compound as a white solid (500 mg, 49% yield). *H NMR (500 MHz, CDCls) § 7.31 — 7.23
‘ (m, 5H), 7.21 - 7.12 (m, 5H), 5.08 (d, J = 10.2 Hz, 1H), 4.88 (br s, 1H), 3.98 (d, J = 10.2 Hz,
rac-Tk 1H), 3.34 (dd, J = 16.2, 2.5 Hz, 1H), 3.13 (dd, J = 16.2, 2.5 Hz, 1H), 2.35 (s, 3H), 2.32 (t, J =
2.4 Hz, 1H); 3C NMR (126 MHz, CDCls) 6 141.4, 132.4, 130.2, 128.1 (overlapped), 128.0, 127.6, 127.5,
80.2, 73.1, 73.0, 71.2, 44.0, 34.0; IR (thin layer film) v (cm™) = 3364, 3291, 3031, 2879,2803, 1423, 1357,
1302, 1186, 1016, 759, 670; MP 58 — 60 °C; HRMS (ESI*) m/z calculated for C1sH20NO* [M+H]* 266.15394,

found 266.15396.

rac-2-(diallylamino)-1,2-di-m-tolylethan-1-ol (71)

N - Alcohol 71 was prepared following the general procedure (method A, 48 h), from cis-2,3-
iNf di-m-tolyloxirane (1.10 g, 4.5 mmol, 1 equiv.) and diallylamine (1.7 mL, 14 mmol 3
~OH equiv.). Purification by FCC (Hexane:Et,O = 100:0 to 98:2, gradient) afforded the title

O compound as a colorless oil (1.00 g, 70% yield). *H NMR (500 MHz, CDCls); § = 7.15 (t,
O J =7.5Hz, 1H), 7.07 (s, 1H), 7.04 — 7.00 (m, 2H), 6.95 — 6.91 (m, 3H), 6.89 (s, 1H), 5.94

—5.86 (m, 2H), 5.23 (d, J = 13.3 Hz, 4H), 5.07 (br s, 1H), 5.02 (d, J = 10.3 Hz, 1H), 3.87
(d, J =10.3 Hz, 1H), 3.51 (d, J = 14.0 Hz, 2H), 2.67 (dd, J = 8.3, 14.0 Hz, 2H), 2.3 (s, 3H), 2.2 (s, 3H); °C
NMR (126 MHz, CDCls) ¢ = 141.5, 137.5, 137.4, 136.4, 133.5, 131.0, 128.5, 128.2, 128.1, 127.9, 127.8,

127.1,124.7,118.2, 70.9, 69.4, 52.8, 21.7, 21.5; IR (thin layer film) v (cm™) = 3356, 3025, 2977, 2921, 2826,

rac-T1
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1642, 1607, 1489, 1448, 1398, 1318, 1245, 1153, 1093, 1055, 994, 972, 920, 885, 848, 782, 703; HRMS
(ESI*) m/z calculated for CoHasNO* [M+H]* 322.2165, found 322.2164.

rac-2-(diallylamino)-1,2-bis(3-fluorophenyl)ethan-1-ol (7m)

\ _ Alcohol 7m was prepared following the general procedure (method A, 24 h), from cis-
\LN/( 2,3-bis(3-fluorophenyl)oxirane (800 mg, 3.4 mmol, 1 equiv.) and diallylamine (1.2 mL,

F ~0H 10.3 mmol, 3 equiv.). Purification by FCC (Hexane:Et,O = 100:0 to 95:5 gradient)
O afforded the title compound as a white solid (1.00 g, 88% yield). *H NMR (500 MHz,
‘ ¢ CDCls); 0=7.28—-7.19 (m, 1H), 7.01 — 7.03 (m, 1H), 6.99 — 6.90 (m, 2H), 6.90 — 6.80

rac-m (m, 2H), 6.80 — 6.75 (m, 2H), 5.90 — 5.79 (m, 2H), 5.29 — 5.18 (m, 4H), 4.96 (d, J = 10.6

Hz, 1H), 4.95 (br s, 1H), 3.82 (d, J = 10.6 Hz, 1H), 3.49 (d, J = 14 Hz, 2H), 2.63 (dd, J = 9.3, 14 Hz, 2H); *°F
NMR (470 MHz, CDCls); -112.6 (m, 1F), -113.4 (m, 1F); *C NMR (126 MHz, CDCls); 162.78 (d, Jcr =
245 Hz), 162.6 (d, Jc.r = 245 Hz), 144.05 (d, Jcr = 8 Hz), 136.02 (d, Jcr = 8.0 Hz), 135.84, 129.75 (d, Jc_r
=8.5Hz), 129.54 (d, Jcr = 8.5 Hz), 125.78 (d, Jcr = 2.8 Hz), 123.23 (d, Jcr = 2.8 Hz), 118.73, 116.81 (d, Jc-
r = 21.3 Hz), 115.04 (d, Jcr = 21.3 Hz), 114.6 (d, Jc-r = 21.3 Hz), 114.11 (d, Jc ¢ = 21.3 Hz), 70.60, 69.35,
52.84; IR (thin layer film) v (cm™) = 3366, 3080, 2826, 1643, 1614, 1589, 1488, 1447, 1398, 1314, 1247,
1137, 1079, 1054, 995, 958, 923, 878, 782, 759, 705, 696; MP 60 — 63 °C; HRMS (ESI*) m/z calculated for

C2oH22F2NO* [M+H]* 330.1664, found 330.1663.

rac-1,2-bis(3-chlorophenyl)-2-(diallylamino)ethan-1-ol (7n)

N _ Alcohol 7n was prepared following the general procedure (method A, 24 h), from cis-
\LN/( 2,3-bis(3-chlorophenyl)oxirane (1.00 g, 3.7 mmol, 1 equiv.) and diallylamine (1.3 mL,

cl O OH 11 mmol, 3 equiv.). Purification by FCC (Hexane:Et,O = 100:0 to 90:10 gradient)

CDCls); 0 =7.27 —7.18 (m, 3H), 7.13 - 7.03 (m, 3H), 7.00 — 6.93 (m, 2H), 5.90 — 5.80

rac-7n (m, 2H), 5.28 — 5.21 (m, 4H), 4.95 (d, J = 10.5 Hz, 1H), 3.80 (d, J = 10.5 Hz, 1H),

3.49 (d, J = 14 Hz, 2H), 2.64 (dd, J = 8.7, 14 Hz, 2H); *C NMR (126 MHz, CDCls) ¢ = 143.4, 135.8, 135.4,

134.3, 134.2, 130.0, 129.5, 129.4, 128.3, 128.6, 127.9, 127.4, 125.8, 118.8, 70.5, 69.4, 52.8; IR (thin layer

film) v (cm™) = 3358, 3077, 2825, 1643, 1596, 1572, 1477, 1431, 1127, 1394, 1311, 1259, 1191, 1096, 1081,

1058, 996, 973, 922, 885, 836, 785, 733; HRMS (ESI*) m/z calculated for CoH2;NOCI,* [M+H]" 362.1073,
found 362.1071.

O afforded the title compound as colorless oil (0.98 g, 70% yield). *H NMR (500 MHz,
cl
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rac-2-(diallylamino)-1,2-bis(3-methoxyphenyl)ethan-1-ol (70)

XN - Alcohol 70 was prepared following the general procedure (method A, 24 h), from
iwf cis-2,3-bis(3-methoxyphenyl)oxirane (800 mg, 3.12 mmol, 1 equiv.) and

MeO ~#OH diallylamine (1.16 mL, 9.37 mmol, 3 equiv.). Purification by FCC (Hexane:Et,0 =
O O 90:10 to 80:20, gradient) afforded the title compound as a pale yellow oil (788 mg,

oMe 71% yield). *H NMR (500 MHz, CDCls) 6 =7.19 (t, J = 8.0 Hz, 1H), 7.05 (t, J=7.9

Hz, 1H), 6.81—-6.75 (m, 3H), 6.73 (d, J = 7.7 Hz, 1H), 6.66 (d, J = 8.2 Hz, 1H), 6.63

(s, 1H), 5.95 -5.83 (m, 2H), 5.27 — 5.18 (m, 4H), 5.04 (br s, 1H), 5.00 (d, J = 10.4 Hz, 1H), 3.85 (d, J = 10.4
Hz, 1H), 3.75 (s, 3H), 3.68 (s, 3H), 3.54 — 3.48 (m, 2H), 2.68 (dd, J = 14.1, 8.6 Hz, 2H); *C NMR (126 MHz,
CDCls) ¢ = 159.3 (overlapped), 143.3, 136.3, 135.2, 129.0, 129.0, 122.5, 120.0, 118.3, 116.6, 113.1, 112.9,
112.6, 70.9, 69.1, 55.3, 55.2, 52.9. IR (thin layer film) v (cm™) = 3350, 2936, 2835, 1600, 1585, 1490, 1260,

1154, 1046, 877. HRMS could not be recorded as the compound did not ionize and/or decomposed under any

rac-7o

standard technique.

rac-2-(diallylamino)-1,2-bis(3,5-dimethylphenyl)ethan-1-ol (7p)

N _ Alcohol 7p was prepared following the general procedure (method A, 24 h), cis-2,3-bis(3,5-
\LN/( dimethylphenyl)oxirane (1.00 g, 4 mmol, 1 equiv.) and diallylamine (1.5 mL, 12 mmol, 3
~_0H equiv.). Purification by FCC (Hexane:Et,O = 100:0 to 98:2 gradient) afforded the title

O compound as a white solid (550 mg, 40% yield). *H NMR (500 MHz, CDCls) § = 6.84 (s,
O 1H), 6.81 (s, 2H), 6.74 (s, 1H), 6.70 (s , 2H), 5.93 — 5.85 (m, 2H), 5.22 (d, J = 13.8 Hz,

rac-Tp 4H), 4.95 (d, J = 10.3 Hz, 1H), 3.84 (d, J = 10.3 Hz, 1H), 3.50 — 3.43 (m, 2H), 2.65 (dd, J

= 8.7, 14 Hz, 2H), 2.26 (s, 6H), 2.17 (s, 6H); *C NMR (126 MHz, CDCls) 6 = 141.5, 137.3, 137.2, 136.6,
133.5, 129.3, 129.2, 128.0, 125.5, 118.1, 70.8, 69.0, 52.8, 21.6, 21.4; IR (thin layer film) v (cm™) = 3363,
3078, 3008, 2976, 2918, 1642, 1605, 1448, 1416, 1399, 1377, 1311, 1291, 1158, 1114, 1064, 994, 974, 919,
860, 849, 748, 704; MP 99 — 102 °C; HRMS (ESI*) m/z calculated for Cz4H3NO* [M+H]* 350.2478, found

350.2479.

rac-2-(diallylamino)-1,2-di-p-tolylethan-1-ol (7q)
cis-2,3-di-p-tolyloxirane (900 mg, 4.02 mmol, 1 equiv.), diallylamine (1.48 mL, 12.0
\L f mmol, 3 equiv.) and ZnCl; (1.1 g, 8.04 mmol, 2 equiv.) were stirred in DMF (8 mL, 0.5
N oy M) at 70 °C for 24 h. The reaction mixture was then cooled to r.t., diluted with water
O and extracted three times with DCM. The combined organic layers were washed twice
e O with LiCl (10% wi/v solution), dried on MgSO. and evaporated in vacuo. Purification
rac-7q  Me by FCC (Hexane:Et,O = 100:0 to 95:5, gradient) afforded the title compound as a
yellow oil (410 mg, 31% yield). *H NMR (500 MHz, CDCls) 6 = 7.11 — 7.08 (m, 2H), 7.06 (d, J = 7.8 Hz,
2H), 7.02 — 6.97 (m, 2H), 6.96 (d, J = 7.9 Hz, 2H), 5.89 (dddd, J = 18.1, 9.8, 8.6, 4.1 Hz, 2H), 5.28 — 5.23 (m,
2H), 5.22—5.20 (m, 2H), 5.07 (br s, 1H), 5.00 (d, J = 10.4 Hz, 1H), 3.87 (d, J = 10.3 Hz, 1H), 3.53 — 3.47 (m,
2H), 2.63 (dd, J = 14.0, 8.6 Hz, 2H), 2.29 (s, 3H), 2.22 (s, 3H); *C NMR (126 MHz, CDCls) 6 = 138.6, 137.3,
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136.9, 136.5, 130.5, 130.0, 128.8, 128.8, 127.4, 118.2, 70.8, 69.2, 52.8, 21.2 (overlapped). IR (thin layer film)
v (cm™) = 3364, 3008, 2978, 2922, 1643, 1448, 1396, 1327, 1057, 920, 814; HRMS (ESI*) m/z calculated for
Ca2H2sNO* [M+H]* 322.21654, found 322.21658.

rac-2-(diallylamino)-1,2-bis(4-fluorophenyl)ethan-1-ol (7r)
S _ Alcohol 7r was prepared following the general procedure (method B, 72 h), from cis-2,3-
\LN/( bis(4-fluorophenyl)oxirane (1.03 g, 4.44 mmol, lequiv.) and diallylamine (13 mL, 13.3
~_,OH mmol, 3 equiv.). Purification by FCC(Pentane:EtOAc = 100:0 to 90:10) afforded the title
. O compound as a colorless oil (1.053 g, 73% yield). *tH NMR (500 MHz, CDCl3) 6 = 7.16 —
O 7.11 (m, 2H), 7.07 — 7.02 (m, 2H), 6.99 — 6.93 (m, 2H), 6.87 — 6.81 (m, 2H), 5.88 (dddd, J
F =16.9, 10.4, 8.6, 4.1 Hz, 2H), 5.28 — 5.18 (m, 4H), 4.99 (br s, 1H), 4.97 (d, J = 10.4 Hz,
1H), 3.83 (d, J = 10.3 Hz, 1H), 3.53 — 3.48 (m, 2H), 2.63 (dd, J = 13.9, 8.7 Hz, 2H); ®F NMR (470 MHz,
CDCl3) 6 = -114.00 — -114.09 (m, 1F), -115.02 — -115.16 (m,1F); *C NMR (126 MHz, CDCls) ¢ = 162.4 (d,
Jor=246.0 Hz), 162.2 (d, Jcr = 245.8 Hz), 137.1 (d, Jcr = 3.4 Hz), 136.1, 131.5 (d, Jcr = 7.9 HZz), 129.3 (d,
Jer=3.6 Hz), 129.0 (d, Jcr = 8.1 HZ), 118.5, 115.2 (d, Jcr = 21.1 Hz), 115.0 (d, Jcr = 21.4 Hz), 70.8, 69.3,
52.8; IR (thin layer film) v (cm™) = 3367, 3078, 2826, 1644, 1605, 1510, 1224, 924, 835; HRMS (ESI*) m/z
calcd. for CoH2FNO* [M+H]* 330.16640, found 330.16594.

rac-7Tr

rac-1,2-bis(4-bromophenyl)-2-(diallylamino)ethan-1-ol (7s)

N _ Alcohol 7s was prepared following the general procedure (method A, 24h), from cis-
\LN/( 2,3-bis(4-bromophenyl)oxirane (540 mg, 1.5 mmol, 1 equiv.) and diallylamine (0.55
~_OH mL, 4.5 mmol, 3 equiv.). Purification by FCC(Hexane:Et,O = 100:0 to 80:20, gradient)

Br O O afforded the title compound as a white solid (450 mg, 67% yield). *H NMR (500 MHz,
CDCl3); 0=7.40 (d, J = 8.3, 2H), 7.26 (d, J = 8.3, 2H), 7.02 (d, J = 8.3 Hz, 2H), 6.93

(d, J=8.3Hz, 2H),5.92 -5.78 (m, 2H), 5.29 — 5.49 (m, 4H), 4.92 (d, J = 10.3 Hz, 1H),
3.76 (d, J = 10.3 Hz, 1H), 3.47 (d, J = 14.0 Hz, 2H), 2.59 (dd, J = 8.7, 14.0 Hz, 2H); *C NMR (126 MHz,
CDCls) 6 = 140.5, 136.0, 132.4, 131.7, 131.6, 131.4, 129.2, 122.3, 121.6, 118.8, 70.6, 69.4, 52.9; IR (thin layer
film) v (cm™) = 3372, 3068, 3015, 2973, 2916, 2830, 2810, 1486, 1446, 1389, 1353, 1340, 1324, 1286, 1103,
1008, 998, 974, 87, 799, 727, MP 119 — 120 °C; HRMS (ESI*) m/z calculated for CxH22NOBr;* [M+H]*

450.00736, found 450.00641.

rac-7s Br

rac-2-(dibenzylamino)cyclohexan-1-ol (7t)
Ph  Ph Alcohol 7t was prepared following the general procedure (method A, overnight) from
k,},) cyclohexene oxide (5 mL, 50 mmol, 1 equiv.) and dibenzylamine (18.5 mL, 100 mmol, 2 equiv.).
O/OH Purification by FCC (Pentane: EtOAc = 95:5 to 80:20, gradient) afforded the title compound as
a white solid (11.32 g, 78% yield). *H NMR (400 MHz, CDCls) § = 7.36 — 7.20 (m, 10H), 3.85
rac-Tt (d, J = 13.3 Hz, 2H), 3.77 (br s, 1H), 3.51 (td, J = 10.0, 4.4 Hz, 1H), 3.37 (d, J = 13.3 Hz, 2H),
2.36 (ddd, J = 11.9, 9.7, 3.4 Hz, 1H), 2.12 — 2.02 (m, 1H), 2.02 — 1.92 (m, 1H), 1.82 — 1.74 (m, 1H), 1.72 —

1.61 (m, 1H), 1.32 — 1.03 (m, 4H); **C NMR (101 MHz, CDCls) § = 139.5, 129.0, 128.5, 127.2, 69.1, 64.2,
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53.6, 33.3, 25.5, 24.2, 22.1; IR (thin layer film) v (cm™) = 3449, 3061, 3027, 1494, 1452, 1129, 1093, 987,
751, 736, 699; MP 86 — 87 °C; HRMS (ESI*) m/z calculated for CxH2sNO* [M+H]* 296.20089, found
296.20081. Spectroscopic data were in agreement with the ones previously reported in literature.®

rac-2-(bis(4-methoxybenzyl)amino)cyclohexan-1-ol (7u)

OMe  Alcohol 7u was prepared following the general procedure (method A, overnight)
from cyclopentene oxide (384 pul, 3.8 mmol, 1 equiv.) and bis(4-
methoxybenzyl)amine’ (2.00 g, 7.75 mmol, 2 equiv.). Purification by FCC (Pentane:

/©/\’1‘ o EtOAc = 95:5 to 80:20, gradient) afforded the title compound as a pale-yellow oil

O’ (1.35 g, 99% yield). *H NMR (400 MHz, CDCl3s) 6 = 7.17 (d, J = 8.5 Hz, 4H), 6.85

(d, J=8.5Hz, 4H), 3.82 —3.74 (m, 9H), 3.49 (td, J = 10.0, 4.4 Hz, 1H), 3.29 (d, J =

rac-7u 13.2 Hz, 2H), 2.34 (ddd, J = 11.8, 9.7, 3.4 Hz, 1H), 2.13 - 2.02 (m, 1H), 1.98 — 1.90

(m, 1H), 1.82 — 1.74 (m, 1H), 1.72 — 1.62 (m, 1H), 1.34 — 1.03 (m, 4H); **C NMR (101 MHz, CDCls) ¢ =

158.8, 131.7, 130.1, 113.9, 69.0, 63.9, 55.3, 52.8, 33.3, 25.6, 24.2, 22.2; IR (thin layer film): v (cm™) = 2918,

2850, 2361, 1736, 1612, 1512, 1463, 1302, 1248, 1174, 1089, 1036, 808, 617; HRMS (ESI*) m/z calculated
for C2H3NO3s* [M+H]* 356.22202, found 356.22178.

