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Figure S1. *H NMR spectrum of HzL in DMSO-ds.
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Figure S2. C NMR spectrum of HzL in DMSO-ds.
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Figure S3. FTIR spectra for the as-synthesized, methanol exchanged and desolvated 1, indicating
loss of lattice DMF and coordinated water upon activation.
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Figure S4. An ORTEP view of the asymmetric unit in 1.
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Figure S5. Angles between the two phenyl rings (left) and pyridyl rings (right) in the ligands HoL
and bpp, respectively, in 1.
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Figure S6. Solid State Circular Dichroism (CD) spectrum for 1.
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Figure S7. Powder X-ray diffraction (PXRD) patterns of the as-synthesized, methanol exchanged
and desolvated 1 compared with the simulated powder pattern obtained from the single crystal
X-ray data.
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Figure S8. Thermogravimetric profiles for (a) as-synthesized 1, (b) methanol-exchanged 1 and
(c) the desolvated 1.
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Figure S9. In-situ variable temperature powder X-ray diffraction pattern of the as-synthesized 1.

Figure S10. Schematic representation for the generation of open pores and active metal center in
1 through thermal treatment.
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Figure S11. N2 and CO> sorption isotherms for 1, at 77 K and 195 K, respectively. Filled circles
and open circles indicates the adsorption and desorption points, respectively.
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Figure S12. BET surface area of 1 obtained from the CO, adsorption isotherm at 195 K.
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Figure S13. Langmuir surface area of 1 obtained from the CO. adsorption isotherm at 195 K.
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Figure S14. CO> sorption isotherms at different temperatures for 1.
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Figure S15. Variation of isosteric heat of adsorption calculated from the CO; isotherms of 1 at
four different temperatures with respect to its surface coverage.
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Figure S16. Example of integration in the *H NMR spectrum for the determination of percent
conversion in the Knoevenagel condensation reaction of benzaldehyde with malononitrile
(Table 1, entry 1).

Calculation of percent conversion in the Knoevenagel condensation reaction of benzaldehyde
with malononitrile catalyzed by 1

Total amount of compounds at the end (see Figure S16):

Unreacted bezaldehyde (10.05 ppm) + 2-benzylidenemalononitrile (7.81 ppm) = 0.04 + 1.00 = 1.04

Yield of 2-benzylidenemalononitrile = (1/1.04) * 100 = 96.1 %.

R e IR E ]
hhhhhhhhhhhhhhhhhhhhh

1.00-=

] A

T T T T
105 10.0 9.5 9.0 8.5

T T T T T
8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5
Chemical shieft (ppm)

Figure S17. 'H NMR spectrum (in CDCls) for Knoevenagel condensation reaction of
benzaldehyde with malononitrile in absence of any catalyst (Table 1, entry 15).
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Figure S18. Example of integration in the *H NMR spectrum for the determination of percent
conversion in Strecker reaction of acetophenone with aniline and trimethylsilyl cyanide (Table 2,
entry 4).

Calculation of product yield in the Strecker reaction of acetophenone with aniline and
trimethylsilyl cyanide (TMSCN) catalyzed by 1

Total amount of compounds at the end (see Figure S17):

Unreacted acetophenone (2.64 ppm) + 2-phenyl-2-(phenylamino)propanenitrile (1.97 ppm) = 1.72 + 3.18
=49

Yield of 2-benzylidenemalononitrile = (3.18/4.9) * 100 = 64.8 %.
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Figure S19. *H NMR spectrum (in CDCls) for Strecker reaction of acetophenone with aniline and
trimethyl silyl cyanide in absence of any catalyst (Table 2, entry 14).
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NMR spectra of the isolated products from the Knoevenagel reaction:
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Figure S20. *H NMR spectrum of benzylidene malononitrile (Table 1, entry 1) in CDCls.
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Figure S21. 3C NMR spectrum of benzylidene malononitrile (Table 1, entry 1) in CDCls.
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Figure S22. *H NMR spectrum of 2-(4-fluorobenzylidene)malononitrile (Table 1, entry 2) in CDCls.
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Figure S23. °C NMR spectrum of 2-(4-fluorobenzylidene)malononitrile (Table 1, entry 2) in CDCls.
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Figure S24. *H NMR spectrum of 2-(4-chlorobenzylidene)malononitrile (Table 1, entry 3) in CDCls.
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Figure S25. 3C NMR spectrum of 2-(4-chlorobenzylidene)malononitrile (Table 1, entry 3) in CDCls.
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Figure S26. 'H NMR spectrum of 2-(4-bromobenzylidene)malononitrile (Table 1, entry 4) in CDCls.
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Figure S27. 3C NMR spectrum of 2-(4-bromobenzylidene)malononitrile (Table 1, entry 4) in CDCls.

