Introduction of cyclopropyl and cyclobutyl ring on alkyl iodides through cobalt-catalyzed cross-coupling

Claire Andersen,^[a] Vincent Ferey,^[b] Marc Daumas,^[c] Patrick Bernardelli,^[d] Amandine Guérinot^[a] and Janine Cossy.^[a]

^[a] Molecular Chemistry and Catalysis team : Molecular, Macromolecular Chemistry and Materials-UMR 7167, ESPCI Paris, CNRS, PSL Research University, 10 rue Vauquelin 75231 Paris Cedex 05, France.

^[b] SANOFI R&D, 371 rue du Professeur Joseph Blayac, 34080 Montpellier, France.

^[c] SANOFI Chimie, route d'Avignon, 30390 Aramon, France.

^[d] SANOFI R&D, 1 avenue Pierre Brossolette, 91380 Chilly-Mazarin, France.

Supporting Information

1	GEN	ERAL INFORMATION	2
2	SUB	STRATES AND REAGENTS SYNTHESIS	3
	2-1	IODIDE SYNTHESIS	3
	a)	Primary iodides	3
	b)	Secondary iodide	7
	2-2	GRIGNARD REAGENT SYNTHESIS	18
3	CRO	SS-COUPLINGS	19
	3-1	CROSS-COUPLING WITH CYCLOPROPYLMAGNESIUM BROMIDE	20
	a)	Optimization	20
	b)	Primary iodides	26
	c)	Secondary Iodide	30
	d)	Experiment with a radical clock	35
	3-2	CROSS-COUPLING WITH ISOPROPENYLMAGNESIUM BROMIDE, 1-PROPENYLMAGNESIUM BROMIDE AND 2-METHYL-1-	
	PROPEN	/LMAGNESIUM BROMIDE	35
	a)	Primary iodides	35
	b)	Secondary iodides	36
	3-3	CROSS-COUPLING WITH CYCLOBUTYLMAGNESIUM BROMIDE	39
	a)	Primary iodides	39
	b)	Secondary iodides	39
4	CYC	OPROPANATION	40

1 GENERAL INFORMATION

All commercially available products were used as received without any purification. All commercially available Grignard reagents (cyclopropylmagnesium bromide, isopropenylmagnesium bromide, 1-propenylmagnesium bromide, 2-methyl-1-propenylmagnesium bromide, vinylmagnesium bromide, allylmagnesium bromide, phenylmagnesium bromide, phenylmagnesium chloride, benzylmagnesium chloride, cyclopentylmagnesium bromide, isopropylmagnesium chloride) were titratedⁱ. 2-methyl-1propenylmagnesium bromide was used after the addition of lithium chloride (1:1). The commercially available cyclopropylmagnesium bromide reagent was used on regular basis but has also been synthesized using standard magnesium insertion techniques. Non-commercially available Grignard reagents (cyclobutylmagnesium bromide) were synthesized using standard magnesium insertion techniques. All synthesized iodides were dried by azeotrope removal of H₂O utilizing toluene and stored in a round bottom flask concealed by aluminium foil at -18°C prior to use. All reactions were performed under an argon atmosphere using easy balloon techniques (tubes or round bottom flasks with rubber septum purged with Ar balloon via needles through the septum). TLC were performed on silica gel plates and visualized either with a UV lamp (254 nm) or using a staining solution (p-anisaldehyde or KMnO₄). Flash chromatography was performed on silica gel (Merck-Kieselgel 60, 230-400 mesh). ¹H NMR spectra were recorded on a Bruker AVANCE 400 at 400 MHz and data are reported as follows: chemical shifts in ppm with the solvent peak as internal standard (CDCl₃, δ 7.26 ppm), multiplicity (s = singulet, d = doublet, t = triplet, q = quartet, quint = quintuplet, hex = hexuplet, hept = heptuplet, m = multiplet or overlap of non-equivalent resonances, br = broad). ¹³C NMR spectra were recorded on a Bruker AVANCE 400 at 100 MHz and data are reported as follows: chemical shifts in ppm with the solvent peak as internal standard (CDCl₃ at 77.1 ppm). Coupling constants J were measured in Hertz. Infrared (IR) spectra were recorded on a Bruker TENSORTM 27 (IRFT) and wave numbers are indicated in cm⁻¹. Mass spectra with electronic impact (MS-EI) were recorded with a Shimadzu GCMS-QP 2010S (70 eV). High resolution mass spectra (HRMS) were performed at the Laboratoire de Spectrométrie de Masse de l'Université Pierre et Marie Curie de Paris. Nomenclature of organic compounds was indicated following the IUPAC rules. THF, Et₂O, CH₂Cl₂ and toluene were dried using a MBraun SPS800 purificator.