MeO

rac-2-(dibenzylamino)cyclopentan-1-ol (7v)
ph Ph Alcohol 7v was prepared following the general procedure (method A, overnight) from
cyclopentene oxide (872 ul, 10 mmol, 1 equiv.) and dibenzylamine (3.8 mL, 20 mmol, 2

Q»OH equiv.). Purification by FCC (Pentane: EtOAc = 95:5 to 80:20, gradient) afforded the title

compound as a white solid (2.51 g, 90% vyield). *H NMR (400 MHz, CDCl3) § = 7.43 - 7.36

(m, 4H), 7.36 — 7.29 (m, 4H), 7.29 — 7.21 (m, 2H), 4.09 (q, J = 7.4 Hz, 1H), 3.79 (d, J = 13.8

Hz, 2H), 3.52 (d, J = 13.8 Hz, 2H), 2.99 — 2.92 (m, 1H), 1.98 (br s, 1H), 1.94-184 (m, 1H), 1.83 — 1.74 (m,

1H), 1.70 — 1.55 (m, 3H), 1.49 -1.39 (m, 1H); *C NMR (101 MHz, CDCls) ¢ = 140.2, 128.7, 128.4, 127.0,

73.8, 68.8, 55.1, 31.7, 22.1, 20.1; IR (thin layer film) v (cm™) = 3391, 3061, 3027, 2954, 2872, 1493, 1453,

1362, 1248, 1105, 978, 737, 697; MP 47 — 50 °C; HRMS (ESI*) m/z calculated for CigH2sNO* [M+H]*
282.18524 found 282.18514.

rac-Tv
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B-Chloro and p-Bromoamines

General Procedure for the Synthesis of f-Chloroamines:

NR; MsCl (1.5 equiv) E‘RZ
Ar OH NEt; (1.5 equiv) Ar Cl
Ar DCM (0.2 M) Ar
0°Ctort,1-3h
rac-Ta-s rac-1a-s

Following the procedure reported by Nelson,* the appropriate aminoalcohol (1 equiv.) was dissolved in
anhydrous DCM (0.2 M) and the solution was cooled to 0 °C. NEt; (1.5 equiv.) was added at once, followed
by dropwise addition of MsCI (1.5 equiv.) at 0 °C. The reaction mixture was allowed to warm to r.t. and stirred
for 1-3 h. After disappearance of both the starting material and the mesylate intermediate (monitored by
'H NMR), the reaction mixture was washed with NaHCOj3 (sat.) and brine The organic layers were dried over

MgSQ., filtered and evaporated in vacuo. The crude product was then purified with a short silica plug.

N.B. No degradation was observed when silica plugs were employed for purification, however extended
contact with silica led to hydrolysis of these compounds.

rac-N, N-diallyl-2-chloro-1,2-diphenylethan-1-amine (1a)
~ ~ Chloride 1a was prepared according to the general procedure from 7a (2.50 g, 8.5 mmol)
iNf followed by purification through a silica pad using toluene as eluent. White solid (2.40 g, 90%
~_Cl yield). 'H NMR (400 MHz, CDCl3) 6 = 7.24 — 7.06 (m, 8H), 7.01 — 6.96 (m, 2H), 5.97 (dddd,
O J=17.3,10.2,8.1, 4.2 Hz, 2H), 5.41 (d, J = 11.0 Hz, 1H), 5.32 - 5.25 (m, 2H), 5.24 — 5.17 (m,
O 2H), 4.37 (d, J = 11.0 Hz, 1H), 3.56 — 3.48 (m, 2H), 2.73 (dd, J = 14.2, 8.1 Hz, 2H); 3C NMR
(101 MHz, CDCls) ¢ = 140.2, 137.3, 135.2, 129.3, 128.4, 128.2, 128.0, 128.0, 127.3, 117.2,
68.8, 63.8, 53.1. IR (thin layer film) v (cm™) = 3065, 3030, 2813, 1641, 1494, 1453, 1417, 1211, 1030, 920,
720, 696; MP 47 — 49 °C; HRMS (APCI*) m/z calculated for CaoH2sCIN* [M+H]* 312.15135, found

312.15100.

rac-1a

rac-1(-2-chloro-N,N-dimethyl-1,2-diphenylethan-1-amine (1b)
Chloride 1b was prepared according to the general procedure from 7b (1.00 g, 4.0 mmol)
¢ followed by purification through a silica pad using DCM:EtOAc 1:1 as eluent. Ivory solid
O (710 mg, 68% yield). *H NMR (400 MHz, CDCls) § = 7.27 — 7.09 (m, 8H), 7.02 - 6.97 (m,
‘ 2H), 5.39 (d, J = 10.8 Hz, 1H), 4.13 (d, J = 10.8 Hz, 1H), 2.35 (s, 6H); *C NMR (101 MHz,
rac-1b CDCls) 6 = 139.8, 133.6, 129.5, 128.4, 128.2, 128.1, 127.8, 127.5, 74.8, 63.2, 41.1. IR (thin
layer film) v (cm™) = 3030, 2968, 2936, 2826, 2783, 1493, 1452, 1267, 1174, 1047, 784, 717, 704,
MP 51 -55°C; HRMS (ESI*) m/z calculated for CisHisCIN* [M+H]" 260.12005, found 260.12015.

Spectroscopic data were in agreement with the ones previously reported in literature.?
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rac-1(-2-chloro-1,2-diphenylethyl)pyrrolidine (1c)
O Chloride 1c was prepared according to the general procedure from 7c¢ (2.27 g, 8.5 mmol)
N o followed by purification through a silica pad using Hexane:Et,O (96:4 to 80:20, gradient) as
O eluent. Ivory solid (1.73 g, 71% yield). *H NMR (400 MHz, CDCls) § = 7.21 — 7.03 (m, 8H),
O 7.05-6.93 (m, 2H), 5.44 (d, J = 7.5 Hz, 1H), 4.08 (d, J = 7.4 Hz, 1H), 2.79 — 2.65 (m, 2H),
rac-1c 2.64 — 2,50 (m, 2H), 1.84 — 1.67 (m, 4H); *C NMR (101 MHz, CDCls) ¢ = 139.1, 136.4,
130.0, 128.5, 127.9, 127.9, 127.5, 127.4, 74.5, 64.4, 50.9, 23.4. IR (thin layer film) v (cm™) = 3061, 2956,
2798, 1994, 1452, 1358, 1312, 1127, 1075, 1031, 702; MP 42 — 43 °C; HRMS (ESI*) m/z calculated for
CisH21CIN* [M+H]" 286.13570, found 286.13539. Spectroscopic data were in agreement with the ones

previously reported in literature.
rac-4-(2-chloro-1,2-diphenylethyl)morpholine (1d)

0 Chloride 1d was prepared according to the general procedure from 7d (600 mg, 2.12 mmol)

[N] followed by purification through a silica pad using Hexane:EtOAc (100:0 to 90:10, gradient)

O ~~C' as eluent. Pale pink solid (562.6 mg, 88% yield). 'H NMR (400 MHz, CDCl3) 6 =7.27 - 7.11

O (m, 8H), 7.02 — 6.96 (m, 2H), 5.42 (d, J = 10.4 Hz, 1H), 4.09 (d, J = 10.4 Hz, 1H), 3.83 (ddd,

J=11.0,6.3, 3.1 Hz, 2H), 3.76 (ddd, J = 11.0, 6.1, 3.1 Hz, 2H), 2.62 (ddd, J = 9.9, 6.4, 3.0 Hz,

2H), 2.52 (ddd, J = 10.7, 6.3, 3.0 Hz, 2H); **C NMR (101 MHz, CDCls) § = 139.6, 134.4,

129.3, 128.4, 128.2, 128.1, 128.0, 127.7, 75.3, 67.4, 62.4, 49.7; IR (thin layer film) v (cm™) = 3030, 2957,

2855, 2818, 1494, 1451, 1114, 697; MP 142 — 145 °C; HRMS (APCI*) m/z calculated for CsH1CINO*
[M+H]* 3012.13062, found 3012.13062.

rac-1d

rac-1-(2-chloro-1,2-diphenylethyl)-4-cyclohexylpiperazine (1e)
Cy Chloride 1e was prepared according to the general procedure from 7e (750 mg, 2.00 mmol)
[Nj followed by purification through a silica pad using DCM:EtOAc (100:0 to 80:20, gradient) as
N N eluent. White solid (541 mg, 71% yield). *H NMR (500 MHz, DMSO-ds) 6 = 7.36 (d, J=7.6
O Hz, 2H), 7.16 — 7.04 (m, 8H), 5.88 (d, J = 11.3 Hz, 1H), 4.23 (d, J = 11.4 Hz, 1H), 2.65 — 2.06
O (m, 9H), 1.73 - 1.61 (m, 4H), 1.57 — 1.47 (m, 1H), 1.23 — 0.94 (m, 5H); 3C NMR (126 MHz,
rac-1e DMSO-ds) 6 = 140.3, 133.9, 129.3, 128.2, 128.1, 127.7, 127.3, 126.9, 72.5, 62.6, 62.0, 48.7,
48.3, 28.2, 25.9, 25.2; IR (thin layer film) v (cm™) = 2928, 2853, 2817, 1494, 1452, 1376, 1287, 1145, 1005,
703; MP 103 - 105 °C; HRMS (APCI*) m/z calculated for C24H32CIN,* [M+H]* 383.22485, found 383.22513.
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rac-1-benzyl-4-(-2-chloro-1,2-diphenylethyl)piperazine (1f)
Ph Chloride 1f was prepared according to the general procedure from 7f (660 mg, 1.77 mmol)

eluent. White solid (458 mg, 66% yield). *H NMR (400 MHz, CDCls) 6 = 7.30 - 7.18 (m, 7H),

O “ 716-7.06 (m, 6H), 6.96 — 6.91 (m, 2H), 5.37 (d, J = 10.6 Hz, 1H), 4.07 (d, J = 10.6 Hz, 1H),

‘ 3.48 (s, 2H), 2.64-2.42 (m, 8H); 3C NMR (101 MHz, CDCls) 6 = 139.9, 138.3, 134.6, 129.4,

129.3,128.3,128.3,128.2, 128.0, 127.9, 127.5, 127.1, 74.8, 63.3, 62.7, 53.6, 49.1 (br); IR (thin

layer film) v (cm™) = 3062, 2934, 2813, 1494, 1453, 1137, 1007, 733, 698; MP 112 — 114 °C;
HRMS (ESI*) m/z calculated for CasH2sCIN,* [M+H]* 391.19355, found 391.19302.

r
[Nj followed by purification through a silica pad using Hexane:Et,O (100:0 to 85:15, gradient) as
N

rac-1f

rac-1-(2-chloro-1,2-diphenylethyl)piperidine (19)
Chloride 1g was prepared according to the general procedure from 7g (2.22 g, 7.9 mmol)
(Nj followed by purification through a silica pad using Pentane:EtOAc = 90:10 as eluent. White
Gl solid (1.45 g, 61% yield). For the multi-decagram scale reaction: The alcohol 7g (111.7 g,
O ‘ 0.4 mol, 1 equiv.) was dissolved in DCM (0.5 M, 800 mL) and the solution was cooled to 0 °C.
MsCI (46 mL, 0.6 mol, 1.5 equiv.) followed by dry NEt; (83 mL, 0.6 mol, 1.5 equiv.) were
rac-1g slowly added (dropping funnel) at 0 °C. The reaction mixture was then stirred at r.t. for 2 h.
After quenching at 0 °C by addition of NaHCO3 (sat.), the aqueous phase was extracted three times with Et,O
and the combined organic phases were washed with brine, dried over MgSO4 and evaporated in vacuo. The
crude product was quickly passed through a silica plug (Pentane:EtOAc = 70:30). Finally, the light brown solid
was washed with small amounts of Et,O to afford a white solid (85.3 g, 71% yield). *H NMR (400 MHz,
CDCl3) 6 =7.24 —-7.19 (m, 2H), 7.19 — 7.06 (m, 6H), 6.98 — 6.93 (m, 2H), 5.39 (d, J = 10.8 Hz, 1H), 4.04 (d,
J =10.8 Hz, 1H), 2.57 — 2.48 (m, 2H), 2.41 — 2.33 (m, 2H), 1.73 — 1.54 (m, 4H), 1.40 — 1.30 (m, 2H); °C
NMR (101 MHz, CDCls) ¢ = 140.0, 134.9, 129.2, 128.2, 128.1, 127.9, 127.6, 127.2, 75.4, 62.8, 50.4, 26.4,
24.6; IR (thin layer film) v (cm™) = 3030, 2932, 2851, 2802, 1493, 1452, 1306, 1200, 1161, 1102, 990, 869,
718, 696, 658; MP 93 — 95 °C; HRMS (ESI*) m/z calculated for CH23CIN* [M+H]* 300.15135, found

300.15118.

rac-2-(-2-chloro-1,2-diphenylethyl)isoindoline (1h)

Chloride 1h was prepared according to the general procedure from 7h (530 mg, 1.68 mmol)

Q followed by purification by FCC using Pentane:Et,O (100:0 to 98:2, gradient) as eluent. Due

N to the limited stability of the compound, the solvent was evaporated under a flow of nitrogen

O ~ without evaporation in vacuo (thus avoiding warm water baths). White solid (200 mg,
O 34% yield). '"H NMR (500 MHz, CDCl3) 6 = 7.21 — 7.14 (m, 12H), 7.10 — 7.02 (m, 2H), 5.53

(d, J = 6.7 Hz, 1H), 4.36 (d, J = 6.8 Hz, 1H), 4.20 (d, J = 11.9 Hz, 2H), 4.09 (d, J = 11.9 Hz,

2H); *C NMR (126 MHz, CDClIs) [overlapping signals] 6 = 139.4, 138.5, 136.5, 130.1, 128.5,

128.1, 127.9, 127.8, 126.9, 122.4, 74.9, 64.3, 57.1; IR (thin layer film) v (cm™) = 3030, 2939, 2892, 2793,

rac-1h
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1493, 1464, 1363, 1314, 1133, 1077, 909, 742, 702; MP 84 — 86 °C; HRMS (ESI*) m/z calculated for
C22H21CIN* [M+H]* 334.13570, found 334.13528.

rac-2-(2-chloro-1,2-diphenylethyl)-1,2,3,4-tetrahydroisoquinoline (1i)
Chloride 1i was prepared according to the general procedure from 7i (750 mg, 2.3 mmol)
(Pj followed by purification through a silica pad using Pentane:Et,O (100:0 to 95:5, gradient) as
N eluent. White solid (628 mg, 78% yield). *H NMR (400 MHz, CDCl3) 6 = 7.33 — 7.28 (m, 2H),
~~C 7.27 -7.08 (m, 11H), 7.07 — 7.02 (m, 1H), 5.58 (d, J = 10.5 Hz, 1H), 4.34 (d, J = 10.5 Hz,
O ‘ 1H), 3.83 (d, J = 14.5 Hz, 1H), 3.73 (d, J = 14.6 Hz, 1H), 3.22 — 3.03 (m, 2H), 2.96 (dt, J =
16.0, 4.5 Hz, 1H), 2.68 (ddd, J = 10.4, 8.2, 4.3 Hz, 1H); *C NMR (101 MHz, CDCls) ¢ =
139.8,135.2,134.8,134.7,129.3,128.8, 128.4, 128.2, 128.1, 128.0, 127.6, 126.6, 126.0, 125.6,
74.7,62.9, 52.7, 46.1, 30.0; IR (thin layer film) v (cm™) = 3028, 2916, 2805, 1495, 1454, 1134, 1099, 1001,
936, 730, 697. MP 85 — 87 °C; HRMS (APCI*) m/z calculated for Ca3H23CIN* [M+H]* 348.15135, found

348.15155. Spectroscopic data were in agreement with the ones previously reported in literature.®

rac-1i

rac-N-(2-chloro-1,2-diphenylethyl)-N-methylprop-2-en-1-amine (1j)

Chloride 1j was prepared according to the general procedure from 7j (700 mg, 2.6 mmol)
\Nf followed by purification through a silica pad using Pentane:Et,O (100:0 to 90:10, gradient) as
o eluent. White solid (581 mg, 83% yield). '"H NMR (400 MHz, CDCls) 6 = 7.24 —7.06 (m, 8H),
O 6.99 — 6.94 (m, 2H), 5.99 (dddd, J = 17.5, 10.2, 7.6, 5.1 Hz, 1H), 5.40 (d, J = 11.0 Hz, 1H),
‘ 5.28 —5.18 (m, 2H), 4.24 (d, J = 10.9 Hz, 1H), 3.24 (ddt, J = 13.7, 5.2, 1.8 Hz, 1H), 2.89 (dd,
rac-1j J =13.7, 7.6 Hz, 1H), 2.30 (s, 3H); *C NMR (101 MHz, CDCl3) ¢ = 140.0, 136.8, 134.3,
129.4, 128.4, 128.2, 128.1, 127.9, 127.4, 117.5, 72.2, 63.4, 57.3, 37.6; IR (thin layer film) v (cm™) = 3063,
3030, 2974, 2853, 2793, 1642, 1493, 1451, 1205, 1156, 1020, 998, 921, 758, 720, 697. MP 60— 61 °C; HRMS

(ESI*) m/z calculated for C1sH2:CIN* [M+H]* 286.13570, found 286.13580.

rac-N-(2-chloro-1,2-diphenylethyl)-N-methylprop-2-yn-1-amine (1k)
J' Chloride 1k was prepared according to the general procedure from 7k (500 mg, 1.88 mmol)

“y followed by purification through a silica pad using Pentane:Et,O (100:0 to 90:10, gradient) as

“_ ,c1 eluent. White solid (420 mg, 79% yield).*H NMR (500 MHz, CDCls) ¢ = 7.27 — 7.23 (m,
O 2H), 7.23 — 7.13 (m, 6H), 7.08 — 7.03 (m, 2H), 5.45 (d, J = 9.8 Hz, 1H), 4.46 (d, J = 9.8 Hz,
O 1H), 3.44 (dd, J = 16.5, 2.5 Hz, 1H), 3.16 (dd, J = 16.6, 2.4 Hz, 1H), 2.44 (s, 3H), 2.32 (t, J =

rac-1k 2.5 Hz, 1H); ®°C NMR (126 MHz, CDCls) 6 = 139.5, 134.0, 129.7, 128.2 (overlapped), 128.1,
127.9, 127.8, 80.0, 73.2, 71.9, 62.9, 44.2, 37.8; IR (thin layer film) v (cm™) = 3293, 3030, 2796, 1493, 1452,
1208, 1122, 1076, 1059, 1022, 757, 696; MP 45-46 °C; HRMS (ESI*) m/z calculated for C1sH19CIN* [M+H]*

284.12005, found 284.11990.
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rac-N-allyl-N-(-2-chloro-1,2-di-m-tolylethyl)prop-2-en-1-amine (11)
Chloride 11 was prepared according to the general procedure from 71 (480 mg, 2.8 mmol)
\L f followed by purification through a silica pad using toluene as eluent. White solid (280
Me N cl mg, 55% yield). *H NMR (400 MHz, CDCls) 6 = 7.10 — 6.95 (m, 4H), 6.95 — 6.86 (m,
O 2H), 6.86 — 6.83 (M, 2H), 6.06 — 5.88 (m, 2H), 5.37 (d, J = 11.0 Hz, 1H), 5.27 (d, J =
O 17.0 Hz, 2H), 5.19 (d, J = 10.4 Hz, 2H), 4.30 (d, J = 11, 1H), 3.48 (d, J = 14.5, 2H), 2.71
ot M (dd, J = 8.0, 14.5 Hz, 2H), 2.24 (s, 3H), 2.22 (s, 3H); *C NMR (101 MHz, CDCl3) 6 =
140.2, 137.9, 137.4, 137.3, 135.1, 130.1, 128.9, 128.8, 128.2, 128.0, 127.7, 126.3, 125.2, 117.1, 68.4, 64.0,
53.2,21.6, 21.4; IR (thin layer film) v (em™) = 3022, 2920, 2813, 1641, 1605, 1489, 1445, 1417, 1378, 1344,
1262, 1155, 1123, 1093, 1042, 997, 973, 918, 883, 791, 775, 708; MP 54 — 56 °C HRMS (APCI*) m/z

calculated for C2H2;CIN* [M+H]* 340.1826, found 340.1826.

rac-N-allyl-N-2-chloro-1,2-bis(3-fluorophenyl)ethyl)prop-2-en-1-amine (1m)