S-16



W oo
®EE m =
FEE EEe .
) o /

W o

i it Z
=3 < =
33 a =
9.0 85 8.0 75 7.0 65 6.0 55 50 45 40 35 30 25 20
Chemical shift (ppm)

Figure S28. 'H NMR spectrum of 2-(4-methylbenzylidene)malononitrile (Table 1, entry 5) in CDCls.
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Figure S29. 13C NMR spectrum of 2-(4-methylbenzylidene)malononitrile (Table 1, entry 5) in CDCls.
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Figure S30. 'H NMR spectrum of 2-(4-methoxybenzylidene)malononitrile (Table 1, entry 6) in
CDCls.
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Figure S31. $3C NMR spectrum of 2-(4-methoxybenzylidene)malononitrile (Table 1, entry 6) in
CDCls.
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Figure S32. *H NMR spectrum of 2-(4-nitrobenzylidene)malononitrile (Table 1, entry 7) in CDCls.
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Figure S33. *C NMR spectrum of 2-(4-nitrobenzylidene)malononitrile (Table 1, entry 7) in CDCls.
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Figure S34. *H NMR spectrum of 2-(3-chlorobenzylidene)malononitrile (Table 1, entry 8) in CDCls.
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Figure S35. 3C NMR spectrum of 2-(3-chlorobenzylidene)malononitrile (Table 1, entry 8) in CDCls.
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Figure S36. 'H NMR spectrum of 2-(3-bromobenzylidene)malononitrile (Table 1, entry 9) in CDCls.
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Figure S37. 3C NMR spectrum of 2-(3-bromobenzylidene)malononitrile (Table 1, entry 9) in CDCls.
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Figure S38. 'H NMR spectrum of 2-(3-methoxybenzylidene)malononitrile (Table 1, entry 10) in
CDCla.
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Figure S39. 13C NMR spectrum of 2-(3-methoxybenzylidene)malononitrile (Table 1, entry 10) in
CDCls.
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Figure S40. *H NMR spectrum of 2-(3-nitrobenzylidene)malononitrile (Table 1, entry 11) in CDCls.
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Figure S41. *C NMR spectrum of 2-(3-nitrobenzylidene)malononitrile (Table 1, entry 11) in CDCls.
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Figure S42. *H NMR spectrum of methyl 2-cyano-3-phenylacrylate (Table 1, entry 12) in CDCls.
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Figure S43. 3C NMR spectrum of methyl 2-cyano-3-phenylacrylate (Table 1, entry 12) in CDCls.
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Figure S44. 'H NMR spectrum of methyl 2-cyano-3-(p-tolyl)acrylate (Table 1, entry 13) in CDCls.
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Figure S45. *C NMR spectrum of methyl 2-cyano-3-(p-tolyl)acrylate (Table 1, entry 13) in CDCls.
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Figure S46. *H NMR spectrum of methyl 3-(3-chlorophenyl)-2-cyanoacrylate (Table 1, entry 14)
in CDCls.
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Figure S47. *C NMR spectrum of methyl 3-(3-chlorophenyl)-2-cyanoacrylate (Table 1, entry 14)
in CDCls.
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NMR spectra of the isolated products from the Strecker reaction:
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Figure S48. 'H NMR spectrum of 2-phenyl-2-(phenylamino)acetonitrile (Table 2, entry 1) in CDCls.

