Supporting Information

Control of Dynamics in Polyelectrolyte Complexes by Temperature and Salt

1Mo Yang, 1,2Jianbing Shi and 1Joseph B. Schlenoff

1Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States and 2School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

Figure S1. SEC chromatograms of PMA-Na and PMAPTAC samples in 0.3 M NaNO₃ mobile phase.
Figure S2. Linear viscoelasticity taken before a series of measurements at different temperatures and after, showing no change in sample response. ($n_{av} = 662$ sample in 0.1 M NaCl at 25 °C)
Figure S3. 1H solution NMR spectra of PMA-Na/PMAPTAC 2097B coacervate dissolved in 1.0 M KBr in D$_2$O. H$_2$O is at 4.75 ppm. Integrals of peaks corresponding to PMAPTAC only (Area A) and PMAPTAC+PMA-Na (Area B) are shown. Theoretical area ratio is 13:12 for a 1.00:1.00 stoichiometric ratio of MAPTAC:MA-Na.
Figure S4. LVE of PMA/PMAPTA PEC in pure water. Note the crossover point at high frequencies apparent for the entangled samples ($n_{av} = 763$ and 662). Reference temperature = 25 °C.
Figure S5. Photograph of PMA/PMAPTA PEC (coacervate), sample \(n_{av} = 2097 \) B, in 0.3 M NaCl at room temperature.

Figure S6. \(G' \) and \(G'' \) (upper panels) and complex viscosity (lower panels) for some of the PECs in 0.10 M KBr and 0.10 M NaCl illustrating the greater degree
of "doping" for KBr. 0.30 M KBr leads to the lowest G', G" and η values. G': filled points, G'": open points. Data were collected at 25 °C.

Figure S7. TTS a and b shift factors for PECs in 0.03 M, 0.1 M and 0.3 M NaCl at various temperatures. Reference temperature = 25 °C.
Figure S8. TTS of PECs in 0.03 M, 0.1 M, 0.3 M NaCl presented with upwards translation of G' (filled circles) and G'' (open circles) by the amount indicated. Reference temperature = 25 °C.
Figure S9. Example of the use of the minimum in tanδ to obtain G_0. ($n_{av} = 2097B$ sample in 0.03 M NaCl, reference temperature = 25 °C.

Figure S10. G' as a function of ωa_T in 0.03 M (left) 0.10 M (center), and 0.3 M (right) NaCl, reference temperature = 25 °C.
Figure S11. Extrapolations of $n_{av} = 2097$B PEC viscosities to estimate zero shear viscosity. Data from Figure 5.

Table S1. Zero shear viscosities η_0 (including $n_{av} = 2097$B)

<table>
<thead>
<tr>
<th>[NaCl]</th>
<th>0.03 M</th>
<th>0.10 M</th>
<th>0.30 M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>η_0 (Pa s)</td>
<td>η_0 (Pa s)</td>
<td>η_0 (Pa s)</td>
</tr>
<tr>
<td>$n_{av} = 213$</td>
<td>470</td>
<td>112</td>
<td>1.5</td>
</tr>
<tr>
<td>$n_{av} = 343$</td>
<td>1070</td>
<td>270</td>
<td>5.8</td>
</tr>
<tr>
<td>$n_{av} = 662$</td>
<td>10600 (7500)b</td>
<td>1700 (1200)</td>
<td>49 (20)</td>
</tr>
<tr>
<td>$n_{av} = 763$</td>
<td>13500 (8500)</td>
<td>2940 (2300)</td>
<td>103 (50)</td>
</tr>
<tr>
<td>$n_{av} = 2097$B</td>
<td>~400000a (280000)</td>
<td>~100000a (740000)</td>
<td>~2000a (800)</td>
</tr>
</tbody>
</table>

aestimated from the curve fitting in Figure S11.

bquantities in parentheses are zero shear viscosities calculated from $\eta_0 \approx G_0 \tau_{rep}$ using values in Tables 4 and 5. Calculated viscosities are about 30-50% lower than measured.
Example calculation for estimating d^{-3}, the chain density for PECs

In 0.03 M NaCl the volume fraction of polymer = 0.298. In 1.0 m3 there is 0.3 m3 polymer or 330 kg. For an average monomer molecular weight of 135 g mol$^{-1}$ this is 2.44×10^3 moles or 1.47×10^{27} monomers m$^{-3}$ or 1.14×10^9 monomers per m or 8.8×10^{-10} m between monomers on average. i.e. $d = 0.88 \times 10^{-9}$ m.

Figure S12. Volume fraction of polymer as a function of [NaCl]. The point at 0.6 M is obtained from the equation $y = q[MA]$ where $q = 1.71$ and $y = 1$ (i.e. polymer is completely dissociated and the volume fraction $\rightarrow 0$).
Figure S13. Temperature dependence from Figure S7, \(n_{av} = 2097 \) sample, replotted to obtain activation energies according to the Arrhenius relationship. Reference temperature = 25 °C.
Figure S14. Plot of $1/\tau_{b,e}$ versus $(1-y)y^2$. Using $y = q[MA]$ where $q = 1.71$, $\tau_{b,y}$ values from Table 5, Equation 19 $\frac{1}{\tau_{b,y}} = \frac{1}{\tau_{b,i}} + \frac{1}{\tau_{b,e}}$, and $\tau_{b,i} = 1.4 \times 10^{-4}$ from Table 5.

Figure S15. Doping level y versus [NaCl] using the data of Table 3. The slope (1.71) is q, the where $y = q[NaCl]$.
Table S2. TTSS shift factors.

<table>
<thead>
<tr>
<th>n_{av}</th>
<th>2097B</th>
<th>763</th>
<th>662</th>
<th>343</th>
<th>213</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_s</td>
<td>b_s</td>
<td>a_s</td>
<td>b_s</td>
<td>a_s</td>
</tr>
<tr>
<td>Water</td>
<td>1.62</td>
<td>0.70</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.03M</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.1M</td>
<td>0.250</td>
<td>0.898</td>
<td>0.232</td>
<td>0.866</td>
<td>0.164</td>
</tr>
<tr>
<td>0.3M</td>
<td>0.00453</td>
<td>1.04</td>
<td>0.0116</td>
<td>1.28</td>
<td>0.00593</td>
</tr>
</tbody>
</table>

Figure S16. Rheological behavior of 31 wt% solutions of individual PMA-Na_{2081B} and PMAPTAC_{2112B} in 1.0 M NaCl: G' (filled symbols), G" (open symbols) and complex viscosity are all much lower than for the corresponding PEC, also shown for comparison. Reference temperature = 25 °C.
Figure S17. $\tau_{b,y}$ as a function of doping level, y, for PMA/PMAPTA PEC with $n_{av} = 763$.