PE = petroleum ether, EA = ethyl acetate, SP = side product (of elimination and dehalogenation)

2 SUBSTRATES AND REAGENTS SYNTHESIS

2-1 IODIDE SYNTHESIS

Procedure A:

$$\begin{array}{c} \mathsf{R} \\ \mathsf{R}' \\ \mathsf{OH} \end{array} \stackrel{\mathsf{PPh}_3 (1.05 \text{ equiv})}{\underset{I_2 (1.3 \text{ equiv})}{\mathsf{H}_2 (1.3 \text{ equiv})}} \\ \mathsf{R}' \\ \hline \mathsf{CH}_2\mathsf{Cl}_2, \text{ rt, 16 h} \end{array} \stackrel{\mathsf{R}' \\ \mathsf{R}' \\ \hline \mathsf{R}' \\ \end{array}$$

To a solution of alcohol (1 equiv) in CH_2Cl_2 at rt were added PPh₃ (1.05 equiv) and imidazole (1.3 equiv). The mixture was cooled down to 0 °C and iodide (1.3 equiv) was added over 4 to 5 portions. The reaction was allowed to warm to rt and stirred overnight for 16 h concealed by alumium foil. The reaction was quenched by the addition of H₂O, the aqueous layer was extracted with CH_2Cl_2 and the combined organic layers were washed with an aqueous solution of sodium thiosulphate, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (solid deposit) afforded the desired iodide.

Procedure B:

To a solution of alcohol (1 equiv) in toluene at rt were added PPh₃ (2 equiv), imidazole (3 equiv) and iodide (3 equiv). The reaction was refluxed and stirred for 2 h before being cooled down to romm temperature and stirred for another 2 h. The reaction was quenched by the addition of H_2O , the aqueous layer was extracted with CH_2Cl_2 and the combined organic layers were washed with an aqueous solution of sodium thiosulphate, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (solid deposit) afforded the desired iodide.

Primary iodides

1-(3-lodopropyl)-4-methoxybenzene, 1.1¹

lodine **1.1** was prepared according to Procedure **A** from 3-(4-methoxyphenyl)propan-1-ol (3.5 g, 20.64 mmol). Purification by flash chromatography on silica gel (PE/Et₂O 9:1) yielded iodine **1.1** (5.48 g, 19.85 mmol, 96%) as a colourless oil.

Formula: C₁₀H₁₃OI

Mass: 276.1 g.mol⁻¹

¹ Rezazadeh, S.; Devannah, V.; Watson, D. A. J. Am. Chem. Soc. **2017**, 139, 8110-8113.

IR (neat): 1611, 1584, 1511, 1463, 1441, 1300, 1245, 1213, 1177, 1120, 1101, 1035 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 3.79 (s, 3H), 3.16 (t, *J* = 6.8 Hz, 2H), 2.67 (t, *J* = 7.2 Hz, 2H), 2.10 (quint, *J* = 7.0 Hz, 2H) ¹³**C NMR** (100 MHz, CDCl₃) δ 158.1, 132.5, 129.6 (2C), 114.0 (2C), 55.3, 35.3, 35.2, 6.5 **MS** (EI) *m/z*: 277 (3), 276 (32), 122 (9), 121 (100), 91 (6), 78 (7), 77 (8)

((4-lodobutoxy)methyl)benzene, 1.2²

lodine **1.2** was prepared according to Procedure **A** from 4-(benzyloxy)butan-1-ol (200.0 mg, 1.08 mmol). Purification by flash chromatography on silica gel (PE/Et₂O 99:1 to 99:3) yielded iodine **1.2** (0.69 mmol, 200.5 mg, 64%) as a colourless oil.