68

= 4 "
- P S o -~ b |
3 z 03 B!
3 4 sz 2 :
T
iy 1.2
i g
4 h/©
e 'iH“
T
d
(‘L‘[ .
I, 1
\
h i
‘
a b
! | h

T T T T T T T T T T T T T T T
150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45
Chemical shift (ppm)

Figure S49. 3C NMR spectrum of 2-phenyl-2-(phenylamino)acetonitrile (Table 2, entry 1) in CDCls.

S-27



- = -

b s =

v + N

[
|
- f
| |
| /
N
- 13
N
H
Me'
n |
1 A L A
I & 2 » P & &
b S 2 2 2
T v g T v T T - T T T - T - T T T
8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 35 3.0 25 2.0 1.5
Chemical shift (ppm)

Figure S50. *H NMR spectrum of 2-(phenylamino)-2-(p-tolyl)acetonitrile (Table 2, entry 2) in CDCls.
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Figure S51. *C NMR spectrum of 2-(phenylamino)-2-(p-tolyl)acetonitrile (Table 2, entry 2) in
CDCls.
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Figure S52. 'H NMR spectrum of 2-(4-fluorophenyl)-2-(phenylamino)acetonitrile (Table 2, entry
3) in CDCls.
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Figure S53. 3C NMR spectrum of 2-(4-fluorophenyl)-2-(phenylamino)acetonitrile (Table 2, entry
3) in CDCls.
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Figure S54.
CDCla.
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Figure S55. **C NMR spectrum of 2-phenyl-2-(phenylamino)propanenitrile (Table 2, entry 4) in

CDCls.
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Figure S56. *H NMR spectrum of 2-(4-chlorophenyl)-2-(phenylamino)propanenitrile (Table 2,
entry 5) in CDCls.
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Figure S57. 3C NMR spectrum of 2-(4-chlorophenyl)-2-(phenylamino)propanenitrile (Table 2,
entry 5) in CDCls.
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Figure S58. 'H NMR spectrum of 2-(4-fluorophenyl)-2-(phenylamino)propanenitrile (Table 2,
entry 6) in CDCls.
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Figure S59. 3C NMR spectrum of 2-(4-fluorophenyl)-2-(phenylamino)propanenitrile (Table 2,
entry 6) in CDCls.
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Figure S60. 'H NMR spectrum of 2-(4-methoxyphenyl)-2-(phenylamino)propanenitrile (Table 2,
entry 7) in CDCls.
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Figure S61. *C NMR spectrum of 2-(4-methoxyphenyl)-2-(phenylamino)propanenitrile (Table 2,
entry 7) in CDCls.
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Figure S62. *H NMR spectrum of 2-(phenylamino)-2-(m-tolyl)propanenitrile (Table 2, entry 8) in
CDCla.
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Figure S63. 13C NMR spectrum of 2-(phenylamino)-2-(m-tolyl)propanenitrile (Table 2, entry 8)
in CDCls.
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Figure S64. *'H NMR spectrum of 2-ethyl-2-(phenylamino)butanenitrile (Table 2, entry 9) in CDCls.
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Figure S65. *C NMR spectrum of 2-ethyl-2-(phenylamino)butanenitrile (Table 2, entry 9) in CDCls.
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Figure S66. *H NMR spectrum of 1-(phenylamino)cyclopentanecarbonitrile (Table 2, entry 10) in

