Supporting Information

Alkali-Metal-Intercalated Aromatic Hydrocarbon Conductors

Ying-Shi Guan,†,∥ Yong Hu,†,∥ Yulong Huang,† Anthony F. Cannella,ًا Changning Li,† Jason N. Armstrong,† and Shengqiang Ren†,*

†Department of Mechanical and Aerospace Engineering, Research and Education in Energy, Environment & Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.

ًاDepartment of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.

∥These authors contributed equally.
Figure S1. The EPR spectra of the K-BT, K-PT and K-QT samples sintered at 450 K, 570 K, and 590 K, respectively. Potassium : biphenyl = 2 : 1(K-BP), potassium : p-terphenyl = 3 : 1(K-TP), and potassium : p-quarterphenyl = 4 : 1(K-QP). Inset shows the EPR spectra of the biphenyl, p-terphenyl and p-quarterphenyl powder samples.

Figure S2. SEM images of potassium doped biphenyl samples (Potassium : biphenyl = 2 : 1) at different temperatures
Figure S3. SEM images of potassium doped quarterphenyl samples (potassium : p-querpheryl = 4 : 1) at different temperatures.

Figure S4. The Raman spectra biphenyl powder.
Figure S5. The Raman spectra of p-terphenyl powder.

Figure S6. The Raman spectra of quartphenyl powder.