Formula: C₁₁H₁₅OI

Mass: 290.1 g.mol⁻¹

IR (neat): 1494, 1453, 1430, 1362, 1223, 1174, 1101, 1077, 1028, 908, 871 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ δ 7.33 – 7.15 (m, 5H), 4.42 (s, 2H), 3.42 (t_{app}, J = 6.2 Hz, 2H), 3.14 (t_{app}, J = 7.0 Hz, 2H), 1.87 (quint_{app}, J = 7.2 Hz, 2H), 1.69 – 1.59 (m, 2H)

 $^{13}\textbf{C}$ NMR (100 MHz, CDCl₃) δ 138.5, 128.5 (2C), 127.7 (2C), 127.7, 73.0, 69.1, 30.7, 30.5, 6.9

MS (EI) *m/z*: 183 (1, M-107, -OCH₂Ph), 163 (2, M-127, -I), 105 (1), 92 (12), 91 (100), 71 (11), 65 (7), 55 (5)

4-((tert-Butyldiphenylsilyl)oxy)butan-1-ol, S1³

To a solution of 1,4-butanediol (0.50 mL, 5.55 mmol, 1 equiv) and imidazole (400.6 mg, 5.83 mmol, 1.05 equiv) in DMF (2.5 mL) at 0 °C was slowly added TBDPSCI (1.54 mL, 5.83 mmol, 1.05 equiv). The reaction mixture was allowed to warm up to rt and was stirred overnight before being quenched by the addition of H₂O. The aqueous phase was extracted with cyclohexane 3 times. The combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 9:1 to 4:6) yielded alcohol **S1** (803 mg, 2.44 mmol, 44%) as a colourless oil.

Formula: C₂₀H₂₈O₂Si

Mass: 328.5 g.mol⁻¹

IR (neat): 3324, 1472, 1428, 1389, 1361, 1109, 1063, 1028 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 – 7.56 (m, 4H), 7.55 – 7.29 (m, 6H), 3.70 (t, J = 5.7 Hz, 2H), 3.67 (brt, J = 5.6 Hz, 2H), 2.07 (brs, 1H), 1.76 – 1.58 (m, 4H), 1.06 (s, 9H)

² Vu. V. H.; Louafi, F.; Girard, N.; Marion, R.; Roisnel, T.; Dorcet, V.; Hurvois, J.-P. J. Org. Chem. **2014**, 79, 3358-3373.

³ Qian, P.-Z.; Yao, W. Y.; Huang, L.-B.; Meng, X.-b.; Li, Z.-J. tetrahedron letters, **2015**, *56*, 5238-5241.

¹³C NMR (100 MHz, CDCl₃) δ 135.7 (4C), 133.7 (2C), 129.7 (2C), 127.8 (4C), 64.1, 62.9, 29.9, 29.4, 26.9 (3C), 19.2

MS (EI) *m/z*: 271 (9, M-57, -*t*-Bu), 229 (19), 211 (7), 201 (5), 200 (18), 199 (100), 194 (6), 193 (34), 181 (9), 167 (5), 151 (6), 139 (20), 135 (6), 131 (6), 123 (7), 121 (7), 105 (8), 91 (13), 78 (5), 77 (18), 55 (7)

tert-Butyl(4-iodobutoxy)diphenylsilane, 1.3

lodine **1.3** was prepared according to Procedure **A** from 4-((*tert*-butyldiphenylsilyl)oxy)butan-1-ol **S1** (779.3 mg, 2.37 mmol). Purification by flash chromatography on silica gel (PE/ Et₂O 9:1) yielded iodine **1.3** (2.14 mmol, 939.2 mg, 90%) as a colourless oil.

Formula: C₂₀H₂₇OSil

Mass: 438.4 g.mol⁻¹

IR (neat): 1696, 1472, 1427, 1389, 1361, 1225, 1173, 1145, 1107, 1031, 958 cm⁻¹

¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.63 (m, 4H), 7.47 – 7.36 (m, 6H), 3.69 (t, J = 6.1 Hz, 2H), 3.20 (t, J = 6.1 Hz, 3.20 (t, J = 6.1 Hz, 3.20 (t, J = 6.1 Hz, 3.20 (t, J = 6.1 Hz), 3.2

J = 7.0 Hz, 2H), 2.00 – 1.91 (m, 2H), 1.71 – 1.61 (m, 2H), 1.06 (s, 9H)