N _ Chloride 1m was prepared according to the general procedure from 7m (500 mg,
iNf 1.5 mmol) followed by purification through a silica pad using toluene as eluent. White
F ~__cl solid (350 mg, 65% yield). *H NMR (500 MHz, CDCl3) § = 7.19 — 7.07 (m, 2H), 7.00 —
O 6.90 (m, 2H), 6.88 — 6.78 (m, 2H), 6.75 (d, J = 8.0 Hz, 1H), 6.68 (d, J = 9.5 Hz, 1H)
O ¢ 95.99-5.87(m, 2H), 5.35-5.17 (m, 5H), 4.28 (d, J = 10.7 Hz, 1H), 3.49 (d, J = 14.6
Hz, 2H), 2.70 (dd, J = 14.2, 8.0 Hz, 2H); *F NMR (470 MHz, CDCls) ¢ = -112.6 (m,
1F), -112.7 (m, 1F); 3C NMR (126 MHz, CDCl3) ¢ = 162.6 (d, Jcr = 246.6 Hz), 162.5 (d, Jc r = 246.6 Hz),
141.3 (d, Jc.r = 8 Hz), 139.6 (d, Jcr = 8.0 Hz), 136.8, 130.0 (d, Jc_r = 8.5 Hz), 129.6 (d, Jcr = 8.5 Hz), 124.9
(d, Jc ¢ = 2.8 Hz), 123.9 (d, Jc v = 2.8 Hz), 178.6, 115.9 (d, Jc r = 20.7 Hz), 115.3 (d, Jc ¢ = 20.7 Hz), 115.1
(d, Jcr=22.3Hz),114.5 (d, Jc r = 21.3 Hz), 68.3, 62.4, 53.1; IR (thin layer film) v (cm™) = 3078, 2926, 2814,
1641, 1612, 1590, 1488, 1446, 1418, 1344, 1258, 1140, 1077, 998, 976, 922, 878, 782, 767, 734, 703; MP 65

— 66 °C; HRMS (APCI*) m/z calculated for CxH21CIF.N* [M+H]* 348.1325, found 348.1323.

rac-1m

rac-N-allyl-N-2-chloro-1,2-bis(3-chlorophenyl)ethyl)prop-2-en-1-amine (1n)

\L f Chloride 1n was prepared according to the general procedure from 7n (540 mg, 1.5
N mmol) followed by purification through a silica pad using toluene as eluent. White solid
cl A Cl (540 mg, 90% yield). *H NMR (500 MHz, CDCl3) § = 7.21 (s, 1H), 7.18 — 7.02 (m, 5H),
O ‘ 6.96 (s, 1H), 6.86 — 6.82 (s, 1H), 5.92 (dddd, J = 17.9, 10.1, 8.0, 4.3 Hz, 2H), 5.35-5.16
ey el (m, 5H), 4.26 (d, J = 10.8 Hz, 1H), 3.53 - 3.42 (m, 2H), 2.71 (dd, J = 8.0, 14.6, 5.0 Hz,

2H); 3C NMR (126 MHz, CDCls) § = 141.8, 137.0, 136.7, 134.3, 134.2, 129.8, 129.4, 129.1, 128.5, 128.3,
127.8, 127.3, 126.4, 117.7, 68.4, 62.3, 53.1; IR (thin layer film) v (cm™) = 3076, 3008, 2977, 2925, 2814,
1641, 1593, 1573, 1476, 1430, 1344, 1265, 1210, 1195, 1155, 1124, 1096, 1080, 1049, 998, 975, 922, 883,

845; MP 67 — 68 °C; HRMS (APCI*) m/z calculated for C2oH2:CIlsN* [M+H]" 382.0705, found 382.0702.
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rac-N-allyl-N-(2-chloro-1,2-bis(3-methoxyphenyl)ethyl)prop-2-en-1-amine (10)

\L f Chloride 10 was prepared according to the general procedure from 70 (750 mg,

N 2.12 mmol) followed by purification through a silica pad using Hexane:Et,O 80:20

MeO O ~C as eluent. White solid (592 mg, 79% vield). *H NMR (400 MHz, CDCl3) 6 = 7.14
O —7.02 (m, 2H), 6.84 — 6.79 (m, 1H), 6.77 (t, J = 2.6 Hz, 1H), 6.69 — 6.63 (M, 2H),

OMe 6.60 (dt, J=7.6, 1.2 Hz, 1H), 6.53 — 6.50 (m, 1H), 5.95 (dddd, J = 17.2, 10.1, 8.1,

4.2 Hz, 2H), 5.35 (d, J = 10.9 Hz, 1H), 5.31 — 5.24 (m, 2H), 5.21 — 5.17 (m, 2H),

4.31 (d, J=10.9 Hz, 1H), 3.71 (s, 3H), 3.70 (s, 3H), 3.50 (ddt, J = 14.3, 4.2, 2.0 Hz, 2H), 2.74 (ddt, J = 14.2,

8.1, 1.0 Hz, 2H); *C NMR (101 MHz, CDCls;) ¢ = 159.4, 159.2, 141.7, 137.3, 136.8, 129.4, 128.9, 121.6,

120.6, 117.2, 115.5, 114.1, 113.4, 112.3, 68.5, 63.6, 55.3, 55.2, 53.2. IR (thin layer film) v (cm™) = 3076,

3004, 2936, 2834, 1600, 1585, 1491, 1436, 1261, 1154, 1046, 921, 730; MP 69 — 70 °C; HRMS (ESI*) m/z
calculated for C22H2;CINO,* [M+H]* 372.17248, found 372.17236.

rac-10

rac-N-allyl-N-2-chloro-1,2-bis(3,5-dimethylphenyl)ethyl)prop-2-en-1-amine (1p)
S _ Chloride 1p was prepared according to the general procedure from 7p (450 mg, 1.3 mmol)
\LNf followed by purification through a silica pad using toluene as eluent. White solid (300 mg,
“__Cl  61%yield). 'H NMR (400 MHz, CDCls); § = 6.82 (s, 2H), 6.74 (d, J = 8.7 Hz, 2H), 6.59
O (s, 2H), 6.03 —5.90 (m, 2H), 5.35 (d, J = 10.6 Hz, 1H), 5.27 (d, J = 17.3 Hz, 2H), 5.19 (d,
‘ J =10 Hz, 2H), 4.27 (d, J = 10.6 Hz, 1H), 3.50 — 3.42 (m, 2H), 2.70 (dd, J = 8.7, 1.4 Hz,
rac-1p 2H), 2.21 (s, 6H), 2.18 (s, 6H); *C NMR (101 MHz, CDCls) 6 = 140.1, 137.7, 137.6,
137.0, 134.9, 129.8, 128.8, 127.2, 126.0, 117.2, 68.1, 64.1, 53.2, 21.5, 21.3; IR (thin layer film) v (cm™) =
3075, 3010, 2918, 2812, 1640, 1604, 1446, 1416, 1376, 1344, 1288, 1265, 1206, 1123, 1038, 997, 975, 916,
850, 774, 727, 698, 689, 660; MP 109 — 110 °C; HRMS (ESI*) m/z calculated for C2sHzCIN* [M+H]*

368.2139, found 368.2141.

rac-N-allyl-N-(2-chloro-1,2-di-p-tolylethyl)prop-2-en-1-amine (1q)
N _ Chloride 1q was prepared according to the general procedure from 7q (380 mg, 1.18
iNf mmol) followed by purification by FCC using Pentane:Et,O (95:5 to 90:10, gradient) as
“_ o1 eluent. White solid (346 mg, 86% yield). *H NMR (500 MHz, CDCl3) ¢ = 7.10 (d, J=
e O 7.6 Hz, 2H), 6.98 (d, J = 7.5 Hz, 2H), 6.95 (d, J = 7.8 Hz, 2H), 6.87 (d, J = 7.5 Hz, 2H),
‘ 6.02 —5.90 (m, 2H), 5.39 (d, J = 11.0 Hz, 1H), 5.27 (d, J = 17.3 Hz, 2H), 5.19 (d, J=10.1
racla  Me  Hz, 2H), 4.33 (d, J = 11.0 Hz, 1H), 3.48 (ddd, J = 14.3, 4.3, 2.1 Hz, 2H), 2.68 (dd, J =
14.3, 8.1 Hz, 2H), 2.23 (s, 3H), 2.21 (s, 3H); 3C NMR (126 MHz, CDCls) ¢ = 137.7, 137.5, 137.4, 136.8,
132.0, 129.2, 129.1, 128.7, 128.0, 117.1, 68.1, 63.8, 53.1, 21.2, 21.1; IR (thin layer film) v (cm™) = 3008,

2977, 2922, 2812, 1641, 1513, 1344, 1263, 1042, 919, 811, 739;: MP 55 — 56 °C; HRMS (ESI*) m/z calculated
for C2oHzrCIN* [M+H]* 340.18265, found 340.18288.
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rac-N-allyl-N-(2-chloro-1,2-bis(4-fluorophenyl)ethyl)prop-2-en-1-amine (1r)

N _ Chloride 1r was prepared according to the general procedure from 7r (900 mg, 2.73 mmol)
iNf followed by purification by FCC using pentane:Et,O (100:0 to 98:2, gradient) as eluent.
~_Cl  White solid (776 mg, 82% yield). *H NMR (500 MHz, CDCls) 6 = 7.17 — 7.12 (m, 2H),
F O O 6.95-6.81 (m, 6H), 5.94 (dddd, J =17.2, 10.2, 8.0, 4.2 Hz, 2H), 5.33 (d, J = 10.9 Hz, 1H),
5.26 (dtd, J =17.3, 2.0, 1.0 Hz, 2H), 5.20 (dtd, J = 10.2, 1.9, 0.8 Hz, 2H), 4.29 (d, J = 10.9
F Hz, 1H), 3.49 (ddt, J = 14.2, 4.1, 2.0 Hz, 2H), 2.77 — 2.63 (m, 2H); *°®F NMR (377 MHz,
CDCl3) 6 =-113.41- -113.49 (m, 1F), -114.52 — -114.62 (m, 1F); **C NMR (126 MHz, CDCls) ¢ = 162.1 (d,
Jor = 247.6 Hz), 162.0 (d, Jcr = 245.6 Hz), 137.0, 136.0 (d, Jcr = 3.3 HZ), 131.0 (d, Jcr = 3.4 HZz), 130.7 (d,
Jer=7.8Hz),129.8 (d, Jcr = 8.2 Hz), 117.5, 115.4 (d, Jcr = 21.6 Hz), 115.1 (d, Jcr = 21.1 HZ), 68.4, 62.8,
53.1; IR (thin layer film) v (cm™) = 307, 278, 2814, 1604, 1509, 1230, 1159, 922, 833, 750; MP 81 — 83 °C;

HRMS (ESI*) m/z calculated for CaoH21F2.CIN* [M+H]* 348.13251, found 348.13226.

rac-1r

rac-N-allyl-N-2-chloro-1,2-bis(4-bromophenyl)ethyl)prop-2-en-1-amine (1s)

\L f Chloride 1s was prepared according to the general procedure from 7s (450 mg, 1.0 mmol)

N followed by purification through a silica pad using toluene as eluent. White solid (320

O S mg, 68% yield). tH NMR (400 MHz, CDCla): § = 7.37 — 7.24 (m, 4H), 7.10 — 7.02 (m,

Br ‘ 2H), 6.86 — 6.79 (m, 2H), 6.01 — 5.84 (m, 2H), 5.34 — 5.16 (m, 5H) 4.26 (d, J = 10.9 Hz,
1H), 3.52 — 3.40 (m, 2H), 2.67 (dd, J = 8, 14.8 Hz, 2H); *C NMR (101 MHz, CDCl5)

rac1s B 0=139.0, 136.8, 133.9, 131.7, 131.4, 130.7, 129.8, 122.2, 121.6, 117.6, 68.2, 62.4, 53.1;

IR (thin layer film) v (cm™) = 3077, 3007, 2976, 2924, 2814, 1641, 1590, 1521, 1488, 1447, 1416, 1405, 1183,
1125, 1106, 1074, 1010, 975, 921, 881, 834, 752, 726, 704; MP 83 — 86 °C; HRMS (ESI*) m/z calculated for

C20H21CINBr2* [M+H]" 467.9724, found 467.9728.

rac-N,N-dibenzyl-2-bromocyclohexan-1-amine (1t)
Following the procedure reported by Chong,® alcohol 7t (3.49 g, 12 mmol, 1 equiv.) and PPhs;

T

h h

P
kN) (3.78 g, 14.4 mmol, 1.2 equiv.) were dissolved in anhydrous CHCI; (60.0 mL, 0.2 M). The

~Br reaction mixture was cooled to 0 °C and NBS (2.56 g, 14.4 mmol, 1.2 mmol) was added
O portionwise. The reaction was stirred at r.t. until disappearance of the starting material (monitored

rac-1t by TLC). The solvent was removed in vacuo and the crude product was purified by FCC
(Pentane:EtOAc = 100:0 to 95:5, gradient). White solid (1.96 g, 45%). *H NMR (400 MHz, CDCls) 6 = 7.52
(d, J = 7.3 Hz, 4H), 7.36 — 7.28 (m, 4H), 7.27 — 7.20 (m, 2H), 4.16 (td, J = 11.4, 4.3 Hz, 1H), 3.88 (d, J =
13.7 Hz, 2H), 3.47 (d, J = 13.7 Hz, 2H), 2.67 (td, J = 11.3, 3.7 Hz, 1H), 2.47 — 2.36 (m, 1H), 2.17 — 2.06 (m,
1H), 1.86 — 1.71 (m, 2H), 1.69 — 1.61 (m, 1H), 1.39 — 1.06 (m, 3H); *C NMR (101 MHz, CDClI3) ¢ = 140.0,
129.2,128.2,126.9, 63.3, 55.8, 53.7, 38.9, 27.7, 26.3, 25.3; IR (thin layer film): v (cm™) = 3061, 3026, 2933,
2856, 2802, 1494, 1452, 1141, 745, 697; MP 93— 95 °C; HRMS (ESI*) m/z calculated for CaoH2sBrN* [M+H]*

358.11649, found 358.11694.
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rac-2-bromo-N,N- bis(4-methoxybenzyl)cyclohexan-1-amine (1u)

omMe Alcohol 7u (1.5 g, 4.2 mmol, 1 equiv.), CBrs; (1.39 g, 4.2 mmol, 1 equiv.) and PPhs
(1.10 g, 4.2 mmol, 1 equiv.) were stirred in anhydrous CHsCN at r.t. for 24 h. Then
Et,O was added causing the precipitation of a white solid. The mixture was filtered
/©/\ N and the solvent removed in vacuo. Purification by FCC (Pentane:EtOAc= 99:1 to
O’Br 96:4, gradient) afforded the title compound as a white solid (662 mg, 38% yield). *H
NMR (400 MHz, CDCls) ¢ = 7.40 (d, J = 8.6 Hz, 4H), 6.85 (d, J = 8.6 Hz, 4H), 4.14
rac-1u (td, J=11.3, 4.3 Hz, 1H), 3.84 — 3.76 (m, 8H), 3.38 (d, J = 13.5 Hz, 2H), 2.65 (td, J
=11.2, 3.6 Hz, 1H), 2.46 — 2.36 (m, 1H), 2.11 — 2.03 (m, 1H), 1.83 — 1.70 (m, 2H), 1.68- 1.60 (m, 1H), 1.37 —
1.07 (m, 3H); *C NMR (101 MHz, CDCls) ¢ = 158.6, 132.1, 130.2, 113.6, 63.0, 56.0, 55.4, 52.8, 38.9, 27.7,
26.2, 25.3; IR (thin layer film): v (cm™) = 2932, 2856, 2833, 1611, 1509, 1245, 1170, 1035; MP 69 — 72 °C;

HRMS (ESI*) m/z calculated for C22H29BrNO,* [M+H]* 418.13762, found 418.13770.

MeO

rac-N,N-dibenzyl-2-bromocyclopentan-1-amine (1v)
ph Ph Alcohol 7v (750 mg, 2.66 mmol, 1 equiv.) was dissolved in anhydrous DCM (6.7 mL, 0.2 M)
N) and the solution was cooled to 0 °C. NEts (403 uL, 3.99 mmol, 1.5 equiv.) was added at once,
A Bl followed by dropwise addition of MsBr (634 uL, 3.99 mmol, 1.5 equiv.) at 0 °C. The reaction
mixture was allowed to warm to r.t. and stirred for 6 h. After disappearance of both the starting
racv material and the mesylate intermediate (monitored by 'H NMR), the reaction mixture was
washed with NaHCOs (sat.). The organic layer was dried over MgSOs, filtered and evaporated in vacuo. The
crude product was then purified with a short silica plug (Pentane:Et,O = 98:2) to afford the title compound as
a pale yellow solid (647 mg, 71% yield). *"H NMR (500 MHz, CDCls) 6 = 7.44 — 7.39 (m, 4H), 7.33 — 7.28
(m, 4H), 7.25 — 7.20 (m, 2H), 4.33 (q, J = 6.9 Hz, 1H), 3.75 (d, J = 14.0, 2H), 3.60 (d, J = 14.0, 2H), 3.56 —
3.50 (m, 1H), 2.22 — 2.15 (m, 1H), 1.99 — 1.90 (m, 1H), 1.88 — 1.80 (m, 1H), 1.78 — 1.56 (m, 3H); 3C NMR
(126 MHz, CDCls) ¢ = 138.9, 128.8, 128.3, 127.1, 69.6, 54.7, 51.5, 36.6, 25.4, 22.6; IR (thin layer film): v
(cm™) = 3027, 2961, 2801, 1493, 1453, 1363, 1028, 743, 698; MP 40 — 42 °C; HRMS (ESI*) m/z calculated

for C1oH23BrN* [M+H]* 344.10084, found 344.10092.
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Product Characterization

N-allyl-N-((1S,2S)-2-fluoro-1,2-diphenylethyl)prop-2-en-1-amine (2a)
S P Fluoride 2a was prepared from la (62.4 mg, 0.2 mmol) according to the general procedure
\LN J/ using CHCl; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at —
~_F 15 °C for 72 h. Purification: FCC, eluent = Hexane:Et,O (100:0 to 99.6:0.4, gradient).
O Colorless oil, 42.0 mg, 71% yield, e.r. = 95:5. Method B: 10 mol% of catalyst (S)-3g. The
‘ reaction was stirred at —15 °C for 72 h. Purification: FCC, eluent = Hexane:Et,O (100:0 to
99.6:0.4, gradient). Colorless oil, 56.3 mg, 95% vyield, e.r. = 95:5. Gram scale reaction: In a
round bottom flask, 1a (1.1 g, 3.53 mmol, 1 equiv.), catalyst (S)-3g (148 mg, 0.105 mmol, 3 mol%) and KF
(1.025 g, 17.6 mmol, 5 equiv.) were stirred at +5 °C in dry CHCl3 at 900 rpm. After 96 h the reaction mixture
was filtered through a silica plug eluting with DCM/EtOAc = 1:1. Purification: FCC, eluent = Hexane:Et,O
(100:0 to 99.6:0.4, gradient) to elute the pure product (colorless oil, 794 mg, 76% vyield, e.r. = 93:7); then
Hexane:EtOAc (95:5 to 80:20, gradient) to recover the catalyst (140 mg, 94% catalyst recovery). *H NMR
(400 MHz, CDCl3) 6 = 7.19 — 7.06 (m, 10H), 5.82 (dd, J = 47.2, 7.2 Hz, 1H), 5.69 (dddd, J = 17.5, 10.1, 7.6,
4.9 Hz, 2H), 5.11 — 4.99 (m, 4H), 4.15 (dd, J = 18.2, 7.2 Hz, 1H), 3.47 — 3.40 (m, 2H), 2.83 (dd, J = 14.3, 7.6
Hz, 2H); *F NMR (377 MHz, CDCI3) § = -179.25 (dd, J = 47.2, 18.2 Hz, 1F); **C NMR (101 MHz, CDCls)
0 =138.7 (d, Jcr = 20.3 Hz), 137.1, 136.6 (d, Jc.r = 4.5 Hz), 129.7 (d, Jcr = 1.2 Hz), 128.2 (d, Jc.r = 2.0 Hz),
128.1, 128.0, 127.4, 127.0 (d, Jcr = 6.7 Hz), 117.1, 95.3 (d, Jc-r = 178.6 Hz), 67.3 (d, Jcr = 20.9 Hz), 54.0 (d,
Jcr = 2.1 Hz); IR (thin layer film) v (cm™) = 3066, 3031, 2923, 2814, 1641, 1495, 1453, 1418, 1205, 1124,
1080, 1031, 918, 759, 698, 607; HRMS (APCI*) m/z calculated for CaHasFN* [M+H]™ 296.18090, found
296.18069; [a]p® *© = +27.5 ° (c = 0.5, CHCls, e.r. = 95:5); HPLC separation: DAICEL CHIRALPAK® IA-
3, Heptane:'PrOH = 99.75:0.25, 1 mL/min; t; = 3.37 min (minor), t. = 3.61 min (major).