CDCls.
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Figure S67. 13C NMR spectrum of 1-(phenylamino)cyclopentanecarbonitrile (Table 2, entry 10)
in CDCls.
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Figure S68. *H NMR spectrum of 1-(phenylamino)cyclohexanecarbonitrile (Table 2, entry 11) in
CDCla.
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Figure S69. *C NMR spectrum of 1-(phenylamino)cyclohexanecarbonitrile (Table 2, entry 11) in
CDCls.
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Figure S70. *H NMR spectrum of 2-(phenylamino)-2-(pyridin-4-yl)propanenitrile (Table 2, entry
12) in CDCls.
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Figure S71. *C NMR spectrum of 2-(phenylamino)-2-(pyridin-4-yl)propanenitrile (Table 2, entry
12) in CDCls.
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Figure S72. *H NMR spectrum of 2-(phenylamino)-2-(pyridin-3-yl)propanenitrile (Table 2, entry
13) in CDCls.
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Figure S73. 3C NMR spectrum of 2-(phenylamino)-2-(pyridin-3-yl)propanenitrile (Table 2, entry
13) in CDCls.
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Figure S74. PXRD patterns of 1 before and after catalysis experiments.
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Figure S75. % conversion for three consecutive cycles of (i) Knoevenagel condensation reaction
of benzaldehyde and malononitrile and (ii) Strecker reaction of benzaldehyde with aniline and
trimethylsilyl cyanide, catalysed by 1.
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Figure S76. Progress of the reaction with time in presence of catalyst 1 (solid lines) and after
separating the catalyst from the reaction mixture (dotted lines) for: (left) Knoevenagel reaction of

benzaldehyde with malononitrile, and (right) Strecker reaction of benzaldehyde with aniline and
trimethylsilyl cyanide.
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Single Crystal X-ray Data Collection and Refinement. Using an optical microscope, one
suitable crystal of 1 was put inside a nylon loop attached to a goniometer head which was then
placed under a cold stream of nitrogen gas for slow cooling to 100 K. Based on the crystal
suitability from diffraction photographs and unit cell determination, data were collected on a
Kappa APEX Il diffractometer as described earlier from our laboratory.S! After integration of the
data by the program SAINT®? to obtain values of F? and o(F?) for each reflection, data were further
corrected for Lorentz and polarization effects followed by the application of an absorption
correction (SADABS).5? The crystal structure was solved by direct method using SHELXS
program of SHELXTL package and refined by full-matrix least square methods with SHELXL-
201433 within the OLEX2 crystallographic software suite.5* The space group was chosen based on
systematic absences and confirmed by the successful refinement of the structure. Several full-
matrix least-squares/difference Fourier cycles were performed to complete the refinement of the
structure to convergence. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms
were placed in ideal positions and refined as riding atoms. All non-hydrogen atoms were refined
with anisotropic displacement parameters. Final crystallographic parameters and basic information
pertaining to data collection and structure refinement are summarized in Table S1. Selected bond
lengths (A) and bond angles (degree) are listed in Table S2. All figures were drawn using
MERCURY V 3.0% and DIAMOND V 3.2.%¢

(S1) (a) Gupta, V; Mandal, S. K. Coordination driven self-assembly of [2 + 2 + 2] molecular squares:
synthesis, crystal structures, catalytic and luminescence properties. Dalton Trans., 2018, 47, 9742-
9754. (b) Gupta, V.; Khullar, S.; Kumar, S.; Mandal, S. K. Construction of a robust pillared-layer
framework based on the rare paddlewheel subunit [Mn,"(4-O.CR)4L.]: synthesis, crystal structure
and magnetic properties. Dalton Trans., 2015, 44, 16778-16784. (c) Khullar. S.; Mandal. S. K.
Ancillary ligand assisted self-assembly of coordination architectures of Mn(ll): the effect of the N-
alkyl group on a tridentate ligand. Dalton Trans. 2015, 44, 1203-1210.

(S2) APEX2, SADABS and SAINT, Bruker AXS Inc., Madison, WI, USA, 2008.

(S3)  Sheldrick, G. M. SHELXTL Version 2014/7,

(S4) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard J. A. K.; Puschmann, H. OLEX2 a
complete structure solutlon, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341.

(S5)  Macrae, C. F.; Bruno, 1. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-
Monge, L.; Taylor, R.; van de  Streek, J.; Wood, P. A. Mercury CSD 2.0 - New Features for the
Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr., 2008, 41, 466-470.

(S6) Putz, H.; Brandenburg, K. Diamond - Crystal and Molecular Structure Visualization.
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Table S1. Crystallographic Data Collection and Structure Refinement Parameters for 1.