¹³**C NMR** (100 MHz, CDCl₃) δ 135.6 (4C), 133.9 (2C), 129.7 (2C), 127.8 (4C), 62.8, 33.4, 30.2, 26.9 (3C), 19.3, 7.14

MS (EI) *m/z*: 382 (15), 381 (69, M-57, -*t*-Bu), 339 (20), 310 (19), 309 (100), 253 (14), 249 (17), 212 (13), 211 (70), 199 (34), 197 (11), 183 (14), 181 (26), 175 (10), 149 (9), 135 (14), 121 (9), 105 (26), 91 (20), 77 (25), 55 (28)

HRMS: Calculated for C₂₀H₂₇OSiIH [M+H]⁺: 439.0949, Found: 439.0949

3-(4-Bromophenyl)propan-1-ol, S2⁴

To a solution of 3-(4-bromophenyl)propanoic acid (500 mg, 2.18 mmol, 1 equiv) in THF (21.83 mL) at 0 °C was added dropwise a solution of BH₃•THF (1 M, 4.37 mL, 4.36 mmol, 2 equiv). The reaction mixture was allowed to warm up to rt at was stirred for 2 h before being quenched by a 1:1 solution of Rochelle salts/saturated aqueous solution of NaHCO₃. The aqueous phase was extracted with Et₂O. The combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 7:3 to 5:5) yielded alcohol **S2** (466.7 mg, 2.17 mmol, 99%) as a colourless oil.

Formula: C₉H₁₁BrO

Mass: 215.1 g.mol⁻¹

IR (neat): 3310, 1487, 1452, 1404, 1070, 1040, 1010, 913 cm⁻¹

⁴ Pettit, G. R.; Quistorf, P. D.; Fry, J. A.; Herald, D. L.; Hamel, E.; Chapuis, J.-C. J. Nat. Prod. 2009, 72, 876-883.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 (brd, J = 8.4 Hz, 2H), 7.07 (brd, J = 8.3 Hz, 2H), 3.66 (t, J = 6.4 Hz, 2H), 2.66 (t, J = 7.8 Hz, 2H), 1.90 – 1.81 (m, 2H), 1.49 (m, 1H)

 ^{13}C NMR (100 MHz, CDCl₃) δ 140.8, 131.5 (2C), 130.3 (2C), 119.6, 62.0, 34.1, 31.5

MS (EI) *m/z*: 216 (20, M+1), 214 (20, M⁺), 205 (9), 198 (26), 196 (27), 171 (27), 169 (30), 118 (10), 117 (100), 116 (9), 115 (23), 104 (19), 103 (12), 91 (38), 90 (25), 89 (18), 78 (10), 77 (20), 63 (10), 51 (12), 50 (7)

1-Bromo-4-(3-iodopropyl)benzene, 1.4⁵

lodine **1.4** was prepared according to Procedure **A** from 3-(4-bromophenyl)propan-1-ol **S2** (460 mg, 2.14 mmol). Purification by flash chromatography on silica gel (PE/Et₂O 96:4) yielded iodine **1.4** (622.2 mg, 1.92 mmol, 90%) as a colourless oil.

Formula: C₉H₁₀Brl

Mass: 325.0 g.mol⁻¹

IR (neat): 1487, 1445, 1425, 1403, 1347, 1262, 1211, 1166, 1094, 1072, 1011, 958, 936 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (d, J = 8.3 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 3.15 (t, J = 6.8 Hz, 2H), 2.69 (t, J = 7.3 Hz, 2H), 2.10 (quint_{app}, J = 7.1 Hz, 2H)

 ^{13}C NMR (100 MHz, CDCl_3) δ 139.4, 131.6 (2C), 130.4 (2C), 120.0, 35.6, 34.6, 6.0

MS (EI) *m/z*: 326 (41, M+1), 325 (4, M⁺), 324 (40), 199 (14), 197 (15), 172 (7), 171 (97), 170 (7), 169 (100), 118 (34), 117 (24), 116 (6), 115 (16), 91 (14), 90 (41), 89 (33), 77 (6), 65 (5), 64 (5), 63 (16), 58 (7), 51 (10)

5-lodovaleronitrile, 1.5⁶

lodine **1.5** was prepared from 5-bromovaleronitrile (700 mg, 4.32 mmol, 1 equiv) in refluxing in acetone (8.6 mL) overnight in the presence of NaI (3.2 g, 21.60 mmol, 5 equiv). The reaction mixture was filtered and concentrated under reduced pressure before being dissolved in diethyl ether. The organic phase was washed with H₂O, a saturated aqueous solution of Na₂S₂O₃, H₂O and brine successively, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 7:3) yielded iodine **1.5** (897.2 mg, 4.29 mmol, 99%) as a colourless oil.

