Anacolosins A-F and Corymbulosins X and Y, Clerodane Diterpenes from *Anacolosa clarkii*

Exhibit Cytotoxicity toward Pediatric Cancer Cell Lines

Shengxin Cai,†,‡ April L. Risinger,§,⊥ Cora L. Petersen,§ Tanja Grkovic,‖ Barry R. O’Keefe,§,¶ Susan L. Mooberry, *,§,⊥ and Robert H. Cichewicz*,†,‡

†Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, ‡Natural Products Discovery Group, and Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, 73019, United States
§Department of Pharmacology and ☼Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
***Natural Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
#Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, 21702, United States
¶Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, United States
List of Contents

Figure S1. Selected 1H-1H COSY and HMBC correlations of compounds 2-8 S4
Figure S2. Selected ROESY correlations of compounds 2-5 and 7 S5
Figure S3. ECD curves of compounds 2, 3, and 5-8 .. S6
Figure S4. Comparison of exprimetal and calculated VCD spectra of Anacolosin B (2) S7
Figure S5. Selected ion extraction of the reaction residue of hydrolysat of Anacolosin D (4) and α-bromo-2-acetonaphthone (11) ... S8
Figure S6. C18 and chiral HPLC analysis of 13 from S and R/S-12 and Anacolosin D (4) S9
Figure S7. $\Delta \delta H (S-R)$ values (ppm) calculated from O-MTPA esters of Corymbulosin (7) S10
Figure S8. 1H NMR (400 MHz) spectrum of Anacolosin A (1) in DMSO-d$_6$ S11
Figure S9. 1C NMR (100 MHz) spectrum of Anacolosin A (1) in DMSO-d$_6$ S12
Figure S10. 1H-1H COSY (500 MHz) spectrum of Anacolosin A (1) in DMSO-d$_6$ S13
Figure S11. HSQC (500 MHz) spectrum of Anacolosin A (1) in DMSO-d$_6$ S14
Figure S12. HMBC (500 MHz) spectrum of Anacolosin A (1) in DMSO-d$_6$ S15
Figure S13. ROESY (600 MHz) spectrum of Anacolosin A (1) in DMSO-d$_6$ S16
Figure S14. ROESY (500 MHz) spectrum of Anacolosin A (1) in CDCl$_3$ S17
Figure S15. HRESIMS spectrum of Anacolosin A (1) .. S18
Figure S16. 1H NMR (600 MHz) spectrum of Anacolosin B (2) in MeOH-d$_4$ S19
Figure S17. 1C NMR (100 MHz) spectrum of Anacolosin B (2) in MeOH-d$_4$ S20
Figure S18. 1H-1H COSY (500 MHz) spectrum of Anacolosin B (2) in MeOH-d$_4$ S21
Figure S19. HSQC (500 MHz) spectrum of Anacolosin B (2) in MeOH-d$_4$ S22
Figure S20. HMBC (500 MHz) spectrum of Anacolosin B (2) in MeOH-d$_4$ S23
Figure S21. ROESY (500 MHz) spectrum of Anacolosin B (2) in MeOH-d$_4$ S24
Figure S22. ROESY (500 MHz) spectrum of Anacolosin B (2) in CDCl$_3$ S25
Figure S23. HRESIMS spectrum of Anacolosin B (2) .. S26
Figure S24. 1H NMR (600 MHz) spectrum of Anacolosin C (3) in MeOH-d$_4$ S27
Figure S25. 1C NMR (150 MHz) spectrum of Anacolosin C (3) in MeOH-d$_4$ S28
Figure S26. 1H-1H COSY (500 MHz) spectrum of Anacolosin C (3) in MeOH-d$_4$ S29
Figure S27. HSQC (500 MHz) spectrum of Anacolosin C (3) in MeOH-d$_4$ S30
Figure S28. HMBC (500 MHz) spectrum of Anacolosin C (3) in MeOH-d$_4$ S31
Figure S29. ROESY (500 MHz) spectrum of Anacolosin C (3) in MeOH-d$_4$ S32
Figure S30. ROESY (500 MHz) spectrum of Anacolosin C (3) in CDCl$_3$ S33
Figure S31. HRESIMS spectrum of Anacolosin C (3) .. S34
Figure S32. 1H NMR (600 MHz) spectrum of Anacolosin D (4) in MeOH-d$_4$ S35