(S.5)-2a

(1S,2S)-2-fluoro-N,N-dimethyl-1,2-diphenylethan-1-amine (2b)
~n- Fluoride 2b was prepared from 1b (52.0 mg, 0.2 mmol) according to the general procedure using
F CHCls; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at +5 °C for
O ‘ 72 h. Purification: FCC, eluent = Toluene:Et,O (100:0 to 95:5, gradient +2% NEts). Colorless
oil, 34.2 mg, 65% yield, e.r. = 95:5. Method B: 10 mol% of catalyst (S)-3g. The reaction was
stirred at 0 °C for 72 h. Purification: FCC eluent = Toluene:Et,O (100:0 to 95:5, gradient +2%
NEts). Colorless oil, 41.3 mg, 85% yield, e.r. = 97:3. *H NMR (400 MHz, CDCl;) § = 7.14 — 7.02 (m, 8H),
6.95 (dd, J = 7.6, 2.0 Hz, 2H), 5.76 (dd, J = 47.5, 8.8 Hz, 1H), 3.80 (dd, J = 12.3, 8.8 Hz, 1H), 2.29 (s, 6H);
¥F NMR (376 MHz, CDCls) 6 = -172.86 (dd, J = 47.6, 12.3 Hz, 1F); ®*C NMR (101 MHz, CDCls) 6 = 138.1
(d, Jcr =20.1 Hz), 135.2 (d, Jcr = 6.8 HZ), 129.6, 128.3 (d, Jcr = 2.3 Hz), 128.1, 128.0, 127.6, 127.1 (d, Jc-r
=6.2Hz),94.2 (d, Jc.r = 177.3 Hz), 74.3 (d, Jc.r = 22.1 Hz), 42.7 (d, Jc-r = 1.8 Hz); IR (thin layer film) v (cm’
1y = 3032, 2967, 2825, 2781, 1603, 1494, 1309, 992, 758, 697; HRMS (ESI*) m/z calculated for CisH1gFN*
[M+H]* 244.14960, found 244.14951. [a]p® © = -22.7 ° (¢ = 0.9, CHCls, e.r. = 97:3); HPLC separation:

(S,5)-2b
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DAICEL CHIRALPAK® ID-3, Heptane: 'PrOH = 99.6:0.4 + 0.1% Et,NH, 1 mL/min; t; = 4.05 min (major), t

= 4.44 min (minor).

(1S,2S)-(2-fluoro-1,2-diphenylethyl)pyrrolidine (2c)
O Fluoride 2c was prepared from 1c (57.2 mg, 0.2 mmol) according to the general procedure using
N CHCl; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at 0 °C for
O " 72 h. Purification: FCC, eluent = Pentane:Et,O (98:2 to 95:5, gradient). White solid, 49.5 mg,
‘ 92% yield, e.r. = 94.5:5.5. Method B: 10 mol% of catalyst (S)-3g. The reaction was stirred at -
(S.5)-2¢ 20 °C for 36 h. Purification: FCC, eluent = Hexane:Et,0O (98:2 to 96:4, gradient). White solid,
48.5 mg, 90% yield, e.r. = 97:3. *H NMR (500 MHz, CDCl3) 6 = 7.16 — 7.09 (m, 6H), 7.04-6.98 (m, 4H), 5.75
(dd, J = 46.8, 7.6 Hz, 1H), 3.70 (dd, J = 13.2, 7.6 Hz, 1H), 2.80 — 2.68 (m, 2H), 2.62 — 2.53 (m, 2H), 1.83 —
1.72 (m, 4H); **F NMR (471 MHz, CDCl3) § = -170.81 (dd, J = 47.3, 13.4 Hz, 1F); C NMR (126 MHz,
CDCl3) 6 = 138.5 (d, Jcr = 7.5 Hz), 138.1 (d, Jc.r = 20.7 Hz), 129.3, 128.0 (d, Jc-r = 2.0 Hz), 127.9, 127.8,
127.4,126.8 (d, Jcr = 6.6 Hz), 97.3 (d, Jcr = 177.6 HZ), 74.9 (d, Jc.r = 23.0 HZ), 53.4 (d, Jcr = 3.4 HZ), 23.4;
IR (thin layer film) v (cm™) = 3032, 2966, 2793, 1493, 1454, 1131, 996, 763, 698; MP 58 — 60 °C; HRMS
(ESI*) m/z calculated for CigH21FN* [M+H]* 270.16525, found 270.16513; [a]p? " = -25.5 ° (¢ = 0.5, CHClIs,
e.r. = 97:3); HPLC separation: DAICEL CHIRALPAK® IC-3, Heptane:EtOH = 99.75:0.25 + 0.2% "BuNH_,

1 mL/min; t; = 3.30 min (minor), t. = 3.49 min (major).

4-((1S,2S8)-2-fluoro-1,2-diphenylethyl)morpholine (2d)
o Fluoride 2d was prepared from 1d (60.4 mg, 0.2 mmol) according to the general procedure
[Nj using CHCIs as solvent. Method A: 15 mol% of catalyst (S)-3g. The reaction was stirred at +10
“__F °Cfor72h. Purification: FCC, eluent = DCM: Pentane = 95:5 to DCM:EtOAc = 97:3, gradient.
O White solid, 46.6 mg, 81% yield, e.r. = 94:6. Method B: 10 mol% of catalyst (S)-3g. The
‘ reaction was stirred at +5 °C for 72 h. Purification: FCC eluent = DCM:Pentane = 95:5 to
DCM:EtOAc = 97:3, gradient. White solid, 43.0 mg, 75 % yield, e.r. = 94.5:5.5. 'TH NMR (400
MHz, CDCls) 6 = 7.19 — 7.13 (m, 6H), 7.13 — 7.09 (m, 2H), 7.07 — 7.03 (m, 2H), 5.83 (dd, J = 47.1, 7.9 Hz,
1H), 3.83 (dd, J = 14.9, 7.9 Hz, 1H), 3.73 (dd, J = 5.5, 3.9 Hz, 4H), 2.64 (dd, J = 6.0, 3.5 Hz, 4H); °F NMR
(377 MHz, CDCls) 6 = -171.87 (dd, J = 47.2, 15.0 Hz, 1F); *C NMR (101 MHz, CDCls) 6 = 138.0 (d, Jcr =
20.6 Hz), 136.2 (d, Jc.r = 6.9 Hz), 129.4, 128.2 (d, Jcr = 2.1 Hz), 128.0, 127.9, 127.6, 126.8 (d, Jc.r = 6.4 HZ),
95.0 (d, Jc-r = 178.1 Hz), 74.6 (d, Jcr = 21.9 Hz), 67.3, 51.6 (d, Jcr = 2.9 Hz); IR (thin layer film) v (cm™) =
3032, 2957, 2852, 2815, 1494, 1452, 1117, 993, 881, 760, 699; MP 59 — 62 °C; HRMS (APCI") m/z calculated
for C1sH.1FNO* [M+H]* 286.16017, found 286.16010; [a]p®® © = -29.4 ° (c = 0.5, CHClIs, e.r. = 94.5:5.5);
HPLC separation: DAICEL CHIRALPAK® IC-3, Heptane:‘PrOH:”BuNHz =99.0: 0.9: 0.1, 1 mL/min; t; =

9.89 min (major), t, = 10.97 min (minor).

(S,S)-2d
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1-cyclohexyl-4-((1S,2S)-2-fluoro-1,2-diphenylethyl)piperazine (2e)
Fluoride 2e was prepared from 1e (76.6 mg, 0.2 mmol) according to the general procedure using

72 h. Purification: FCC, eluent = DCM:Pentane = 95:5 to DCM:MeOH = 98:2, gradient. White
O F solid, 66.6 mg, 90% vyield, e.r. = 94:6. Method B: 10 mol% of catalyst (S)-3g. The reaction was
‘ stirred at 0 °C for 72 h. Purification: FCC eluent = DCM:Pentane = 95:5 to DCM:MeOH =
(5.5)-2e 98:2, gradient. White solid, 67.4 mg, 94% vyield, e.r. = 96:4. 'H NMR (500 MHz, CDCl3) 6 =
7.18 —7.08 (m, 8H), 7.04 — 7.00 (m, 2H), 5.82 (dd, J = 47.3, 8.2 Hz, 1H), 3.89 (dd, J = 13.7, 8.2 Hz, 1H), 2.84
—2.61 (m, 7H), 2.33 (br s, 1H), 1.95 (br s, 2H), 1.85 — 1.74 (m, 2H), 1.66 — 1.58 (m, 1H), 1.28 — 1.17 (m, 5H),
1.15 - 1.05 (m, 1H); **F NMR (377 MHz, CDCls) § = -172.48 (d, J = 49.1 Hz, 1F); *C NMR (126 MHz,
CDCls) 6 = 138.0 (d, Jc.r = 20.4 Hz), 135.8 (d, Jcr = 6.7 Hz), 129.4, 128.2 (d, Jc-r = 2.1 Hz), 128.0, 127.9,
127.5, 126.9 (d, Jcr = 6.3 Hz), 94.6 (d, Jcr = 178.0 HZz), 74.0 (d, Jc-r = 21.8 Hz), 63.9, 50.3, 49.2, 28.6, 26.1,
25.7; IR (thin layer film) v (cm™) = 3062, 3031, 2918, 2853, 2814, 1494, 1452, 1282, 1153, 994, 759, 699;
MP 92 — 95 °C; HRMS (ESI*) m/z calculated for Co4HsFN,* [M+H]* 367.25440, found 367.25519 [a]p® ©
=-21.1° (c = 0.5, CHCls, e.r. = 94:6); HPLC separation: DAICEL CHIRALPAK® IA-3, Heptane:EtOH =
99:1 +0.2% "BuNH,, 1 mL/min; t; = 6.29 min (minor), t. = 7.19 min (major).

Cy
[Nj CHClI; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at +5 °C for
N

1-benzyl-4-((1S,2S)-2-fluoro-1,2-diphenylethyl)piperazine (2f)
Fluoride 2f was prepared from 1f (78.0 mg, 0.2 mmol) according to the general procedure

,\|I/Ph
o
F 51.8 mg, 69% yield, e.r. =95:5. Method B: 10 mol% of catalyst (S)-3g. The reaction was
stirred at 0 °C for 48 h. Purification: FCC eluent = DCM:EtOAc (100:0 to 50:50, gradient),
‘ white solid, 63.0 mg, 84% yield, e.r. = 95.5:4.5. 'H NMR (400 MHz, CDCls) § = 7.32 - 7.20
(m, 5H), 7.19 — 7.11 (m, 8H), 7.06 — 7.02 (m, 2H), 5.84 (dd, J = 47.2, 8.2 Hz, 1H), 3.89 (dd,
J=14.1, 8.2 Hz, 1H), 3.50 (s, 2H), 2.76 — 2.60 (m, 4H), 2.57-2.45 (m, 4H); 1°F NMR (377 MHz, CDCl3) ¢ =
-173.21 (dd, J = 47.3, 14.1 Hz, 1F); 3C NMR (101 MHz, CDCls) 6 = 138.2 (d, Jc-r = 18.3 Hz), 138.1, 135.8
(d, Jcr=6.3 Hz), 129.5, 129.3, 128.1, 128.1 (d, Jc.r = 1.9 Hz), 127.9 (overlapped), 127.4, 127.0, 126.9 (d, Jc-
F=6.5Hz),94.3 (d, Jo.r = 178.1 Hz), 74.1 (d, Jcr = 21.8 Hz), 63.1, 53.5, 50.5. IR (thin layer film) v (cm?) =
3030, 2932, 2811, 1494, 1454, 1289, 1137, 1006, 759, 698; MP 56 — 58 °C; HRMS (ESI*) m/z calculated for
CasHa2sFN," [M+H]* 375.22310, found 375.22314. [a]p?® © = -22.7 ° (¢ = 0.5, CHCl3, e.r. = 95.5:4.5); HPLC
separation: DAICEL CHIRALPAK® IA-3, Heptane:EtOH = 99.5:0.5 +0.2% Et,NH, 1 mL/min; t; = 6.40 min

(major), t; = 8.55 min (minor).

using CHCl; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at 0
°C for 72 h. Purification: FCC, eluent = DCM:EtOAc (100:0 to 50:50, gradient). White solid,

(S,5)-2f
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1-((1S,2S)-2-fluoro-1,2-diphenylethyl)piperidine (29)
Fluoride 2g was prepared from 1g (60.0 mg, 0.2 mmol) according to the general procedure
@ using CHCIs as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at -
~F 10 °C for 72 h. Purification: FCC, eluent = Pentane:Et,O (100:0 to 97:3, gradient). White solid,
O O 36.3 mg, 56% yield, e.r. = 96:4. Method B: 10 mol% of catalyst (S)-3g. The reaction was
stirred at -10 °C for 24 h. Purification: FCC eluent = Pentane:Et,O (100:0 to 94:6, gradient).
White solid, 51.0 mg, 90% yield, e.r. = 95:5. Multi-Decagram scale reaction: A 250 mL
round-bottom flask was charged with chloride 1g (50.0 g, 300 mmol, 1 equiv.), catalyst (S)-3g (1.169 g, 0.836
mmol, 0.5 mol%) and KF (29.10 g, 501.7 mmol, 3 equiv.). DCM was added (84 mL, 2 M) and the mixture

was stirred at r.t. for 72 h. After filtration on a celite pad (eluted with Et;0), the solvent was removed in vacuo

(S.5)-29

and the crude mixture was re-dissolved in Et,O. A 1 M solution of HCI was added and the product was counter-
extracted from the organic phase into the acqueous phase three times (as the HCI salt). The organic phase
(containing the catalyst) was evaporated in vacuo and after purification by FCC (Pent:EtOAc 100:0 to 80:20,
gradient), 1.157 g of catalyst were recovered (99% recovery). The pH of the combined aqueous phases was
then raised to 8-9 with a 3 M NaOH solution. EtOAc was added and the acqueous phase was extracted with
EtOAc three times. The combined organic layers were washed with brine, dried over MgSO4 and
evaporated in vacuo. The crude product (45.1 g, e.r.= 92:8) was purified by recrystallization from warm
MeOH (45.1 mL, reflux to r.t.) to afford 2g as a white solid (31.1 g, 66% yield, e.r.= 97:3). *H NMR (400
MHz, CDCls) 6 = 7.19 — 7.15 (m, 8H), 7.08 — 7.03 (m, 2H), 5.88 (dd, J = 47.4, 8.5 Hz, 1H), 3.93 (dd, J = 13.4,
8.5 Hz, 1H), 2.61 (ddd, J = 11.1, 7.0, 3.7 Hz, 2H), 2.50 (ddd, J = 11.0, 7.0, 3.6 Hz, 2H), 1.72 — 1.53 (m, 4H),
1.42-1.34 (m, 2H); 9F NMR (377 MHz, CDCls) § = -174.27 (dd, J = 47.3, 13.6 Hz, 1F); 3C NMR (101 MHz,
CDCls) 6 = 138.4 (d, Jc.r = 20.2 Hz), 135.8 (d, Jc.r = 6.4 HZz), 129.6, 128.1 (d, Jc-r = 2.2 Hz), 127.9, 127.7,
127.3, 127.0 (d, Jcr = 6.4 HZz), 93.7 (d, Jc-r = 177.9 HZz), 74.6 (d, Jcr = 21.8 Hz), 51.5, 26.2, 24.6; IR (thin
layer film) v (cm™) = 3031, 2932, 2802, 1494, 1452, 1160, 988, 758, 698; MP 63 — 65 °C; HRMS (APCI")
m/z calculated for CioH2sFN* [M+H]* 284.18090, found 284.18103. [a]p® *© = -33.8 ° (¢ = 0.5, CHCl3, e.r. =
95:5); HPLC separation: DAICEL CHIRALPAK® IC-3 Heptane:EtOH:"BuNH; = 99.5:0.1:0.4, 1 mL/min: t;

= 3.40 min (major), t; = 4.01 min (minor).

2-((1S,2S)-2-fluoro-1,2-diphenylethyl)isoindoline (2h)
Fluoride 2h was prepared from 1h (68.0 mg, 0.2 mmol) according to the general procedure
Q using CHCl; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at 0
N °C for 72 h. Purification: FCC, eluent = Pentane:Et,O (100:0 to 97:3, gradient). White solid,
AF 48.0 mg, 76% vyield, e.r. =92:8. Method B: 10 mol% of catalyst (S)-3g. The reaction was
O O stirred at -10 °C for 72 h. Purification: FCC, eluent = Pentane:Et,O (100:0 to 97.5:2.5,
gradient). White solid, 39.0 mg, 61% vyield, e.r. =93:7. *H NMR (500 MHz, CDCl3) 6 = 7.21
—7.13 (m, 10H), 7.12 — 7.08 (m, 2H), 7.05 — 7.01 (m, 2H), 5.79 (dd, J = 47.0, 7.6 Hz, 1H),
4.17 — 4.11 (m, 2H), 4.10 — 4.00 (m, 3H); °F NMR (470 MHz, CDCl5) § = -170.50 (dd, J = 47.1, 13.2 Hz,

(S,S)-2h
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1F); 3C NMR (126 MHz, CDCls) 6 = 139.9, 138.2 (d, Jc-r = 7.8 Hz), 137.8 (d, Jc-r = 20.8 Hz), 129.4, 128.3,
128.2 (d, Jcr = 2.1 Hz), 127.9, 127.7, 126.9, 126.8, 122.3, 98.1 (d, Jc.r = 178.0 Hz), 74.6 (d, Jc.r = 22.7 Hz),
59.0 (d, Jcr = 3.9 Hz); IR (thin layer film) v (cm™) = 3031, 2940, 2790, 1490, 1454, 1337, 1264, 1137, 1075,
992, 764, 745, 700; MP 79 — 80 °C; HRMS (ESI*) m/z calculated for CoH21FN* [M+H]* 318.16525, found
318.16501. [a]p® " =-16.8 ° (c = 0.5, CHCl;, e.r. = 92:8); HPLC separation: DAICEL CHIRALPAK® IA-
3, Heptane:'PrOH = 99:1, 1 mL/min; t; = 4.52 min (minor), t, = 5.54 min (major).

2-((1S,2S)-2-fluoro-1,2-diphenylethyl)-1,2,3,4-tetrahydroisoquinoline (2i)

Fluoride 2i was prepared from 1i (66.0 mg, 0.2 mmol) according to the general procedure using
CHCI; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at 0 °C for
N 72 h. Purification: FCC eluent = Pentane:Et,O (100:0 to 98:2, gradient). Colorless oil, 60.5
“_ _F Mg, 91% vyield, e.r. = 96:4. Method B: 5 mol% of catalyst (S)-3g. The reaction was stirred at 0
O °C for 72 h. Purification: FCC, eluent = Pentane:Et,O (100:0 to 98:2, gradient). Colorless oil,
O 63.6 mg, 96% yield, e.r. = 96:4. *H NMR (500 MHz, CDCls) § = 7.22 — 7.08 (m, 13H), 7.03 —
(S.S)-2i 6.99 (m, 1H), 5.97 (dd, J =47.1, 8.0 Hz, 1H), 4.10 (dd, J = 14.3, 8.0 Hz, 1H), 3.93 (d, J = 14.8
Hz, 1H), 3.84 (d, J = 14.8 Hz, 1H), 3.09 (dt, J = 10.8, 5.2 Hz, 1H), 2.97 (ddd, J = 16.2, 8.0, 5.0 Hz, 1H), 2.92
—2.76 (m, 2H); *F NMR (471 MHz, CDCls) § = -172.35 (dd, J = 47.4, 14.3 Hz, 1F); *C NMR (126 MHz,
CDCls) 0 = 138.3 (d, Jcr = 20.5 Hz), 136.4 (d, Jcr = 6.5 Hz), 135.3, 134.7, 129.6, 128.8, 128.3 (d, Jcr=2.1
Hz), 128.1, 128.1,127.7,127.0 (d, Jcr = 6.4 Hz), 126.8, 126.1, 125.6, 95.0 (d, Jc.r = 178.1 Hz), 73.9 (d, Jc-¢
=22.0 Hz), 53. 9 (d, Jc.r = 3.2 Hz), 48.2 (d, Jcr = 2.2 Hz), 29.7; IR (thin layer film) v (cm™) = 3030, 2919,
2803, 1586, 1496, 1454, 1133, 1087, 995, 935, 742, 698; HRMS (ESI*) m/z calculated for CasHasFN* [M+H]*
332.18090, found 332.18057. [a]p®® *© = —45.6 ° (c = 0.5, CHCls, e.r. = 96:4); HPLC separation: DAICEL

CHIRALPAK® IF-3, Heptane:'PrOH = 99:1, 1 mL/min; t; = 4.77 min (major), t, = 5.83 min (minor).