Chemical Formula C32H37CdN306Si
Formula Weight (g/mol) 700.13
Temperature (K) 100(2)
Wavelength (A) 0.71073
Crystal System orthorhombic
Space Group P212:2
a(A) 21.4402(6)
b (A) 24.0515(5)
c(A) 6.25270(10)
a(°) 90

B () 90

v (°) 90

z 4

V (A% 3224.32(12)
Density (g/cmd) 1.442
p(mm?) 0.761
F(000) 1440
Theta (°) Range for Data Coll. 1.27 to 25.06
Reflections Collected 30642
Independent Reflections 5731
Reflections with 1 >26(1)) 5475

Rint 0.0281
No. of Parameters refined 393
GOF on F? 1.073
Final RiA#WR2® (I >205(1)) 0.0298/0.0672
Weighted R1/WR>(all data) 0.0319/0.0679
Largest diff. peak 0.505

and hole(eA?) -0.317

aR1 = ZIFo| — [Fcll/Z|Fol. "WR2 = [ZW(Fo 2 — Fc 2)%Zw(Fo 2)2]Y2, where w = 1/[6%(Fo 2) + (aP)? + bP], P = (Fo 2 + 2F¢ /3
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Table S2. Selected bond lengths (A) and angles (°) for 1.

1
Cd1-01 2.456(3) Cd1-02 2.350(3)
Cd1-03 2.410(3) Cd1-04 2.415(3)
Cd1-05 2.308(3) Cd1-N1 2.324(5)
Cd1-N2 2.354(4) O5-H5A 0.8607
05-H5B 0.8621 N3-C30 1.422(8)
N3-C31 1.449(8) N3-C32 1.337(8)
C32-06 1.212(8) 05-Cd1-N1 91.22(19)
05-Cd1-02 85.90(12) N1-Cd1-02 91.54(14)
05-Cd1-N2 88.03(17) N1-Cd1-N2 177.68(15)
02-Cd1-N2 86.22(13) 05-Cd1-03 138.17(12)
N1-Cd1-03 90.31(16) 02-Cd1-03 135.84(11)
N2-Cd1-03 91.72(14) 05-Cd1-04 84.33(12)
N1-Cd1-04 98.84(12) 02-Cd1-04 165.88(13)
N2-Cd1-04 83.27(12) 03-Cd1-04 54.18(12)
05-Cd1-01 139.42(11) N1-Cd1-01 84.76(16)
02-Cd1-01 53.97(11) N2-Cd1-01 94.39(14)
03-Cd1-01 82.33(10) 04-Cd1-01 136.22(11)
C30-N3-C31 117.3(5) C32-N3-C30 122.6(6)
C32-N3-C31 119.7(6) 06-C32-N3 125.9(7)
Symmetry codes:
(#1) 'x,y, Z|, (#2) 'x+1/2, -y+1/2, -7, (#3) -x+1/2, y+1/2, -Z', (#4) '-x, -y, z'
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Table S3. Output results of TOPOS program for topology of 1

HHHHHHH R
1:VG Cd bpp Si2 Omain P2(1)2(1)2
HHHHHHH R

Topology for ZE1

Atom ZE1 links by bridge ligands and has

Common vertex with R(A-A) f
ZE1 0.2933 1.4004 -0.0365 (000) 12.177A

ZE1 0.2933 0.4004 -0.0365 (0-10) 12.177A

ZE1 0.2933 0.4004 -1.0365 (0-1-1) 13.895A

ZE1 0.2933 1.4004 -1.0365 (00-1) 13.895A

ol [ ol L

Structure consists of layers (1 0 0) with ZEZCZB
Num. groups=2; Thickness=4.26; Min.Distance=10.720

Coordination sequences

ZE1: 123456 7 8 910

Num 4 812162024 28 32 36 40
Cum 51325416185113 145181 221

TD10=221

Vertex symbols for selected sublattice

ZE1 Point symbol:{4"4.6"2}
Extended point symbol:[4.4.4.4.6(2).6(2)]

4-c net; uninodal net
Topological type: sal/Shubnikov tetragonal plane net (topos&RCSR.ttd) {474.672Y - VS [4.4.4.4.*.*

(17467 types in 3 databases)

Elapsed time: 10.69 sec
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