Figure S33. 1C NMR (150 MHz) spectrum of Anacolosin D (4) in MeOH-d$_4$ S36
Figure S34. 1H-1H COSY (500 MHz) spectrum of Anacolosin D (4) in MeOH-d$_4$ S37
Figure S35. HSQC (500 MHz) spectrum of Anacolosin D (4) in MeOH-d$_4$ S38
Figure S36. HMBC (500 MHz) spectrum of Anacolosin D (4) in MeOH-d$_4$ S39
Figure S37. ROESY (500 MHz) spectrum of Anacolosin D (4) in MeOH-d$_4$ S40
Figure S38. ROESY (500 MHz) spectrum of Anacolosin D (4) in CDCl$_3$ S41
Figure S39. HRESIMS spectrum of Anacolosin D (4) .. S42
Figure S40. 1H NMR (500 MHz) spectrum of Anacolosin E (5) in MeOH-$_d_4$ S43
Figure S41. 13C NMR (100 MHz) spectrum of Anacolosin E (5) in MeOH-$_d_4$ S44
Figure S42. 1H-1H COSY (500 MHz) spectrum of Anacolosin E (5) in MeOH-$_d_4$ S45
Figure S43. HSQC (500 MHz) spectrum of Anacolosin E (5) in MeOH-$_d_4$ S46
Figure S44. HMBC (500 MHz) spectrum of Anacolosin E (5) in MeOH-$_d_4$ S47
Figure S45. ROESY (500 MHz) spectrum of Anacolosin E (5) in MeOH-$_d_4$ S48
Figure S46. ROESY (500 MHz) spectrum of Anacolosin E (5) in CDCl$_3$ S49
Figure S47. HRESIMS spectrum of Anacolosin E (5) ... S50
Figure S48. 1H NMR (500 MHz) spectrum of Anacolosin F (6) in MeOH-$_d_4$ S51
Figure S49. 1H-1H COSY (500 MHz) spectrum of Anacolosin F (6) in MeOH-$_d_4$ S52
Figure S50. HSQC (500 MHz) spectrum of Anacolosin F (6) in MeOH-$_d_4$ S53
Figure S51. HMBC (500 MHz) spectrum of Anacolosin F (6) in MeOH-$_d_4$ S54
Figure S52. HRESIMS spectrum of Anacolosin F (6) ... S55
Figure S53. 1H NMR (500 MHz) spectrum of Corymbulosin X (7) in MeOH-$_d_4$ S56
Figure S54. 13C NMR (100 MHz) spectrum of Corymbulosin X (7) in MeOH-$_d_4$ S57
Figure S55. 1H-1H COSY (500 MHz) spectrum of Corymbulosin X (7) in MeOH-$_d_4$ S58
Figure S56. HSQC (500 MHz) spectrum of Corymbulosin X (7) in MeOH-$_d_4$ S59
Figure S57. HMBC (500 MHz) spectrum of Corymbulosin X (7) in MeOH-$_d_4$ S60
Figure S58. ROESY (500 MHz) spectrum of Corymbulosin X (7) in MeOH-$_d_4$ S61
Figure S59. HRESIMS spectrum of Corymbulosin X (7) .. S62
Figure S60. 1H NMR (500 MHz) spectrum of Corymbulosin Y (8) in MeOH-$_d_4$ S63
Figure S61. 1H-1H COSY (500 MHz) spectrum of Corymbulosin Y (8) in MeOH-$_d_4$ S64
Figure S62. HSQC (500 MHz) spectrum of Corymbulosin Y (8) in MeOH-$_d_4$ S65
Figure S63. HMBC (500 MHz) spectrum of Corymbulosin Y (8) in MeOH-$_d_4$ S66
Figure S64. HRESIMS spectrum of Corymbulosin Y (8) .. S67
Figure S65. 1H NMR (400 MHz) spectrum of the synthetic standard R/S-13 in MeOH-$_d_4$... S68
Figure S66. 13C NMR (100 MHz) spectrum of the synthetic standard R/S-13 in MeOH-$_d_4$... S69
Figure S67. 1H NMR (400 MHz) spectrum of the synthetic standard S-13 in MeOH-$_d_4$ S70
Figure S68. 13C NMR (100 MHz) spectrum of the synthetic standard S-13 in MeOH-$_d_4$ S71
Figure S1. Selected 1H-1H COSY and HMBC correlations of compounds 2-8.
Figure S2. Selected ROESY correlations of compounds 2-5 and 7
Figure S3. ECD curves of compounds 2, 3, and 5-8
Figure S4. Comparison of exprimetal and calculated VCD spectra of Anacolosin B (2)
Figure S5. Selected ion extraction of the reaction residue of hydrolysate of Anacolosin D (4) and α-bromo-2-acetonaphthone (11)
Figure S6. C18 and chiral HPLC analysis of 13 from S and R/S-12 and Anacolosin D (4)