N-((1S,2S)-2-fluoro-1,2-diphenylethyl)-N-methylprop-2-en-1-amine (2j)
Fluoride 2j was prepared from 1j (53.9 mg, 0.2 mmol) according to the general procedure using
\Nf CHClI; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at -10 °C
~_ F for 72 h. Purification: FCC, eluent = Pentane:Et,O (100:0 to 95:5, gradient). Colorless oil, 48
O mg, 89% yield, e.r. = 95.5:4.5. Method B: 10 mol% of catalyst (S)-3g. The reaction was stirred
‘ at -15 °C for 72 h. FCC, eluent = Pentane:Et,O (100:0 to 95:5, gradient). Colorless oil, 38.5 mg,
72% yield, e.r. = 95.5:4.5. 'H NMR (500 MHz, CDCls) § = 7.23 — 7.14 (m, 8H), 7.10 — 7.06
(m, 2H), 5.97 - 5.81 (m, 1H), 5.88 (dd, J = 47.5, 8.5 Hz, 1H), 5.23 — 5.09 (m, 2H), 4.10 (dd, J = 13.8, 8.5 Hz,
1H), 3.26 (dd, J = 13.7, 5.2 Hz, 1H), 2.99 (dd, J = 13.7, 7.3 Hz, 1H), 2.38 (5, 3H); 1*F NMR (471 MHz, CDCl5)
6 = -174.62 (dd, J = 47.5, 13.8 Hz, 1F); 3C NMR (126 MHz, CDCls) 6= 138.3 (d, Jcr = 20.1 Hz), 136.6,
135.5 (d, Jer = 6.2 Hz), 129.7, 128.3 (d, Jcr = 2.3 Hz), 128.1 128.0, 127.6, 127.1 (d, Jcr = 6.5 Hz), 117.5,
94.4 (d, Jcr = 177.5 Hz), 71.4 (d, Jcr = 21.8 Hz), 58.4, 38.7 (d, Jcr = 2.1 Hz); IR (thin layer film) v (cm™) =
3065, 3032, 2928, 2794, 1494, 1453, 1207, 996, 919, 759, 698; HRMS (ESI*) m/z calculated for CigH.1NF*
[M+H]* 270.16525, found 270.16501. [a]p® © = -5.0° (c = 0.5, CHCls, e.r. = 95.5:4.5); HPLC separation:

(5-S)-2j
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DAICEL CHIRALPAK® IA, Heptane:'PrOH:"BuNH, = 99.5:0.4:0.1, 1 mL/min; t; = 5.47 min (minor), t, =
6.00 min (major).

N-((1S,2S)-2-fluoro-1,2-diphenylethyl)-N-methylprop-2-yn-1-amine (2k)

I Fluoride 2k was prepared from 1k (56.8 mg, 0.2 mmol) according to the general procedure
J using CHCI; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at 0

N

g °Cfor 72 h. Purification: FCC, eluent = Pentane:Et.0 (100:0 to 95:5, gradient). Colorless oil,
O 39.3mg, 73% yield, e.r. = 94:6. Method B: 10 mol% of catalyst (S)-3g. The reaction was stirred
O at 0 °C for 72 h. Purification: FCC eluent = Pentane:Et,O (100:0 to 95:5, gradient). Colorless
(S-S)-2k oil, 36.9 mg, 69% yield, e.r. = 96:4. 'H NMR (500 MHz, CDCls) 6 = § 7.17-7.13 (m, 6H), 7.11
—7.05 (m, 4H), 5.81 (dd, J = 47.0, 7.9 Hz, 1H), 4.14 (dd, J = 14.1, 7.9 Hz, 1H), 3.52 (dd, J = 17.0, 2.4 Hz,
1H), 3.28 (dd, J = 17.0, 2.3 Hz, 1H), 2.53 (d, J = 1.9 Hz, 3H), 2.27 (t, J = 2.4 Hz, 1H); F NMR (471 MHz,
CDClI;3-170.82 (dd, J = 47.2, 14.2 Hz, 1F); **C NMR (126 MHz, CDCls) 6 = 138.11 (d, Jcr = 20.6 Hz), 136.67
(d, Jce = 7.0 HZ), 129.54, 128.22 (d, Jc-r = 2.2 Hz), 128.13, 127.96, 127.71, 126.95 (d, Jc-r = 6.4 Hz), 95.77
(d, Jc.e = 177.7 HZz), 79.42, 73.33, 71.26 (d, Jcr = 22.7 HZ), 45.16 (d, Jcr = 3.1 HZ), 40.23 (d, Jc-r = 4.0 H2);
IR (thin layer film) v (cm™) = 3296, 2924, 1454, 1019, 759, 699, 625; HRMS (ESI*) m/z calculated for
CisH1sFN* [M+H]* 268.14960, found 268.14926. [a]p?® © +48.5 ° (c = 0.5, CHCIs, e.r. = 94:6); HPLC
separation: DAICEL CHIRALPAK® IC-3, Heptane:'PrOH = 99:1, 1 mL/min; t; = 4.15 min (major), t; = 4.63

min (minor).

N-allyl-N-((1S,2S)-2-fluoro-1,2-di-m-tolylethyl)prop-2-en-1-amine (2I)
Fluoride 21 was prepared from 11 (68.0 mg, 0.2 mmol) according to the general
\L f procedure using CHCIs as solvent. Method A: 5 mol% of catalyst (S)-3g. The reaction
Me ? E was stirred at 0 °C for 72 h. Purification: FCC, eluent = Pentane:Et,O (100:0 to 99:1,
O gradient). Colorless oil, 56.3 mg, 87% yield, e.r. = 96:4. Method B: 5 mol% of catalyst
O Ve (S)-3g. The reaction was stirred at 0 °C for 24 h. Purification: FCC eluent =
(S,9)-21 Hexane:Et,O (100:0 to 98.7:1.3, gradient). Colorless oil, 53.5 mg, 83% yield, e.r. =
96:4. 'TH NMR (400 MHz, CDCls) 6 = 7.16 — 7.10 (m, 2H), 7.07 — 6.96 (m, 6H), 5.86 (dd, J = 47.2, 7.1 Hz,
1H), 5.83-5.72 (m, 2H), 5.22 — 5.06 (m, 4H), 4.18 (dd, J = 18.5, 7.1 Hz, 1H), 3.50 (ddt, J = 14.3, 5.0, 1.8 Hz,
2H), 2.91 (dd, J = 14.3, 7.5 Hz, 2H), 2.30 (s, 3H), 2.29 (s, 3H); *°®F NMR (377 MHz, CDCls) § = -179.33 (dd,
J =47.3, 18.6 Hz, 1F); *C NMR (101 MHz, CDCl3) 6 = 138.7 (d, Jc.r = 20.1 Hz), 137.6, 137.3, 136.6 (d, Jc-
r=4.4 Hz), 130.5, 128.9, (d, Jcr = 2.0 Hz), 128.1, 127.9, 127.9, 127.7 (d, Jcr = 6.6 Hz), 126.7, 124.1, 124.0,
117.0,95.5(d, Jcr = 178.3 Hz), 67.1 (d, Jc.r = 20.7 Hz), 54.1 (d, Jcr = 2.1 Hz), 21.7, 21.5; IR (thin layer film)
v (em?) = 3009, 2921, 2813, 1641, 1607, 1489, 1447, 1417, 1159, 997, 917, 787, 703; HRMS (ESI*) m/z
calculated for CyHo7FN* [M+H]* 324.21220, found 324.21282. [a]p?® *© = +24.0 ° (c = 0.5, CHCls, e.r. =
96:4); HPLC separation: DAICEL CHIRALPAK® IA-3, Heptane:'PrOH = 99:1, 1 mL/min; t; = 2.51 min

(minor), t, = 2.88 min (major).
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N-allyl-N-((1S,2S)-2-fluoro-1,2-bis(3-fluorophenyl)ethyl)prop-2-en-1-amine (2m)
\L f Fluoride 2m was prepared from 1m (69.6 mg, 0.2 mmol) according to the general
N procedure using CHCIs as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction
F O ~pF was stirred at +10 °C for 72 h. Purification: FCC, eluent = Pentane:Et,O (100:0 to
‘ 99.6:0.4, gradient). Colorless oil, 48.2 mg, 73% yield, e.r. = 94:6. Method B: 10 mol%
F  of catalyst (S)-3g. The reaction was stirred at 0 °C for 72 h. Purification: FCC eluent =
Pentane:Et,O (100:0 to 99.5:0.5, gradient). Colorless oil, 46.5 mg, 70% vyield, e.r. =
95.5:4.5. *H NMR (400 MHz, CDCl3) § = 7.27 — 7.18 (m, 2H), 7.02 — 6.90 (m, 6H), 5.85 (dd, J = 46.8, 6.4
Hz, 1H), 5.71 (dddd, J = 17.5, 10.1, 7.6, 4.8 Hz, 2H), 5.19 — 5.06 (m, 4H), 4.16 (dd, J = 20.5, 6.5 Hz, 1H),
3.48 (ddt, J = 14.2, 4.8, 1.8 Hz, 2H), 2.96 — 2.85 (m, 2H); *F NMR (377 MHz, CDCls) 6 = -112.83 (td, J =
9.3, 6.0 Hz, 1F), -113.12 (td, J = 9.0, 5.6 Hz, 1F), -181.74 (dd, J = 46.8, 20.5 Hz, 1F); *C NMR (101 MHz,
CDCls) 162.8 (d, Jc.r = 247.6 Hz), 162.7 (d, Jcr = 246.4 Hz), 140.1 (dd, Jcr = 21.0, 7.2 Hz), 139.1 (dd, Jcr =
6.4, 3.8 Hz), 136.6, 129.7 (dd, Jc.r = 8.2, 2.7 Hz), 125.2 (dd, Jcr = 2.8, 1.3 Hz), 122.4 (dd, Jce = 7.1, 2.9 H2),
117.4,116.4 (dd, Jcr = 21.5, 1.7 Hz), 115.2 (dd, Jc.r = 21.1, 1.7 Hz), 114.6 (d, Jc.r = 21.0 HZz), 113.9 (d, Jcr
=7.6 Hz), 113.7 (d, Jc-r = 7.5 Hz), 94.7 (dd, Jc.r = 180.8, 1.9 Hz), 66.6 (dd, Jcr = 20.7, 1.6 Hz), 54.1 (d, Jcr
= 2.4 Hz); IR (thin layer film) v (cm™) = 3077, 2816, 1642, 1591, 1489, 1449, 1251, 1243, 923, 788, 767, 700;
HRMS (APCI*) m/z calculated for CooHa1FsN* [M+H]* 332.16206, found 332.16168. [a]p® © = +23.8 ° (¢ =
0.5, CHCl3, e.r. = 95.5:4.5); HPLC separation: DAICEL CHIRALPAK® IB-3, Heptane:PrOH = 99.5:0.5, 1

mL/min; t; = 3.23 min (minor), t; = 3.90 min (major).

(S,S)-2m

N-allyl-N-((1S,2S)-1,2-bis(3-chlorophenyl)-2-fluoroethyl)prop-2-en-1-amine (2n)

Fluoride 2n was prepared from 1n (76.0 mg, 0.2 mmol) according to the general
\L f procedure using CHCIs as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction
cl ? F was stirred at +10 °C for 72 h. Purification: FCC, eluent = Pentane:Et.O (100:0 to
O 99.68:0.32, gradient). Colorless oil, 55.8 mg, 77% yield, e.r. = 94:6. Method B: 10
‘ ol mol% of catalyst (S)-3g. The reaction was stirred at 0 °C for 72 h. Purification: FCC
(S,5)-2n eluent = Pentane:Et,O (100:0 to 99.5:0.5, gradient). Colorless oil, 55.0 mg, 76% yield,
e.r. =97.5:2.5. 'H NMR (400 MHz, CDCl3) 6 = 7.29 — 7.18 (m, 6H), 7.08 (dt, J = 6.5, 1.8 Hz, 2H), 5.82 (dd,
J=46.7,6.1 Hz, 1H), 5.68 (dddd, J = 17.6, 10.2, 7.6, 4.9 Hz, 2H), 5.18 — 5.08 (m, 4H), 4.12 (dd, J = 21.5, 6.1
Hz, 1H), 3.47 (ddt, J = 14.4, 4.9, 1.8 Hz, 2H), 2.87 (dd, J = 14.4, 7.6 Hz, 2H); *F NMR (377 MHz, CDCl;) 6
=-182.86 (dd, J = 46.8, 21.5 Hz, 1F); *C NMR (101 MHz, CDCls) § = 140.4 (d, Jc.r = 21.0 Hz), 138.6 (d, Jc-
r= 3.4 Hz), 136.5, 134.3, 134.1, 129.6 (d, Jc.r = 1.8 Hz), 129.5, 129.4, 128.5 (d, Jc.r = 1.7 HZz), 127.9, 127.7
(d, Jor = 1.5 HZ), 126.9 (d, Jc.r = 7.6 Hz), 124.8 (d, Jc-r = 7.1 Hz), 117.5, 94.9 (d, Jc.r = 181.1 Hz), 66.5 (d,
Jcr = 20.6 Hz), 54.1 (d, Jcr = 2.4 Hz); IR (thin layer film) v (cm™) = 3076, 2925, 2817, 1596, 1572, 1477,
1431, 1205, 1082, 999, 922, 787, 706; HRMS (APCI*) m/z calculated for CooH1CLLFN* [M+H]" 364.10296,
found 364.10324. [a]p®©= +15.8° (¢ = 0.5, CHCIs, e.r. = 97.5:2.5); HPLC separation: DAICEL

CHIRALPAK® IA-3, Heptane:'PrOH = 99.5:0.5, 1 mL/min; t; = 3.04 min (minor), t, = 3.32 min (major).
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N-allyl-N-((1S,2S)-2-fluoro-1,2-bis(3-methoxyphenyl)ethyl)prop-2-en-1-amine (20)
Fluoride 20 was prepared from 1o (74.4 mg, 0.2 mmol) according to the general

\L f procedure using CHCI; as solvent. Method A: 10 mol% of catalyst (S)-3g. The

MeO ¥ F reaction was stirred at +10 °C for 36 h. Purification: FCC, eluent = Hexane:Et.O
O (96:4). Colorless oil, 61.3 mg, 86% vyield, e.r. = 95.5. Method B: 5 mol% of catalyst

O OMe (S)-3g. The reaction was stirred at 0 °C for 36 h. Purification: FCC eluent =

(S,S)-20 Pentane:Et,O (96:4). Colorless oil, 69.0 mg, 97% yield, e.r. = 97.5:2.5. 'H NMR

(400 MHz, CDCls) 6 = 7.21 — 7.11 (m, 2H), 6.87 — 6.67 (m, 6H), 5.96 — 5.73 (m, 3H), 5.22 — 5.05 (m, 4H),
4.19 (dd, J = 18.3, 7.1 Hz, 1H), 3.75 (s, 3H), 3.74 (s, 3H), 3.51 (ddt, J = 14.2, 4.8, 1.8 Hz, 2H), 2.93 (dd, J =
14.3, 7.6 Hz, 2H); **F NMR (377 MHz, CDCl3) 6 = -179.64 (dd, J = 47.2, 18.3 Hz, 1F); 3C NMR (101 MHz,
CDCls) 6 = 159.2, 159.2, 140.1 (d, Jcr = 20.3 Hz), 138.0 (d, Jc.r = 4.4 Hz), 137.0, 129.0, 128.9, 121.9, 119.2
(d, Jcr = 6.8 Hz), 117.0, 115.5 (d, Jc-r = 1.3 HZz), 113.8 (d, Jcr = 1.9 Hz), 112.5, 112.3 (d, Jcr = 7.2 Hz), 95.0
(d, Jer = 179.3 Hz), 67.0 (d, Jc.r = 20.7 Hz), 55.2, 55.1, 53.9 (d, Jc.r = 2.1 Hz); IR (thin layer film) v (cm™) =
3076, 3004, 2936, 2835, 1601, 1491, 1455, 1264, 1158, 1047, 997, 920, 788, 700; HRMS (APCI*) m/z
calculated for Cz,H2;FNO2* [M+H]* 356.20203, found 356.20133. [a]p?® © = +13.0 ° (¢ = 0.5, CHCls, e.r. =
97.5:2.5); HPLC separation: DAICEL CHIRALPAK® IA-3, Heptane: 'PrOH:Et,NH = 99.2:0.7:0.1, 1

mL/min; t; = 3.74 min (minor), t; = 4.49 min (major).

N-allyl-N-((1S,2S)-1,2-bis(3,5-dimethylphenyl)-2-fluoroethyl)prop-2-en-1-amine (2p)
A _~  Fluoride 2p was prepared from 1p (73.6 mg, 0.2 mmol) according to the general procedure
\LN/( using CHCI;s as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred
A F at -15 °C for 72 h. Purification: FCC, eluent = Pentane:Et,O (100:0 to 99.55:0.45,
O gradient). Colorless oil, 40.9 mg, 58% vyield, e.r. = 90:10. Method B: 10 mol% of catalyst
‘ (S)-3g. Thereaction was stirred at -20 °C for 72 h. Purification: FCC eluent = Pentane:Et,0
(5,9)-2p (100:0 to 99.55:0.45, gradient). Colorless oil, 59.6 mg, 85% vyield, e.r. = 91:9. 'H NMR
(500 MHz, CDCls3) 6 = 6.87 (s, 4H), 6.82 (s, 2H), 5.91 - 5.71 (m, 3H), 5.16 (d, J = 17.3 Hz, 2H), 5.11 (d, J =
10.1 Hz, 2H), 4.14 (dd, J = 19.3, 6.9 Hz, 1H), 3.50 (ddd, J = 14.4, 4.8, 1.9 Hz, 2H), 2.92 (dd, J = 14.4, 7.5 Hz,
2H), 2.28 (s, 6H), 2.27 (s, 6H); °F NMR (471 MHz, CDCls) § =-179.64 (dd, J = 47.6, 19.3 Hz, 1F); B°C NMR
(126 MHz, CDCls): ¢ = 138.7 (d, Jc.r = 19.8 Hz), 137.5, 137.3, 137.3, 136.5 (d, Jc.r = 4.0 Hz), 129.7 (d, Jcr
=2.1Hz),128.9, 127.6, 124.8 (d, Jc.r = 6.7 Hz), 116.8, 95.7 (d, Jc-r = 178.0 Hz), 66.8 (d, Jc-r = 20.4 Hz), 54.1
(d, Jcr = 2.2 Hz), 21.6, 21.4; IR (thin layer film) v (cm™) = 3076, 3009, 2919, 2813, 1641, 1607, 1448, 1417,
1163, 1125, 1037, 917, 851, 710; HRMS (ESI*) m/z calculated for CxHa:FN* [M+H]* 352.24350, found
352.24319. [a]p® ¢ =+16.5 ° (¢ = 0.5, CHClI3, e.r. = 90:10); HPLC separation: DAICEL CHIRALPAK® IA-

3 Heptane:'PrOH = 99:1, 1 mL/min; t; = 2.30 min (minor), t, = 2.69 min (major).
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N-allyl-N-((1S,2S)-2-fluoro-1,2-di-p-tolylethyl)prop-2-en-1-amine (2Qq)
N _ Fluoride 2q was prepared from 1q (68.0 mg, 0.2 mmol) according to the general procedure
iNf using CHCI;s as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred
~F at-10 °C for 60 h. Purification: FCC, eluent = Hexane:Et,O (100:0 to 99.4:0.6, gradient).
Me O O Colorless oil, 50 mg, 71% vyield, e.r. = 95:5. Method B: 10 mol% of catalyst (S)-3g. The
reaction was stirred at -10 °C for 24 h. Purification: FCC eluent = Hexane:Et,O (100:0 to
(5:5-2a Me 99 2:0.8, gradient). Colorless oil, 48.1 mg, 74% yield, e.r. = 95:5. *H NMR (400 MHz,
CDCl3) 6 =7.13 (d, J = 8.0, Hz, 2H), 7.06-7.03 (m, 6H), 5.96 — 5.73 (m, 3H), 5.22 — 5.07 (m, 4H), 4.22 (dd, J
= 16.6, 7.8 Hz, 1H), 3.51 (ddt, J = 14.3, 5.0, 1.8 Hz, 2H), 2.95 — 2.81 (m, 2H), 2.29 (s, 3H), 2.28 (s, 3H); °F
NMR (377 MHz, CDCls) ¢ = -176.66 (dd, J = 47.3, 16.5 Hz); *°C NMR (101 MHz, CDCl3) 6 = 137.9 (d, Jcr
= 2.3 Hz), 137.4, 136.9, 135.7 (d, Jc.r = 20.3 Hz), 133.2 (d, Jc-r = 4.9 Hz), 129.5, 128.8, 127.1 (overlapped),
116.9,95.0(d, Jcr=177.5 HZ), 66.8 (d, Jc.r = 21.1 HZ), 54.0 (d, Jcr = 2.0 HZ), 21.3, 21.2; IR (thin layer film)
v (cm™) = 3076, 3008, 2923, 2813, 1641, 1515, 1447, 1417, 1115, 997, 918, 814; HRMS (APCI*) m/z
calculated for CyHxFN' [M+H]" 324.21220, found 324.21213; [a]o® © = +21.0° (¢ = 0.5, CHClIs,
e.r. = 95:5); HPLC separation: DAICEL CHIRALPAK® OJ-H Heptane: 'PrOH = 99.2:0.8, 1 mL/min; t; =

5.30 min (minor), t; = 6.12 min (major).