Formula: C₅H₈IN

Mass: 209.0 g.mol⁻¹

IR (neat): 2246, 1738, 1456, 1425, 1362, 1329, 1287, 1254, 1213, 1170, 1131, 1075, 1009, 978 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 3.20 (t, J = 6.6 Hz, 2H), 2.39 (t, J = 7.0 Hz, 2H), 1.97 (quint_{app}, J = 7.0 Hz, 2H), 1.79 (quint_{app}, J = 7.1 Hz, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ 119.2, 31.8, 26.2, 16.3, 4.6

MS (EI) *m/z*: 209 (9, M⁺), 127 (4), 83 (6), 82 (100), 55 (77), 54 (19), 53 (6)

⁵ Thornton, A. R.; Martin, V. I.; Blakey, S. B. J. Am. Chem. Soc. **2009**, 131, 2434-2435.

⁶ Jackman, M. M.; Im, S.; Bohman, S. R.; Lo, C. C. L.; Garrity, A. L.; Castle, S. L. Chem. Eur. J. **2018**, 24, 594-598.

6-Iodo-2,2-dimethylhexanenitrile, 1.6

lodine **1.6** was prepared from 6-bromo-2,2-dimethylhexanenitrile (1.1 g, 5.12 mmol, 1 equiv) in refluxing acetone (25 mL) overnight in the presence of Nal (3.8 g, 25.60 mmol, 5 equiv). The reaction mixture filtered and concentrated under reduced pressure before being dissolved in diethyl ether. The organic phase was washed with H₂O, a saturated aqueous solution of Na₂S₂O₃, H₂O and brine successively, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 98:2 to 91:9) yielded iodine **1.6** (1.3 g, 5.10 mmol, 100%) as a colourless oil.

Formula: C₈H₁₄NI

Mass: 251.1 g.mol⁻¹

IR (neat): 1471, 1458, 1428, 1391, 1369, 1298, 1270, 1237, 1197, 1180, 997, 971, 945, 887 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 3.19 (td, J = 6.9, 1.0 Hz, 2H), 1.86 (quint_{app}, J = 7.0 Hz, 2H), 1.66 – 1.47 (m, 4H), 1.34 (s, 6H)

¹³C NMR (100 MHz, CDCl₃) δ 124.9, 39.9, 33.2, 32.3, 26.7 (2C), 26.3, 6.0

MS (EI) *m/z*: 251 (1), 155 (3), 125 (7), 124 (74), 98 (3), 97 (45), 96 (2), 83 (3), 82 (13), 81 (3), 79 (3), 70 (2), 69 (24), 68 (8), 67 (3), 57 (3), 56 (8), 55 (100), 54 (6), 53 (7), 52 (2)

HRMS: Calculated for C₈H₁₄NIH [M+H]⁺: 252.0244, Found: 252.0245

Methyl 5-iodovalerate, 1.7

lodine **1.7** was prepared from methyl-5-bromovalerate (2.0 g, 9.45 mmol, 1 equiv) by refluxing overnight in acetone (25 mL) in the presence of NaI (7.5 g, 49.70 mmol, 5 equiv). The reaction mixture was filtered and concentrated under reduced pressure before being dissolved in diethyl ether. The organic phase was washed with H₂O, a saturated aqueous solution of Na₂S₂O₃, H₂O and brine successively, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 9:1) yielded iodine **1.7** (2.2 g, 8.88 mmol, 89%) as a colourless oil.