A: C18 HPLC analysis of 2-methylbutyric acid 2-naphthacyl ester (13) from Anacolosin D (4)
B: C18 HPLC analysis of 13 from S-12 (2-methylbutyric acid)
C: Co-injection of 13 from Anacolosin D (4) and from S-12 on C18 HPLC
D: Chiral HPLC analysis of 13 from Anacolosin D (4) on Phenomenex Cellulose-3 column
E: Co-injection of 13 from the Anacolosin D (4) and from S-12 on Phenomenex Cellulose-3 column
F: Co-injection of 13 from the Anacolosin D (4) and from R/S-12 on Phenomenex Cellulose-3 column
Figure S7. $\Delta \delta_H$ ($S\textendash R$) values (ppm) calculated from O-MTPA esters of Corymbulosin (7)
Figure S8. 1H NMR (400 MHz) spectrum of Anacolosin A (1) in DMSO-d_6
Figure S9. 13C NMR (100 MHz) spectrum of Anacolosin A (1) in DMSO-d_6
Figure S10. 1H-1H COSY (500 MHz) spectrum of Anacolosin A (1) in DMSO-d_6
Figure S11. HSQC (500 MHz) spectrum of Anacolosin A (1) in DMSO-d_6
Figure S12. HMBC (500 MHz) spectrum of Anacolosin A (1) in DMSO-d_6
Figure S13. ROESY (600 MHz) spectrum of Anacolosin A (1) in DMSO-d_6
Figure S14. ROESY (500 MHz) spectrum of Anacolosin A (1) in CDCl$_3$.
Figure S15. HRESIMS spectrum of Anacolosin A (1)
Figure S16. 1H NMR (600 MHz) spectrum of Anacolosin B (2) in MeOH-d_4
Figure S17. 13C NMR (100 MHz) spectrum of Anacolosin B (2) in MeOH-d_4
Figure S18. 1H-1H COSY (500 MHz) spectrum of Anacolosin B (2) in MeOH-d_4
Figure S19. HSQC (500 MHz) spectrum of Anacolosin B (2) in MeOH-\textit{d}_4
Figure S20. HMBC (500 MHz) spectrum of Anacolosin B (2) in MeOH-d_4
Figure S21. ROESY (500 MHz) spectrum of Anacolosin B (2) in MeOH-d_4
Figure S22. ROESY (500 MHz) spectrum of Anacolosin B (2) in CDCl$_3$
Figure S23. HRESIMS spectrum of Anacolosin B (2)
Figure S24. 1H NMR (600 MHz) spectrum of Anacolosin C (3) in MeOH-d_4
Figure S25. 13C NMR (150 MHz) spectrum of Anacolosin C (3) in MeOH-d_4
Figure S26. 1H-1H COSY (500 MHz) spectrum of Anacolosin C (3) in MeOH-d_4
Figure S27. HSQC (500 MHz) spectrum of Anacolosin C (3) in MeOH-d_4
Figure S28. HMBC (500 MHz) spectrum of Anacolosin C (3) in MeOH-d_4
Figure S29. ROESY (500 MHz) spectrum of Anacolosin C (3) in MeOH-\textit{d}_4
Figure S30. ROESY (500 MHz) spectrum of Anacolosin C (3) in CDCl₃
Figure S31. HRESIMS spectrum of Anacolosin C (3)
Figure S32. 1H NMR (600 MHz) spectrum of Anacolosin D (4) in MeOH-d_4
Figure S33. 13C NMR (150 MHz) spectrum of Anacolosin D (4) in MeOH-d_4
Figure S34. 1H-1H COSY (500 MHz) spectrum of Anacolosin D (4) in MeOH-d_4
Figure S35. HSQC (500 MHz) spectrum of Anacolosin D (4) in MeOH-d_4
Figure S36. HMBC (500 MHz) spectrum of Anacolosin D (4) in MeOH-\textit{d}4
Figure S37. ROESY (500 MHz) spectrum of Anacolosin D (4) in MeOH-d_4
Figure S38. ROESY (500 MHz) spectrum of Anacolosin D (4) in CDCl₃
Figure S39. HRESIMS spectrum of Anacolosin D (4)
Figure S40. 1H NMR (500 MHz) spectrum of Anacolosin E (5) in MeOH-d_4
Figure S41. 13C NMR (100 MHz) spectrum of Anacolosin E (5) in MeOH-d_4
Figure S42. 1H-1H COSY (500 MHz) spectrum of Anacolosin E (5) in MeOH-d_4
Figure S43. HSQC (500 MHz) spectrum of Anacolosin E (5) in MeOH-d_4
Figure S44. HMBC (500 MHz) spectrum of Anacolosin E (5) in MeOH-\textit{d}_4
Figure S45. ROESY (500 MHz) spectrum of Anacolosin E (5) in MeOH-d_4
Figure S46. ROESY (500 MHz) spectrum of Anacolosin E (5) in CDCl₃
Figure S47. HRESIMS spectrum of Anacolosin E (5)
Figure S48. 1H NMR (500 MHz) spectrum of Anacolosin F (6) in MeOH-d_4
Figure S49. 1H-1H COSY (500 MHz) spectrum of Anacolosin F (6) in MeOH-d_4
Figure S50. HSQC (500 MHz) spectrum of Anacolosin F (6) in MeOH-d_4
Figure S51. HMBC (500 MHz) spectrum of Anacolosin F (6) in MeOH-d_4
Figure S52. HRESIMS spectrum of Anacolosin F (6)
Figure S53. 1H NMR (500 MHz) spectrum of Corymbulosin X (7) in MeOH-d_4
Figure S54. 13C NMR (100 MHz) spectrum of Corymbulosin X (7) in MeOH-d_4
Figure S55. 1H-1H COSY (500 MHz) spectrum of Corymbulosin X (7) in MeOH-d_4.