N-allyl-N-((1S,2S)-2-fluoro-1,2-bis(4-fluorophenyl)ethyl)prop-2-en-1-amine (2r)
N _ Fluoride 2r was prepared from 1r (69.6 mg, 0.2 mmol) according to the general procedure
\LN f using CHCl; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at
~_F -5 °C for 72 h. Purification: FCC eluent = Pentane:Et,O (100:0 to 99.69:0.31, gradient).
E O Colorless oil, 44.7 mg, 67% yield, e.r. = 95:5. Method B: 10 mol% of catalyst (S)-3g. The
O reaction was stirred at -10 °C for 72 h. Purification: FCC, eluent = Pentane:Et,O (100:0 to
99.65:0.35, gradient). Colorless oil, 52.8 mg, 80% yield, e.r. = 95:5. 'H NMR (400 MHz,
CDCl3) 6 =7.21 — 7.16 (m, 2H), 7.15 — 7.09 (m, 2H), 6.98 — 6.90 (m, 4H), 5.93 — 5.68 (m, 3H), 5.21 — 5.08
(m, 4H), 4.17 (dd, J = 18.5, 7.0 Hz, 1H), 3.49 (ddt, J = 14.3, 4.9, 1.8 Hz, 2H), 2.89 (dd, J = 14.3, 7.6 Hz, 2H);
¥F NMR (376 MHz, CDCl3) 6 =-113.54 —-113.66 (m, 1F), -114.59 — -114.72 (m, 1F), -177.78 (dd, J = 46.6,
18.5 Hz, 1F); ¥C NMR (101 MHz, CDCls) 6 = 162.6 (d, Jc.r =247.5 Hz), 162.1 (d, Jc.r = 246.4 Hz) 136.7,
134.4 (dd, Jcr = 21.0, 3.3 Hz), 132.3 (t, Jc-r = 4.0 HZz), 131.1 (dd, Jc-r =7.9, 1.3 Hz), 128.7 (dd, Jc.-= 8.3, 6.5
Hz), 117.4, 115.1 (d, Jcr = 20.9 Hz), 115.0 (d, Jc-r =21.2 Hz), 94.8 (d, Jc.r = 179.1 HZ), 66.7 (d, Jcr = 21.4
Hz), 53.9 (d, Jcr = 2.2 Hz); IR (thin layer film) v (cm™) = 3078, 2926, 2814, 1606, 1511, 1227, 1159, 921,
834; HRMS (ESI*) m/z calculated for CooHa1FsN* [M+H]* 332.16206, found 332.16180. [a]p® © +23.7 ° (c =
0.5, CHCI3, e.r. = 95:5); HPLC separation: DAICEL CHIRALPAK® OJ-H Heptane:'PrOH = 99:1, 1 mL/min;

t1 = 6.16 min (minor), t; = 7.66 min (major).

(s.5)-2r |
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N-allyl-N-((1S,2S)-1,2-bis(4-bromophenyl)-2-fluoroethyl)prop-2-en-1-amine (2s)
\ _ Fluoride 2s was prepared from 1s (93.9 mg, 0.2 mmol) according to the general procedure
\LN f using CHCl; as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred at
~F +5°Cfor 72 h. Purification: FCC eluent = Pentane:Et,O (100:0 to 99:1, gradient). Colorless
oil, 64 mg, 71% yield, e.r. = 91:9. Method B: 10 mol% of catalyst (S)-3g. The reaction was
stirred at -5 °C for 72 h. Purification: FCC, eluent = Pentane:Et,O (100:0 to 99:1, gradient).
" Colorless oil, 68.0 mg, 73% yield, e.r. = 90.5:9.5. *H NMR (500 MHz, CDCl3) 6 = 7.41—
7.37 (m, 4H), 7.08 (d, J = 8.2 Hz, 2H), 7.04 (d, J = 8.3 Hz, 2H), 5.80 (dd, J = 47.0, 6.8 Hz, 1H) 5.88 — 5.65
(m, 2H), 5.18 — 5.08 (m, 4H), 4.12 (dd, J = 19.4, 6.8 Hz, 1H), 3.46 (ddd, J = 14.3, 4.6, 2.2 Hz, 2H), 2.85 (dd,
J =14.3,7.6 Hz, 2H); °F NMR (471 MHz, CDCl5) ¢ = -180.69 (dd, J = 47.0, 19.6 Hz, 1F); 3C NMR (126
MHz, CDCls) 6 = 137.3 (d, Jcr = 20.9 Hz), 136.5, 135.2 (d, Jc.r = 4.0 Hz), 131.3, 131.2, 131.1 (d, Jcr = 1.3
Hz), 128.4 (d, Jcr = 6.8 Hz), 122.7 (d, Jcr = 2.3 Hz), 121.6, 117.4, 94.5 (d, Jcr = 179.9 Hz), 66.4 (d, Jcr =
21.1 Hz), 53.8 (d, Jcr = 2.2 Hz); IR (thin layer film) v (cm™) = 3077, 2977, 2924, 2814, 1164, 1594, 1488,
1405, 1073, 1010, 920, 819, 804; HRMS (ESI*) m/z calculated for CxH21Br.FN* [M+H]* 452.00193, found
452.00165; [a]p?® ¢ =-8.4° (c = 0.9, CHClIs, e.r. =90.5:9.5); HPLC separation: DAICEL CHIRALPAK®
0J-H, Heptane:EtOH:Et;NH = 98.9:1.0:0.1, 1 mL/min; t; = 6.23 min (minor), t, = 10.97 min (major).

(85128 |

(R,R)-N,N-dibenzyl-2-fluorocyclohexan-1-amine (2t)

Fluoride 2t was prepared from 1t (72 mg, 0.2 mmol) according to the general procedure using

-

h h

=
N) a,a,a-trifluorotoluene as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred
@»\F at r.t. for 72 h. Purification: FCC, eluent = Hexane:Et2O (100:0 to 99.6:0.4, gradient). White
solid, 40.7 mg, 68% vyield, e.r. = 85.5:14.5. Method B: 10 mol% of catalyst (S)-3g. The reaction

(RR)-2 \was stirred at r.t. for 72 h. Purification: FCC, eluent = Hexane:Et,O (100:0 t0 99.6:0.4, gradient).
White solid, 35.5 mg, 60% vyield, e.r. = 85:15. 'H NMR (400 MHz, CDCl3) § = 7.42 — 7.07 (m, 10H), 4.55
(dddd, J =50.7, 10.4, 10.4, 4.8 Hz, 1H), 3.75 (d, J = 13.9 Hz, 2H), 3.67 (d, J = 14.0 Hz, 2H), 2.68 — 2.54 (m,
1H), 2.12 - 1.97 (m, 1H), 1.91 - 1.76 (m, 1H), 1.67 — 1.52 (m, 2H), 1.35 - 1.17 (m, 2H), 1.15 - 0.93 (m, 2H);
¥F NMR (376 MHz, CDCl3) 6 = -174.71 (d, J = 50.6 Hz, 1F); *.C NMR (101 MHz, CDCls) § = 140.7, 128.6,
128.1, 126.6, 93.3 (d, Jc.r = 177.9 Hz), 61.2 (d, Jcr = 14.8 Hz), 54.4, 32.6 (d, J c¢ = 17.5 Hz), 27.7 (d, Jc-r =
8.8 Hz), 24.9 (d, Jcr = 2.2 Hz), 24.0 (d, J cr = 11.4 Hz). IR (thin layer film) v (cm*) = 3026, 2937, 2860,
1602, 1494, 1453, 1030, 989, 773, 746, 698; MP 69 — 71 °C; HRMS (ESI*) m/z calculated for C20H2sFN-
[M+H]-298.19655, found 298.19650; [a]p?® © =-9.0 ° (¢ = 0.2, CHCIs, e.r. = 85.5:14.5); HPLC separation:
DAICEL CHIRALPAK®= IB-3, Heptane:'PrOH = 99:1, 1 mL/min; t,= 3.02 min (minor), t,= 3.66 min (major).

Spectroscopic data were in agreement with the ones previously reported in literature.®

The absolute configuration was assigned by derivatizing 2t to its corresponding B-fluoropicolinamide
(debenzylation with Pearlman’s catalyst followed by amide formation). The reported value for N-((1R,2R)-2-

fluorocyclohexyl)picolinamide was [a]p? *© =-36.5 ° (c = 0.7, CHCls, e.r. = 92:8).12 Our measured value was
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[a]p® "¢ =-13.5° (c = 0.5, CHClIs, e.r. = 85.5:14.5) indicating (R,R) configuration for 2t. The configuration
of the other cyclic products was assigned by analogy.

(1R,2R)-2-fluoro-N,N-bis(4-methoxybenzyl)cyclohexan-1-amine (2u)

OMe - Flyoride 2u was prepared from 1u (83.6 mg, 0.2 mmol) according to the general

procedure using o,a,a-trifluorotoluene as solvent. Method A: 10 mol% of catalyst

(S)-3g. The reaction was stirred at r.t. for 72 h. Purification: FCC, eluent =

/©/\N F Hexane:Toluene (50:50 to 35:65, gradient). White solid, 45.3 mg, 63% yield, e.r. =
MeO @ 84:16. Method B: 15 mol% of catalyst (S)-3g. The reaction was stirred at r.t. for 72 h.
Purification: FCC, eluent = Hexane:Toluene (50:50 to 35:65, gradient). White solid,

37.3 mg, 52% vyield, e.r. = 85.5:14.5.*H NMR (500 MHz, CDCl3) 6 = 7.38 - 7.32 (m,

4H), 6.93 — 6.81 (m, 4H), 4.64 (dddd, J=50.7, 10.5, 10.5, 5.0 Hz, 1H), 3.82 (s, 6H), 3.77 (d, J = 13.6 Hz, 2H),
3.69 (d, J = 13.6 Hz, 2H), 2.75 — 66 (m, 1H), 2.20 — 2.12 (m, 1H), 1.95 — 1.86 (m,1H), 1.76 — 1.63 (m, 2H),
1.48 — 1.27 (m, 2H), 1.24 — 1.05 (m, 2H); **F NMR (377 MHz, CDCl3) 6 = -174.75 (d, J= 50.7 Hz, 1F); *C
NMR (126 MHz, CDCls) ¢ = 158.4, 132.8, 129.6, 113.5, 93.3 (d, Jcr = 177.7 Hz), 60.9 (d, Jcr = 15.0 Hz),
55.2, 53.6, 32.7 (d, Jcr = 17.5 Hz), 27.6 (d, Jcr = 8.8 Hz), 24.9 (d, Jcr = 2.2 Hz), 24.0 (d, Jc¢ = 11.5 Hz);
IR (thin layer film) v (cm™) = 2936, 2834, 1611, 1510, 1245, 823; MP 50— 53 °C; HRMS (ESI*) m/z calculated
for Co2HoFNO2* [M+H]* 358.21768, found 358.21794; [a]p® © =-11.9 ° (c = 0.44, CHClIs, e.r. = 85.5:14.5);
HPLC separation: DAICEL CHIRALPAK® IA-3, Heptane:'PrOH = 99:1, 1 mL/min, t; = 6.04 min (major),t,

=7.01 min (minor).

(R.R)-2u

(1R,2R)-N,N-dibenzyl-2-fluorocyclopentan-1-amine (2v)

ph  Ph Fluoride 2v was prepared from 1v (68.8 mg, 0.2 mmol) according to the general procedure using
N a,a,0-trifluorotoluene as solvent. Method A: 10 mol% of catalyst (S)-3g. The reaction was stirred
G"‘F at r.t. for 24 h. Purification: FCC, eluent = Pentane: Et,O (100:0 to 99.4:06, gradient). Colorless
oil, 40.0 mg, 70% yield, e.r. = 74.5:25.5. Method B: 10 mol% of catalyst (S)-3g. The reaction
was stirred at r.t. for 24 h. Purification: FCC, eluent = Pentane: Et,O (100:0 to 99.4:06, gradient).
Colorless oil, 38.7 mg, 68% vyield, e.r. = 75:25; *H NMR (400 MHz, CDCl3) 6 = 7.41 — 7.36 (m, 4H), 7.34 —
7.28 (m, 4H), 7.27 — 7.19 (m, 2H), 5.15 (ddt, J = 54.0, 6.9, 3.6 Hz, 1H), 3.70 (d, J = 14.1 Hz, 2H), 3.63 (d, J =
14.1 Hz, 2H), 3.37 (dtd, J = 28.5, 8.5, 3.9 Hz, 1H), 2.01 — 1.72 (m, 3H), 1.72 — 1.48 (m, 3H); °F NMR (376
MHz, , CDCls) 6 = -172.99 (dtd, J = 53.5, 28.3, 23.5 Hz, 1F); *°C NMR (101 MHz, CDCls) § = 139.9, 128.8,
128.3,127.0,97.1 (d, Jcr = 176.9 Hz), 68.1 (d, Jc.r = 22.3 Hz), 55.5, 32.8 (d, Jcr = 22.8 HZ), 27.4 (d, Jcr =
5.8 Hz), 22.0 (d, Jcr = 2.1 Hz); IR (thin layer film) v (cm™) = 3062, 3028, 2959, 2875, 1603, 1494, 1454,
1363, 1110, 1075, 1028, 956745, 698; HRMS (ESI*) m/z calculated for CioH23sFN* [M+H]* 284.18090, found
284.18088; [a]p®© =-10.0° (c = 0.5, CHCIs, e.r. = 74.5:25.5); HPLC separation: DAICEL CHIRALPAK®
IF-3, Heptane:MTBE = 99:1, 1 mL/min; t; = 5.15 min (major), t> = 5.66 min (minor).

(R.R)-2v
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Additional substrates tested

Desymmetrization of episulfonium ions with KF

FsC
™ ™. LS .

S (S)-3d (10 mol%) s f O N)Lﬁ o

& KF (5 equiv.) S F 5 Pr

DCM (0.5 M) ' N
Ph Ph |

o (S.5) : OO g]/ \©/CF3

(0.05 mmol) 81% yield, 87:13 e.r. - (S)-3d

(this work using KF)

95% vyield, 88:12 e.r.
(using CsF, conditions
from Science 2018, 360, 638)

Additional aziridinium precursors

Aziridiniums precursors which were suitable substrates to fluorination but that didn’t show high selectivity:
L N7 vy
N N
SN BnO._~_.Cl B”O\/\[Br
L, X

OBn OBn
>99% NMR yield, 60:40 e.r. 85% NMR vyield, 55:45 e.r. 42% NMR yield, 55:45 e.r.

Conditions: 5 mol% of (S)-3g, a,a,a-trifluorotoluene, r.t., 24 h

Additional electrophiles tested for nucleophilic fluorination with KF

PR Ph op Ph 0
Ph” > Br Ph/ﬂ
Ph)\Br Ph>|\Br
Ph
no reaction no reaction traces no reaction

Conditions: 10 mol% of Schreiner's urea, chlorinated or aromatic solvents, up to 100 °C, 24 h
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Deprotection and Further Modifications

(1S,2S)-2-fluoro-1,2-diphenylethan-1-amine (4)

NH, Fluoride 4 was synthesized via a slightly modified version of the deprotection protocol
~F

previously reported by Cossy et al..!° In a flame-dried two-neck round bottom flask, Pd(dba),
(154 mg, 0.27 mmol, 0.1 equiv.) and 1,4-bis(diphenylphosphino)butane (dppb, 115 mg,
0.27 mmol, 0.1 equiv.) were stirred at r.t. in degassed THF (20 mL) for 15 min. Then (S,S)-2a
(794 mg, 2.7 mmol, 1 equiv.; e.r. = 93:7) was added as a solution in THF (6 mL) followed by thiosalicylic acid
(1.036 g, 6.75 mmol, 2.5 equiv.). The reaction mixture was stirred at 60 °C overnight, then it was diluted with
Et,O and acidified with HCI 1 M (checked with pH paper). The layers were separated and the aqueous one
was washed 3 times with Et,O prior of being neutralized with NaOH 2.5 M (checked with pH paper). The
aqueous layer was extracted three times with EtOAc, dried on MgSO, and evaporated in vacuo. The crude
product was purified by FCC (DCM:EtOAc = 100:0 to 80:20, gradient) to afford 4 as a white solid (489.2 mg,
84% vyield, e.r. = 93:7). Recrystallization of 450 mg of the obtained compound from warm hexane (1 drop of
CHClIs) afforded 4 in > 99.8:0.2 e.r. (370.0 mg, 72% recrystallization yield). *H NMR (400 MHz, CDCl3) 6 =
7.24 —6.97 (m, 10H), 5.36 (dd, J = 47.3, 7.0 Hz, 1H), 4.21 (dd, J = 14.5, 7.0 Hz, 1H), 1.70 (s, 2H); F NMR
(376 MHz, CDCl3) 6 =-182.68 (dd, J = 47.4, 14.6 Hz, 1F); **C NMR (101 MHz, CDCI3) § = 140.3 (d, Jcr =
6.1 Hz), 137.4 (d, Jc.r = 20.3 Hz), 128.5 (d, Jc.r = 1.7 Hz), 128.4, 128.2, 127.9, 127.8, 126.5 (d, Jcr = 7.0 HZ),
98.7 (d, Jc.r = 177.6 Hz), 61.6 (d, Jc.r = 23.1 H2). IR (thin layer film) v (cm®) = 3388, 3064, 3032, 2918, 2849,
1604, 1495, 1454, 1074, 1027, 1018, 834, 764, 698; MP 47 —50 °C; HRMS (ESI*) m/z calculated for
C14H1sFN* [M+H]* 216.11830, found 216.11813. [a]p?® *© = -96.2 ° (c = 0.5, CHClI3, e.r. > 99.8:0.2); HPLC
separation: DAICEL CHIRALPAK® IB-3, Heptane:'PrOH:EtOH = 97:2:1 + 0.1% ethanol amine, 1 mL/min;
t; = 5.28 min (major), t. = 6.94 min (minor). Spectroscopic data were in agreement with the ones previously

reported in literature. !