Formula: C₆H₁₁O₂I

Mass: 242.1 g.mol⁻¹

IR (neat): 1733, 1435, 1365, 1260, 1196, 1175, 1120, 1022, 994 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 3.66 (s, 3H), 3.17 (t, *J* = 6.8 Hz, 2H), 2.33 (t, *J* = 7.3 Hz, 2H), 1.92 – 1.78 (m, 2H), 1.78 – 1.66 (m, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ 173.6, 51.7, 32.9, 32.8, 25.8, 5.9

MS (EI) *m/z*: 211 (14), 183 (8), 155 (4), 116 (5), 115 (80), 73 (53), 71 (2), 60 (1), 59 (45), 56 (7), 55 (100), 54 (3), 53 (5)

HRMS: Calculated for C₆H₁₁O₂IH [M+H]⁺: 242.9876, Found: 242.9876

Secondary iodide

3-(4-Methoxyphenyl)propanal, S3⁷

To a solution of 3-(4-methoxyphenyl)-1-propanol (2 g, 11.91 mmol, 1 equiv) in CH_2Cl_2 (59.6 mL) was added DAIB (4.70 g, 14.29 mmol, 1.2 equiv) and TEMPO (190 mg, 1.19 mmol, 0.1 equiv). The reaction mixture was stirred at rt for 24 h before being concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 87:13) yielded aldehyde **S3** (1.7 g, 10.37 mmol, 87%) as a colourless oil.

Formula: C₁₀H₁₂O₂

Mass: 164.2 g.mol⁻¹

IR (neat): 1720, 1611, 1584, 1512, 1465, 1443, 1300, 1245, 1178, 1111, 1034 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 9.82 (t, *J* = 1.5 Hz, 1H), 7.12 (d, *J* = 8.7 Hz, 2H), 6.84 (d, *J* = 8.7 Hz, 2H), 3.79 (s, 3H), 2.91 (t, *J* = 7.5 Hz, 2H), 2.78 – 2.72 (brt_{app}, *J* = 7.3 Hz, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 201.8, 158.0, 132.3, 129.2 (2C), 114.0 (2C), 55.2, 45.5, 27.2

MS (EI) *m/z*: 165 (3, M+1), 164 (30, M⁺), 135 (2), 122 (10), 121 (100), 108 (25), 91 (13), 89 (3), 79 (4), 78 (9), 77 (15), 65 (7), 63 (4), 51 (5)

1-(4-Methoxyphenyl)pentan-3-ol, S4⁸

To a solution of 3-(4-methoxyphenyl)propanal **S3** (1.70 g, 10.34 mmol, 1 equiv) in THF (51.9 mL) at 0 °C was added dropwise a solution of EtMgBr in Et₂O (1.8 M, 8.61 mL, 15.51 mmol, 1.5 equiv). The reaction mixture was allowed to warm to rt and was stirred for 1 h. A saturated aqueous solution of NH₄Cl was added dropwise and the aqueous phase was extracted with Et₂O. The combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 82:18 to 74:26) yielded alcohol **S4** (1.48 g, 7.61 mmol, 74%) as a colourless oil.

Formula: $C_{12}H_{18}O_2$

Mass: 194.3 g.mol⁻¹

IR (neat): 3359, 1611, 1584, 1559, 1511, 1456, 1420, 1376, 1320, 1299, 1243, 1177, 1117, 1063, 1034, 991, 934 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 3.55 (m, 1H), 2.74 (ddd_{AB}, J = 13.9, 9.5, 6.8 Hz, 1H), 2.62 (ddd_{AB}, J = 13.9, 9.5, 6.8 Hz, 1H), 1.85 – 1.61 (m, 2H), 1.61 – 1.43 (m, 2H), 1.40 (s, 1H), 0.95 (t, J = 7.5 Hz, 3H).

 ^{13}C NMR (100 MHz, CDCl_3) δ 157.8, 134.3, 129.3 (2C), 113.9 (2C), 72.7, 55.3, 38.9, 31.2, 30.4, 9.9

⁷ Schaubach, S.; Gebauer, K.; Ungeheuer, F.; Hoffmeister, L.; Ilg, M. K.; Wirtz, C.; Fürstner, A. *Chem. Eur. J.* **2016**, *22*, 8494-8507.

⁸ Alderson, J. M.; Schomaker, J. M. Chem. Eur. J. 2017, 23, 8571-8576.

MS (EI) *m/z*: 195 (4), 194 (28), 176 (11), 148 (9), 147 (85), 134 (6), 122 (19), 121 (100), 119 (4), 108 (9), 107 (3), 105 (4), 91 (18), 79 (4), 78 (10), 77 (13), 65 (5), 59 (4), 57 (5)

1-(3-Iodopentyl)-4-methoxybenzene, 1.8

lodine **1.8** was prepared according to Procedure **A** from 1-(4-methoxyphenyl)pentan-3-ol **S4** (329 mg, 1.70 mmol). Purification by flash chromatography on silica gel (PE/Et₂O 97:3) yielded iodine **1.8** (357.9 mg, 1.18 mmol, 69%) as a colourless oil.