Corymbulosin X (7)
Figure S56. HSQC (500 MHz) spectrum of Corymbulosin X (7) in MeOH-d_4
Figure S57. HMBC (500 MHz) spectrum of Corymbulosin X (7) in MeOH-\textit{d}_4
Figure S58. ROESY (500 MHz) spectrum of Corymbulosin X (7) in MeOH-d_4
Figure S59. HRESIMS spectrum of Corymbulosin X (7)
Figure S60. 1H NMR (500 MHz) spectrum of Corymbulosin Y (8) in MeOH-d_4
Figure S61. 1H-1H COSY (500 MHz) spectrum of Corymbulosin Y (8) in MeOH-d_4.

Corymbulosin Y (8)
Figure S62. HSQC (500 MHz) spectrum of Corymbulosin Y (8) in MeOH-d_4
Figure S63. HMBC (500 MHz) spectrum of Corymbulosin Y (8) in MeOH-d_4
Figure S64. HRESIMS spectrum of Corymbulosin Y (8)
Figure S65. 1H NMR (400 MHz) spectrum of the synthetic standard R/S-13 in MeOH-d_4.
Figure S66. 13C NMR (100 MHz) spectrum of the synthetic standard R/S-13 in MeOH-d_4.

![13C NMR Spectrum](image)
Figure S67. 1H NMR (400 MHz) spectrum of the synthetic standard S-13 in MeOH-d_4.
Figure S68. 13C NMR (100 MHz) spectrum of the synthetic standard S-13 in MeOH-d_4.