(1S,2S)-N-ethyl-2-fluoro-1,2-diphenylethan-1-amine (5)

In a round bottom flask, CH3;CHO (294 uL, 5 mmol, 5 equiv.) was dissolved in MeOH (5 mL,
0.2 M). (§,5)-4 (1 equiv, 1 mmol, 215 mg; e.r. > 99.8:0.2) and NaBH(OACc); (635mg, 3 mmol,
3 equiv.) were subsequently added as solids. The reaction was stirred at r.t. for 3 h then quenched

with NaHCOs (sat.) and extracted three times with EtOAc. The combined organic layers were

washed with brine, dried over MgSO, and evaporated in vacuo. The crude brown oil was
purified by FCC (Pentane:Et,O 100:0 to 90:10, gradient) to afford a pale yellow oil (137.1 mg, 56% vyield, e.r.
> 99.9:0.1). 'H NMR (400 MHz, CDCls) 6= 7.25 — 7.14 (m, 6H), 7.13 — 7.05 (m, 2H), 7.05 — 6.96 (m, 2H),
5.40 (dd, J = 47.7, 8.2 Hz, 1H), 4.04 (dd, J = 10.6, 8.2 Hz, 1H), 2.59 — 2.40 (m, 2H), 1.91 (s br, 1H), 1.10 (t, J
=7.1Hz, 3H); ®F NMR (376 MHz, CDCls) 6=-177.82 (dd, J = 47.7, 10.7 Hz); *C NMR (101 MHz, CDCls)
6=138.5(d, Jc., = 6.7 Hz), 137.2 (d, Jc.r, = 19.9 Hz), 128.7, 128.5 (d, Jc.r = 1.9 Hz), 128.2, 128.0, 127.7, 126.8
(d, Jer = 6.7 HZz), 98.2 (d, Jc-r = 177.9 Hz), 69.0 (d, Jc-r = 22.6 Hz), 41.8, 15.5; IR (thin layer film) v (cm™?) =
3032, 2967, 2818, 1454, 1340, 1208, 1151, 1062, 1032, 758, 698; HRMS (ESI*) m/z calculated for C1gH1gFN*
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[M+H]* 244.14960, found 244.14954. [a]p® © = -68.3 ° (c = 0.4, CHClI3, e.r. > 99.9:0.1); HPLC separation:
DAICEL CHIRALPAK® OJ-H Hept:EtOH = 96:4, 1 mL/min; t; = 5.09 min (major), t. = 6.22 min (minor).

N.B. Attempts to access this compound via asymmetric fluorination from the corresponding chloride were
unsuccessful as the synthesis of the chloride precursor proved to be very challenging (mixture of products,
poor yields).

N-((1S,2S)-2-fluoro-1,2-diphenylethyl)picolinamide (8)
B-Fluoroamide 8 was synthesized according to the procedure reported by Doyle.’? In a
N~ flame-dried Schlenk tube, B-fluoroamine 4 (80.0 mg, 0.37 mmol, 1 equiv., 78:22 e.r.) was
dissolved in anhydrous DCM. Picolinic acid (45.8 mg, 0.37 mmol, 1 equiv.), DMAP (50.0 mg,
F0.41 mmol, 1.1 equiv.) and N, N’-diisopropylcarbodiimide (63.5 mg, 0.41 mmol, 1 equiv.)
O were added and the reaction stirred overnight at r.t.. After disappearance of the starting
(5.5)-8 O material (monitored by TLC), hexane was added and the solid removed by filtration. The
filtrate was evaporated in vacuo and the crude product purified by FCC (Pentane:EtOAc = 90:10 to 70:30,
gradient). White solid (80 mg, 67% yield). 'H NMR (400 MHz, CDCls) 5 = 8.84 (d, J = 9.1 Hz, 1H), 8.56
(d, J=4.9Hz,1H), 8.07 (d,J=7.8 Hz, 1H), 7.78 (td, J = 7.7, 1.7 Hz, 1H), 7.40 (dd, J = 7.6, 4.8, 1.3 Hz, 1H),
7.36 — 7.20 (m, 10H), 5.81 (dd, J = 46.0, 4.4 Hz, 1H), 5.59 (ddd, J = 21.4, 9.1, 4.4 Hz, 1H); *F NMR
(376 MHz, CDCl5) & = -188.34 (dd, J = 45.9, 21.4 Hz); 3C NMR (101 MHz, CDCls) & = 163.9, 149.6, 148.3,
138.4 (d, Jc.r = 2.0 Hz), 137.4, 136.8 (d, Jc.r = 20.7 Hz), 128.7 (overlapped), 128.4, 128.0, 127.6, 126.4, 126.1
(d, Jcr = 7.3 HZz), 1225, 95.6 (d, Jc-r = 180.9 Hz), 57.7 (d, Jc.r = 21.6 Hz). Spectroscopic data were in

agreement with the ones previously reported in literature.?

The reported value for the (R,R)-enantiomer was [a]p?® *© = —4.5° (¢ = 1.0, CHCIs, e.r. = 74:26).1? Our
measured value was [a]p?® © = +4.7 ° (¢ = 1.0, CHCls, e.r. = 77.5:22.5) indicating (S,S) configuration for 8
(and consequently for its precursors 4 and 2a). The configuration of the other stilbene-derived products was
assigned by analogy. Finally, this assignment was further confirmed by single crystal x-ray diffraction analysis

of 2g.
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NMR studies
In order to gain insights into the anion binding interaction of the urea catalyst (S)-3g with alkali metal fluorides,

a mixture of CsF (114 mg, 0.75 mmol) and (S)-3g (20 mg, 0.014 mmol) were stirred in DCM-d; (0.6 mL).
After 2 h the mixture was filtered through a syringe filter (0.45 um PTFE membrane) and analyzed by NMR.
'H NMR spectrum suggests an interaction between catalyst and fluoride, indicated by significant line
broadening and downfield shifting of NH protons (Fig. S1). We noted that F~resonance does not appear in

¥F NMR, presumably due to extensive broadening of the signal.

MA 1k .
AEEEEssnasE EREEEE s e I o L S IR s s RERREEs S ss S e |
11 10 9 8 7 6 5 4 3 2 1 ppm
T T T

11 10 9 ppm

. ‘. L
T T T T T T T T

11 10 9 8 7 6 5 1 3 2 dl ppm

Figure S1: 'H NMR of (S)-3g in DCM-d; (top); *H NMR of (S)-3g after stirring with CsF in DCM-d; (bottom);
deshielded NH protons (bottom insert).
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To overcome this problem we did the following experiments: after stirring (S)-3g and CsF in DCM-d. (2 h)
and syringe filtration, the solution was evaporated to dryness, dissolved in 1 mL of CDs;OD and analyzed by
NMR. °F NMR and **Cs NMR showed the corresponding signals for F~ (-150 ppm) and Cs* (-38 ppm)
proving the presence of CsF in solution (Fig. S2), as the chemical shifts are identical to the ones of an
independently prepared sample of CsF in CDsOD. A control experiment, in which CsF was stirred in DCM in
the absence of catalyst then filtered and re-dissolved in CD3;OD as described above, shows no trace of either
Cs* or F, thus indicating that (S)-3g acts as a phase-transfer catalyst.

A b it b o S BN,

T T T T T T T T T T T 1
100 80 60 40 20 0 -20 -40 -60 -80 -100 ppm

Figure S2: F-NMR (top) and ***Cs-NMR (bottom) in CDsOD of (S)-3g after stirring with CsF in DCM.
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Computational Methods

All calculations were performed using N,N-dimethyl compounds 1-2b, catalyst 3g, in chloroform solvent, with
Gibbs free energies evaluated at 298.15 K and 1 M concentration unless otherwise stated. Molecular dynamics
simulations were used for conformational sampling of ion pairs®® in explicit chloroform. The methods used are

based upon those in our previous work.! Structures were visualized using Pymol.**

Density Functional Theory (DFT)

Density functional theory (DFT) geometry optimizations and frequency calculations were performed in
Gaussian 09, Revision D.01%° using the M06-2X hybrid functional'® and mixed basis set, referred to as def2-
SVP(TZVPPD), comprising def2-TZVPPD on non-catalyst heteroatoms and def2-SVP otherwise.2° The
ultrafine (99,590) integration grid was used?! and calculations were performed in chloroform solvent using the
conductor like polarizable continuum model (CPCM).?*2* Stationary points were classified by vibrational
frequencies; those with no imaginary frequencies being classified as minima, and those with a single imaginary
frequency, transition states (TS). Thermochemistry was evaluated using the Goodvibes python script, with
free-rotor cutoff of 100 cm™.25 % The non-covalent interaction index was used to visualize non-covalent

interactions from the optimization density.?” 28

A single point energy correction was performed in ORCA 3.0.3% using the ®B97X-D3 hybrid functional®® 3!
and (ma)-def2-TZVPP basis set, referring to ma-def2-TZVPP?2 on heteroatoms and def2-TZVPP otherwise,
with ECP on Cs. ®B97X-D3 incorporates Grimme’s D3 dispersion correction.® The conductor-like screening

model (COSMO)** was used to model solvation in chloroform.

Reference to the intrinsic reaction coordinate (IRC) refers to a projection of the IRC onto a new coordinate,

defined as breaking C-N bond distance minus forming C-F distance.3 %

Truncated models (fragmentation), used to rationalize the energy difference between major and minor
transition states (TSs), were performed by deleting part of the TS structure in both major and minor TS,
followed by a single point energy evaluation (i.e. no re-optimization). Any unsatisfied valance was satisfied
by adding a hydrogen atom, in a consistent geometry. Comparison at the TSs, as opposed to over the IRC,

introduces negligible error as the difference in TS position is small (TS energy changes by ~0.2 kJ/mol).

Molecular Dynamics (MD)

Molecular dynamics (MD) simulations were performed using the GROMACS 5.1.4 package,®“? with the
optimized potential for liquid simulations (OPLA-AA 2005) forcefield** ¢ and restrained electrostatic
potential charges (RESP).* %6 Compatible parameters were generated using Schrédinger Maestro software
(ffld_server utility, version 14)*" and RESP charges fitted to HF/6-31G(d) potential using Ambertools.*
Simulations were performed in explicit chloroform solvent with topology obtained from

virtualchemistry.org.*® 50
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The system for simulation was centered in a cubic box, with minimum distance to the boundary of 15 A, and
3-dimensional periodic boundary conditions (PBC). The velocity rescaling method was used to maintain
system temperature (time constant = 100 fs);! system pressure was maintained using the Parrinello-Rahman
barostat (time constant = 2 ps, reference pressure = 1 bar, compressibility = 4.5 x 10-° bar*).5% % VVan der Waals
interactions and the particle mesh Ewald method used a 1 nm cut-off. Simulations used the linear constraint
solver algorithm (LINCS).>*

Each simulation was equilibrated by steepest-descents minimization of 5000 steps, followed by constant
volume (NVT) simulation under heavy atom position restraints, with 1 fs timestep and velocities initiated
according to a Maxwell-Boltzmann distribution at 173 K. Over the course of the 200 ps simulation, system
temperature was raised to reaction temperature and allowed to equilibrate. After NVT equilibration, the system
was equilibrated under constant pressure (NPT) for 400 ps, with 2 fs timestep and the stability of the system

volume verified. Data was derived from a continuation of NPT simulation for a further 300 ns.

MD trajectories were clustered using the GROMOS algorithm,> accounting for molecular symmetry, with
RMSD matrix calculated using an in-house python script. The framework used for calculating RMSD, and the
cut-off used for clustering, are given in each case. Geometries were saved every 10 ps. Catalyst conformations
and catalyst-cesium fluoride binding modes were investigated at elevated temperature of 373 K. Simulations

of the reactive ion pair were performed at 298 K.

Naming and Definitions

The naming and numbering conventions for catalyst 3g (Fig. S3) and aziridinium substrate (Fig. S4) are
defined, along with dihedral angles of interest.

Figure S3 Conventions for catalyst 3g. Numbering of hydrogen bonds (1-3) is shown. The atoms used to

measure the BINAM dihedral angle are highlighted in dark red.
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Figure S4 Conventions for aziridinium ion. The phenyl rings are identified by their positioning relative to the
forming and breaking bonds. The atoms used to measure the dihedral of the a-phenyl ring (a-dihedral) are
highlighted in dark red. The pB-dihedral is defined analogously. Sign convention is used such that, as shown in
the figure, clockwise rotation of the a-dihedral and counter-clockwise rotation of the B-dihedral corresponds

to a more positive dihedral angle.
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Computation — MF Solubilization

The relative thermodynamic favorability of solubilizing CsF and KF in dichloromethane was calculated by
combining experimental thermodynamic data with computed values in a thermodynamic cycle. Data by Chase
et al.>® were obtained from the NIST Chemistry WebBook SRD 69.5” “MF” refers to a giant ionic lattice in
solid state and an ion paired formula unit in gas and solution phases (Tables S6-S8).

Table S6: Standard enthalpy and entropy changes at 298.15 K

Source AH (kJ/mol) AS (J/K/mol)
At (CsFes) Ref (56) -554.7 -
As(KFs) Ref (56) -568.6 -
At (CsFg) Ref (56) -356.5 -
At (KFg) Ref (56) -326.8 -
Asolv (CsF) Computed -122.8 -22.3
Asoiv (KF) Computed -130.8 -23.1

Gas phase entropies evaluated at 1 bar pressure. Solution phase at 1 M concentration

Table S7: Standard molar entropies at 298.15 K

Source AS (J/K/mol)

CsF Ref (56) 88.3
CsFg Ref (56) 243.2
KFs Ref (56) 66.6

KFg Ref (56) 226.6

Table S8: Derived Gibbs free energies at 298.15 K

Process AG (kJ/mol)

CsFe -> CsFg) 152

KF -> KF 194

CsFg -> CsFpem) 116

KFg -> KFoom 124

CsFs) -> CsFoemy 35.8

KFe) -> KFpcem) 70.2

3bpcemy + CsFpcewm) -> 3bFCspem -35.4

3bocemy + KFoemy -> 3bFK pewm) -37.2
3bpcmy + CsFs) -> 3bFCSpemy 0.4
3bpewmy + KFs) -> 3bFK (pem 33.0
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Computation — Asymmetric Catalytic System

Catalyst 3g

Catalyst 3g MD simulation was performed in chloroform for 300 ns. The framework used for RMSD

calculation (Fig. S5) was chosen to prioritize urea conformation. All frames from the trajectory were used for
clustering with RMSD cut-off of 0.7 A. The 11 highest weighted clusters (> 0.5 % weight) were optimized

using DFT (Fig. S6).
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Figure S6 Conformers of 3g with relative Gibbs free energies.

309-Fluoride Complexes

Catalyst 3g complexed with cesium fluoride was simulated using MD for 300 ns. The framework used for
RMSD calculation is shown in Figure S7. All frames from the trajectory were used for clustering with RMSD
cut-off of 0.6 A. The 11 highest weighted clusters were optimized by DFT, with potassium cation (replacing

cesium) and without cation.
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Figure S8 Conformers of 3gF complex, with relative Gibbs free energies.
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Figure S9 Conformers of 3gFeK complex, with relative Gibbs free energies.

Table S9: Key geometric parameters for complexes of 3g with fluoride

Key Distances (A) Key Angles (°)
H-Bond 1 H-Bond 2 H-Bond 3 M-F H-Bond 3 Backbone
3gF-1 1.719 1.693 1.733 - 153.8 71.5
3gF-2 1.812 1.576 1.709 - 156.7 73.2
3gF-3 1.862 1.514 1.589 - 168.9 79.2
3gF-4 1.785 1.544 1.619 - 164.8 86.4
3gF-5 1.740 1.670 1.712 - 155.0 70.4
3gF-6 1.792 1.603 1.597 - 164.7 79.9
3gF-7 1.874 1.539 1.698 - 155.3 105.1
3gF-8 1.696 1.699 1.798 - 155.7 72.6
3gF-9 1.852 1.566 1.708 - 155.4 108.6
3gF-10 1.714 1.748 1.670 - 161.7 71.6
3gF-11 1.714 1.757 1.691 - 160.7 67.7

Table S10: Key geometric parameters for complexes of 3g with potassium fluoride

Key Distances (A) Key Angles ()
H-Bond 1 H-Bond 2 H-Bond 3 M-F H-Bond 3 Backbone
3gFK 1 1.744 1.794 1.872 2.427 153.0 72.6
3gFeK 2 1.729 1.811 1.895 2.427 151.4 74.4
3gFK 3 1.732 1.858 1.804 2.433 160.8 74.7
3gFeK 4 1.845 1.650 1.696 2.442 168.0 775
3gF*K 5 1.743 1.785 1.939 2.424 153.6 74.4
3gFK 6 1.808 1.637 1.714 2.461 166.1 85.4
3gFeK 7 1.801 1.698 1.827 2.429 153.9 74.8
3gFK 8 1.803 1.731 1.715 2.444 162.3 83.7
3gFeK 9 1.734 1.878 1.810 2.429 159.9 69.5
3gFeK 10 1.837 1.643 1.851 2.449 150.3 107.7
3gFK 11 1.820 1.662 1.870 2.447 151.2 110.0

3g-Aziridinium lon Pairs

Catalyst complexed with fluoride and aziridinium ion (“reactive ion pair’’) was simulated using MD for 300 ns.
The framework used for RMSD calculation is shown in Figure S10. All frames from the trajectory were used
for clustering with RMSD cut-off of 0.8 A. The 7 highest weighted clusters (> 1 % weighting) were optimized

using DFT. Cluster weightings at half simulation time (150 ns) compare favorably with those at 300 ns;
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additionally, a duplicate simulation was run with different starting point and was verified to produce

comparable high-weighted clusters after 300 ns.
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Figure S11 Conformers of 3g-F aziridinium reactive ion pair, with relative Gibbs free energies.
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Computation — Transition State Structures and Enantioselectivity

The reactive ion pairs were used to generate transition structure (TS) guesses by aligning the substrate C-N o*
with fluoride, resulting in an ensemble of 11 TSs (with (S) catalyst: 5 to (S,S) product and 6 to (R,R) product).
Ethyl group rotation was checked for the 4 TSs within a 14 kJ/mol window, generating a further 3 conformers

within the window. This ensemble of 7 low energy TSs is used for further analysis.

The TS ensemble indicates that (S)-catalyst affords (S,S) product in 95:5 e.r. in chloroform at 278.15 K. The
major enantiomer is in agreement with experimental data, and the e.r. compares favorably with the

experimental enantioselectivity of 95:5 e.r with potassium fluoride.

The Gibbs free energy distribution of the lowest energy TSs is shown in Figure S12. TS geometries and relative
Gibbs free are given in Figure S13. Key geometric data are tabulated in Table S11. All TS Gibbs free energies
are evaluated at 278.15 K.
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Figure S12 Distribution of TS Gibbs free energies at 278.15 K, to major and minor product.

Transition structures to major enantiomer:
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Transition structures to minor enantiomer:
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Figure S13 Transition state structures to major and minor product, with relative Gibbs free energies
278.15 K.
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Origins of Enantioselectivity

The remainder of this analysis focuses on the two most important TSs, the lowest energy TS to major product
(TS_3gF-Azir-majorl, referred to as TSwmajor), and the lowest energy TS to minor product (TS_3gF-Azir-
minorl, referred to as TSwinor), with AAG* = -6.7 kJ/mol and AAE* = -7.1 kJ/mol.

Catalyst Conformation

Catalyst 3g forms extensive intramolecular sandwich n-n stacking, reducing conformational freedom. T Swmajor
and TSwinor have the same catalyst conformation, eliminating this as a significant factor in determining
enantioselectivity (Fig. S14).

Figure S14 Superposition of TSwmajor (COnventional coloring) and TSwiner (blue), showing close agreement of
catalyst conformation. Substrate was removed for clarity.

Substrate Conformation

Substrate conformation favors conjugation of phenyl ring with the forming and breaking bonds, as typical for
a benzylic substitution. In TSwajor, this ring has dihedral of -34.5°, whereas in TSwinor it is further from
conjugation at -54.2°. A dihedral scan of the a-phenyl ring in the fluoride delivery TS with achiral Schreiner’s
urea was used to estimate this contribution as ~4 kJ/mol (Fig. S15. See Fig. S4 for dihedral definition). Fitting
of a quartic polynomial to the 9 points -65° < dihedral < 25° estimates that the minimum of the curve is

at -27.6°, thus TSwmajor is approximately 7° from optimum and TSwinor 27° from optimum.
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Figure S15 Dihedral scan of a-phenyl ring in TS with achiral Schreiner’s urea. The dihedral angles of TSwmajor

(green) and TSwinor (red) are indicated on the energy plot.

Single point energy evaluation of TSwmajor and TSwminor With catalyst removed (i.e. aziridinium + fluoride) favors
TSwmajor by 4.9 kJ/mol, consistent with a-phenyl conjugation as the main factor in substrate distortion. TSwmajor
is looser than T Swminor, With both C—F and C—N bonds longer. If the a-phenyl ring of the aziridinium + fluoride
TS units is replaced by methyl, the energetic preference for the major drops to 1.7 kd/mol, further supporting

that conjugation of the a-phenyl ring is key to stabilizing TSwmajor (Fig. S16).
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Figure S16 Truncated T Swmajorand TSwminor. LHS: TS geometries and energetic preference with catalyst removed.
RHS: Energetic preference with conjugating a-phenyl truncated to methyl group. The drop in energetic
preference for major over minor by 3.2 kJ/mol is consistent with a key role for a-phenyl conjugation is

stabilizing the major.

Non-covalent Interactions

Aziridinium substrate docks into the catalyst, forming a cation-n interaction with one of the BINAM aromatic
rings (TSwmajor: 2.26 A, TSwminor: 2.41 A). To estimate the difference in cation-n strength, the BINAM aromatic
ring was truncated, suggesting a difference in strength of approximately 1.5 kJ/mol (Fig. S17).
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Figure S17 Truncated TSwmajor (LHS) and TSwminor (RHS), with key BINAM aromatic ring removed (red
wireframe). AE* is reduced from -7.1 kJ/mol to -5.5 kJ/mol suggesting a stronger cation-r interaction in TSwmajor

by approximately 1.5 kJ/mol.

All low energy TSs feature 3 hydrogen bonds from catalyst to fluoride (though H Bond 3 is relatively

elongated). Hydrogen bond lengths demonstrate that in TSwminor, fluoride is bound further away from the
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BINAM core (H bonds 1 and 3, longer; H bond 2, shorter). Analysis of the geometry of TSwminor SUggests that
this is due to lack of room for the substrate, caused by the proximity of the BINAM backbone (Fig. S18, see
also IRC analysis). Single point energy of catalyst binding fluoride in the TS geometries (i.e. aziridinium

removed) favors TSwmajor DY 2.5 kd/mol, consistent with slightly preferential fluoride binding in TSwmagjor.

Minor TS

Y 1801 A 1.813 © )\ £

@ 2.01

' } ~ U

- i€

Figure S18 Comparison of fluoride binding environment in TSwmajor and TSwminor. Distances are consistent with

steric congestion in T Swinor.

Non-covalent interaction (NCI) plots were calculated for TSwmajor and TSwminer from the optimization density,

highlighting the extensive non-covalent interactions in the TSs (Fig. S19).

TSMinqr

Cation -
Steric contact

Figure S19 Visualization of non-covalent interactions in TSwmajor and T Swminer USiNG the non-covalent interaction

index. Key NCls are highlighted.
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Substituent Tolerance

Diverse substituents are tolerated on aziridinium nitrogen, without substantial change in enantioselectivity
(11 examples (2a-2k) each with KF and CsF, ranging from 92:8 e.r. to 97:3 e.r.). Substrate 2h, with isoindoline
motif, suffers the lowest enantioselectivity at 92:8 e.r.; however, this corresponds to an energy change on the
order of 1 kJ/mol, which is not easily attributable. Substituent tolerance on nitrogen is consistent with the
computed TSs, as the nitrogen substituents point outward of the catalyst pocket in both TSmajor and T Sminor.

Non Stilbene-derived Cyclic Substrates

Cyclic substrates not derived from stilbene are fluorinated with lower enantioselectivity and produce the
opposite enantiomer (R,R) of product. The key substrate-catalyst cation-n interaction is retained, continuing to
orient the substrate such that substituents on nitrogen point out of the catalyst pocket. However, the Sn2 is no
longer benzylic; a factor that contributes approximately half of AAG* for stilbene-derived substrates. This
factor, along with minor rearrangements of the catalyst pocket and substrate docking pose are the expected

origin of reversal of enantioselectivity.
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Intrinsic Reaction Coordinate (IRC) Analysis

The intrinsic reaction coordinate (IRC) pathway was followed for the two TSs, with the IRC pathway to major
and minor products referred to as IRCwmajor and IRCwinor respectively. Geometries were monitored over the IRCs
(Fig. S20). The main bond forming and breaking occurs in the region -0.9 < IRC < 0.9, after which substrate
relaxation occurs. The IRC is plotted from a value of -1.2, where C—F distance is 1.3 A longer than equilibrium,
but fluoride is aligned with the C-N o*. Geometric parameters of the optimized product complex are plotted

as points.
Summary:

o  IRCwuajor is consistently looser in the main bond forming and breaking region than IRCpwinor, COnsistent
with conjugation of the a-phenyl ring with the forming and breaking bonds.

e Both begin tridentate, however H-bond 3 is substantially elongated by the TSs, exceeding 2.11 A in
the case of IRCpwinor.

e AtIRC =-1.2, all hydrogen bonds are similar lengths, both within each IRC pathway and between
each pathway.

o In both IRCwmajor and IRCwinor, H-bond 3 elongates rapidly over the IRC. In IRCwminor, H Bond 3 is
consistently ~0.1 A longer during main bond forming and bond breaking.

e In IRCwinor, fluoride moves away from the BINAM backbone over the IRC (H Bond 1 elongates, H
Bond 2 shortens). H Bond 1 is broken in the product complex.

e Both cation-n interactions lengthen as they transition to CH-n interactions, with the interaction in
IRCwminor consistently longer. As bond forming begins, both cation-n interactions shorten as the
substrate is pulled towards the catalyst. In the minor product complex, the substrate moves
significantly away from the aromatic ring, in contrast to the major where the CH-n remains at roughly
consistent length.

e Asbond forming begins, both BINAM dihedrals decrease, corresponding to an opening of the catalytic
site. Once bond formation is complete, both dihedrals increase, however to a much greater degree in
IRCwinor (1.5°vs 3.5°).

The latter 3 points are consistent with steric clash of substrate and BINAM backbone over IRCuwinor, building

up as the TS is approached and is relieved after the TS, into the product complex.

S63



l H-Bond 142
X e

No—

P

iy

SN

—— Major
oL e e ——— 00T L Minor
~
3
£ C-F
8 — C-N
K7}
[ —— HBond 1
H Bond 2
H Bond 3
—— Cation-pi
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Intrinsic Reaction Coordinate (C-N - C-F) / A
BINAM Dihedral
n i X
3 o
I i
b i —— Major
.g ----- Minor
5 69 |
'
\ i
! 68 /
\ i -
\ e ——- J e -
vV e eeeeeeeeeeeeeeaeee= oooeesss
\ === " i
\ ‘4’ H
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Intrinsic Reaction Coordinate (C-N - C-F) / A

Figure S20 Plot of distances and BINAM backbone angle over the intrinsic reaction coordinate pathway to
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Computation — Thermochemical Data

Table S12: Catalyst 3b

Energies (Ha)

E (opt) G (opt) G-gh (opt) E (sp) G-gh (sp)
3b -3064.986424 -3064.490460 -3064.476912 -3068.773763 -3068.264251
3bF<Cs -3185.082340 -3184.585204 -3184.572779 -3188.943228 -3188.433667
3bFeK -3764.904108 -3764.406820 -3764.394299 -3768.696028 -3768.186219

Table S13: Uncoordinated 3g
Energies (Ha)

E (opt) G (opt) G-gh (opt) E (sp) G-gh (sp)
3g-1 -5374.209878 -5373.382114 -5373.356062 -5380.855333 -5380.001517
39-2 -5374.228039 -5373.389687 -5373.369400 -5380.854932 -5379.996293
3g-3 -5374.230811 -5373.390093 -5373.370810 -5380.855792 -5379.995791
3g-4 -5374.212056 -5373.381566 -5373.357044 -5380.850705 -5379.995693
3g-5 -5374.214784 -5373.381662 -5373.358268 -5380.852000 -5379.995484
3g-6 -5374.223051 -5373.386103 -5373.364819 -5380.853067 -5379.994835
3g-7 -5374.201461 -5373.374535 -5373.348240 -5380.846975 -5379.993755
3g-8 -5374.227783 -5373.389910 -5373.368635 -5380.850705 -5379.991556
39-9 -5374.213794 -5373.380408 -5373.357475 -5380.847852 -5379.991532
3g-10 -5374.193262 -5373.366071 -5373.339738 -5380.842507 -5379.988984
3g-11 -5374.190779 -5373.367488 -5373.339304 -5380.839176 -5379.987700

Table S14: 3g-fluoride Complexes
Energies (Ha)

E (opt) G (opt) G-gh (opt) E (sp) G-gh (sp)
3gF-1 -5474.244879 -5473.410096 -5473.387919 -5480.881541 -5480.024581
3gF-2 -5474.246598 -5473.409569 -5473.389287 -5480.881334 -5480.024023
3gF-3 -5474.228022 -5473.400973 -5473.374906 -5480.877042 -5480.023925
3gF-4 -5474.219531 -5473.392783 -5473.366686 -5480.875802 -5480.022957
3gF-5 -5474.247213 -5473.408169 -5473.388308 -5480.881400 -5480.022495
3gF-6 -5474.224673 -5473.399835 -5473.372668 -5480.874245 -5480.022240
3gF-7 -5474.236455 -5473.403109 -5473.380553 -5480.877899 -5480.021998
3gF-8 -5474.248257 -5473.409339 -5473.389425 -5480.880066 -5480.021234
3gF-9 -5474.238684 -5473.403568 -5473.381433 -5480.878410 -5480.021160
3gF-10 -5474.243694 -5473.405371 -5473.384767 -5480.879874 -5480.020947
3gF-11 -5474.248476 -5473.408220 -5473.388610 -5480.877945 -5480.018079
3gFeK-1 -6074.138225 -6073.302407 -6073.280984 -6080.776963 -6079.919723
3gFeK-2 -6074.136304 -6073.300721 -6073.278988 -6080.776652 -6079.919336
3gF+K-3 -6074.132760 -6073.298404 -6073.275528 -6080.774851 -6079.917620
3gFK-4 -6074.115471 -6073.289652 -6073.262649 -6080.770231 -6079.917409
3gF*K-5 -6074.139953 -6073.303028 -6073.281797 -6080.775534 -6079.917379
3gF*K-6 -6074.106044 -6073.284670 -6073.255697 -6080.767244 -6079.916896
3gFeK-7 -6074.134805 -6073.298567 -6073.277711 -6080.773858 -6079.916764
3gF+*K-8 -6074.114247 -6073.290510 -6073.262567 -6080.767683 -6079.916002
3gF°K-9 -6074.138144 -6073.300149 -6073.279590 -6080.773103 -6079.914550
3gF+*K-10 -6074.123575 -6073.287110 -6073.265514 -6080.769170 -6079.911108
3gFK-11 -6074.125895 -6073.291268 -6073.268698 -6080.768092 -6079.910894
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Table S15: 3g-F-Aziridinium lon Pairs

Energies (Ha)

E (opt) G (opt) G-gh (opt) E (sp) G-gh (sp)
3gF-Azir-1 -6148.639173 -6147.519998 -6147.491095 -6156.073614  -6154.925536
3gF-Azir-2 -6148.636685 -6147.520388 -6147.489509 -6156.072391  -6154.925215
3gF-Azir-3 -6148.658183 -6147.527920 -6147.504483 -6156.076418  -6154.922719
3gF-Azir-4 -6148.653838 -6147.524558 -6147.500643 -6156.075710  -6154.922515
3gF-Azir-5 -6148.646573 -6147.521140 -6147.495077 -6156.073840  -6154.922343
3gF-Azir-6 -6148.649583 -6147.524317 -6147.498962 -6156.070828  -6154.920208
3gF-Azir-7 -6148.644443 -6147.519600 -6147.493603 -6156.066932  -6154.916092

Table S16: 3g-F-Aziridinium Transition State Structures (278.15 K)
Energies (Ha)

TS 3gF-Azir- E (opt) G (opt) G-gh (opt) E (sp) G-gh (sp)
majorl -6148.620859  -6147.482565  -6147.459223  -6156.047669  -6154.886032
major2 -6148.621222  -6147.482462  -6147.459606  -6156.047206  -6154.885590
major3 -6148.620397  -6147.478730  -6147.457556  -6156.046317  -6154.883475
major4 -6148.621335  -6147.478758  -6147.458213  -6156.046283  -6154.883160
major5 -6148.615643  -6147.476561  -6147.454183  -6156.041464  -6154.880004
major6 -6148.608842  -6147.470890  -6147.447411  -6156.039741  -6154.878311
major7 -6148.614400  -6147.469990  -6147.449556  -6156.032544  -6154.867700
minorl -6148.616610  -6147.478326  -6147.455128  -6156.044981  -6154.883498
minor2 -6148.617157  -6147.478132  -6147.455271  -6156.044371  -6154.882485
minor3 -6148.617085  -6147.477681  -6147.455286  -6156.043888  -6154.882090
minor4 -6148.620942  -6147.479131  -6147.458279  -6156.043213  -6154.880551
minor5 -6148.619145  -6147.478918  -6147.456607  -6156.041499  -6154.878961
minor6 -6148.618055  -6147.475814  -6147.454514  -6156.042275  -6154.878734
minor7 -6148.618091  -6147.475443  -6147.454226  -6156.042070  -6154.878205
minor8 -6148.592956  -6147.458077  -6147.432952  -6156.028361  -6154.868357

Table S17: Miscellaneous
Energies (Ha)
E (opt) G (opt) G-gh (opt) E (sp) G-gh (sp)
CsF) -120.001129 -120.021281 -120.021283 -120.088507 -120.108661
CsFocwm -120.040461 -120.061200 -120.061202 -120.135181 -120.155922
KF ) -699.816535 -699.834673 -699.834674 -699.839431 -699.857570
KFocwm -699.866799 -699.885504 -699.885506 -699.889109 -699.907816
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Computation — Coordinates and MD Input Files

Coordinates for DFT stationary points (in .xyz format) are provided and uploaded separately. MD topology

and input files are also provided.
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Determination of the Absolute Configuration (Single Crystal X-ray Diffraction Studies)

The absolute configuration was determined both by comparison of the optical rotation of compound 8 (see
characterization section) to known literature values'? and by single crystal X-ray diffraction.

Four attempts were made to grow single crystals of 2g and its 2g-HCI salt from 1) heptane/THF (vial 1),
2) heptane/THF (vial 2), 3) EtOH (vial 3) and 4) Heptane/EtOAc (vial 4).

Single crystal X-ray diffraction data were collected using a (Rigaku) Oxford Diffraction Supernova
diffractometer (Acy = 1.54184 A; Amo = 0.71073 A) fitted with an Oxford CryoSystems 700 Series
CryoStream.%® In general, a suitable crystal was chosen and was mounted on a 200 um MiTeGen loop using
perfluoropolyether oil. The CrysAlisPro software was used for data collection, as well as peak hunting,
indexing reflections in reciprocal space, integration of the raw frames and application of corrections including
interframe scaling, Lorentz, flood field and dark current corrections. The CrysAlisPro suite was also used to
examine raw images, study harvested peaks in reciprocal space and produce reconstructions of reciprocal
lattice layers. All structures were solved ab initio from the integrated intensities using ShelXS,*® and refined
using full-matrix least-squares refinement with CRYSTALS.® ¢! For ease of comparison, for isomorphous
structures, the results reported here were based on the same starting model which was modified and refined as
appropriate. In some cases, the displacement ellipsoids were found to be prolate, so these structures were
modelled as disordered with a split-site and competitive occupancy refinement. Hydrogen atoms were usually
clearly visible in the difference Fourier map. The hydrogen atoms were positioned at geometrically sensible
positions and refined using soft restraints prior to inclusion in the refinement using a riding model.®> While
most hydrogen aqueous atoms were visible in the difference Fourier maps, some were not, in particular those
for data collected at room temperature; these were positioned based on hydrogen bonding interactions. It is

highly possible that some of these are dynamic which may explain the unusual contacts.

Initial studies at 150 K indicated the presence of two distinct compounds, both monoclinic: 13.50 A, 18.04 A,
15.82 A, B = 107.1°, V = 3683 A%, and 8.47 A, 11.66 A, 16.09 A, B = 100.5°, V = 1562 A® Preliminary
structure determination showed these to be the HCI salt (2g-HCI) and the neutral molecule respectively. The
data collected on the 2g-HCI solved in the space group P2; with an approximate c-glide plane and giving a
structure with four formula units in the asymmetric unit. Significant systematic absence violations in the hOl
class suggested this was a pseudo-glide as well as the high degree of enantiopurity (the crystals came from a
95:5 e.r. mixture). The neutral species also solved in the space group P24, this time with two molecules in the

asymmetric unit partially related by an approximate inversion centre.

Crystals were tested at 300 K from the four different crystallisations. Multiple crystals from samples 1, 3 & 4
were found to contain the neutral species with no indication of a phase change. Crystals from sample 2 were
also tested at 300 K and found to exhibit a different cell, 8.85 A, 17.94 A, 12.01 A, p =99.7°, V = 1880 A3,
which corresponds to a B-centred cell in the original setting seen for 2g-HCI. The structure solved in the space

group P2; with two molecules in the asymmetric unit. In order to confirm the relationship between the two
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phases, a variable temperature data collection was carried out with full data collections at 300 K and 150 K
and unit cells recorded at 25 K intervals. The unit cell parameters were determined (based on the original cell)
and plotted as a function of temperature (Fig. S21). There was a clear discontinuity between 200 K and 175 K
indicative of a phase transition. This was also visible when following the 6 1 7 reflection (Fig. S22) which was
clearly absent at 200 K (and above), and present at 175 K (and below).
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Figure S21. Unit cell parameters relative to the values at 300 K plotted as a function of temperature. Trend-
lines are shown above and below the transition with a broken line in between to guide the eye.
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Figure S22. Intensity for the h 1 7 region where 4.5 < h < 7.5 as a function of temperature showing the
appearance of the 6 1 7 reflection between 200 K and 175 K on cooling and a reconstruction of the relevant

part of the h 1 | layer is shown inset.
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Table S18. Values for the absolute structure determination for 2g and 2g-HCI. P2 probability that the
configuration as refined is correct given the binary condition that the crystal is enantiopure, while P3 is the
probability allowing for the additional racemic possibility. The configuration determination is poor for the VT
experiment particularly after the crystal has undergone the phase transition which visibly degraded the data
quality.

Form (vial) Temp./K  Flack x P2 (correct) P3 (correct) P3(racemic) Configuration

29 (3) 150 K -0.02(11) >0.999999  >0.999999  <0.38x 10!  100% “SS”
2g:HCI (2)  150K-Q  0.03(3)  >0.999999  >0.999999  <0.01x10%2  ~75% “SS”
2g-HCI (2) 300 K-VT 0.16(13)  >0.999999 0.999694  <0.31x10%  ~75% “SS”
2g-HCI (2) 150 K-VT  0.29(10) ; >0.56 x 10*  >0.999943  >50% “SS”

Single crystal diffraction data collected with copper data on the neutral species and on 2g-HCI quench-cooled
to 150 K were examined in detail, as were data for 2g-HCI collected at 300 K and 150 K as part of the variable
temperature study using molybdenum radiation. In the case of the neutral species, both molecules in the
asymmetric unit exhibited the same conformation and the Flack x parameter®®-%° was found to be -0.02(11). In
the case of 2g-HCI the situation was more complex with half of the molecules (two at 300 K and four at 150 K)
exhibiting prolate ellipsoids. The most affected carbon atoms were the stereo centres, but the two adjacent
phenyl rings were also affected though to a lesser extent. Modelling this as disorder led to an inversion at both
centres. Competitively refining the occupancy the disordered components indicated the disorder was
approximately 50% in each case, leading to an overall 3:1 ratio of the two configurations, “SS” and “RR”.
Flack x parameters were refined in each case and Bayesian analysis® of the probabilities carried out. The
Friedel differences were smaller for the molybdenum data leading to a marked loss of precision, and the data
suggested that crystals suffer damage when cooled slowly through the transition. Nevertheless, these values

were in keeping with the major configuration agreeing with that seen for the neutral species (Table S18).

For further details see the full crystallographic data (in CIF format) which are available as associated content
and have been deposited with Cambridge Crystallographic Data Centre (reference codes CCDC 1880527-

1880530); these data can also be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.
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Copies of NMR Spectra
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Substrate Precursors (alcohols)
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Substrates (chlorides and bromides)
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