Formula: C₁₂H₁₇OI

Mass: 304.2 g.mol⁻¹

IR (neat): 1611, 1583, 1510, 1455, 1441, 1300, 1244, 1196, 1176, 1136, 1107, 1083 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.16 – 7.10 (m, 2H), 6.87 – 6.81 (m, 2H), 4.01 (dtd, J = 13.9, 9.1, 4.7 Hz, 1H), 3.79 (s, 3H), 2.83 (ddd_{AB}, J = 13.9, 9.0, 5.0 Hz, 1H), 2.66 (ddd_{AB}, J = 13.9, 8.9, 7.1 Hz, 1H), 2.16 (m, 1H), 1.97 – 1.71 (m, 3H), 1.02 (t, J = 7.2 Hz, 3H)

¹³**C NMR** (100 MHz, CDCl₃) δ 158.0, 133.0, 129.5 (2C), 114.0 (2C), 55.3, 42.1, 41.6, 34.8, 33.9, 14.1 **MS** (EI) *m/z*: 305 (2), 304 (12), 177 (7), 176 (1), 147 (2), 122 (10), 121 (100), 115 (1), 106 (1), 105 (1), 91 (7), 90 (2), 89 (2), 79 (1), 78 (7), 77 (7), 65 (3), 63 (1), 55 (1), 52 (2), 51 (2) **HRMS**: unstable compound

4-((tert-Butyldimethylsilyl)oxy)butan-2-ol, S59

To a solution of 1,3-butanediol (1.5 mL, 16.48 mmol, 1 equiv) and imidazole (2.72 g, 39.57 mmol, 2.4 equiv) in CH_2CI_2 (40 mL) at 0 °C was cannulated a solution of TBSCI (3.53 mL, 19.78 mmol, 1.2 equiv) in CH_2CI_2 (15 mL). The reaction mixture was allowed to warm up to rt and stirred overnight. Brine was added, and the aqueous phase was extracted with Et_2O . The combined organic phases were dried over $MgSO_4$, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 8:2 to 7:3) yielded alcohol **S5** (2.90 g, 14.17 mmol, 86%) as a colourless liquid.

Formula: C₁₀H₂₄O₂Si

Mass: 204.4 g.mol⁻¹

IR (neat): 3355, 1472, 1463, 1410, 1388, 1362, 1254, 1085, 997, 938, 910 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 4.01 (m, 1H), 3.88 (m, 1H), 3.80 (m, 1H), 3.40 (bs, 1H), 1.74 - 1.56 (m, 2H), 1.22 - 1.14 (m, 3H), 0.89 (brs, 9H), 0.07 (s, 3H), 0.06 (s, 3H)

 ^{13}C NMR (100 MHz, CDCl_3) δ 68.3, 62.8, 40.0, 25.9 (3C), 23.4, 18.2, -5.47, - 5.52

MS (EI) *m/z*: 147 (7, M-57, -*t*-Bu), 129 (4), 106 (7), 105 (83), 101 (5), 91 (5), 89 (6), 77 (6), 76 (7), 75 (100), 73 (12), 59 (6), 57 (4), 55 (13)

⁹ Dupuy, S.; Zhang, K.-F.; Goutierre, A.-S.; Daudoin, O. Angew. Chem. **2016**, 47, 15013-15017.

tert-Butyl(3-iodobutoxy)dimethylsilane, 1.10¹⁰

lodine **1.10** was prepared according to Procedure **A** from 4-((*tert*-butyldimethylsilyl)oxy)butan-2-ol **S5** (2.5 g, 12.47 mmol). Purification by flash chromatography on silica gel (PE/Et₂O 95:5) yielded iodine **1.10** (3.1 g, 9.70 mmol, 78%) as a pale yellow liquid.

Formula: C₁₀H₂₃OSil

Mass: 314.3 g.mol⁻¹

IR (neat): 1724, 1591, 1501, 1470, 1446, 1398, 1361, 1266, 1174, 1113, 1099, 1071, 1034, 1012, 987, 968, 948, 898 cm⁻¹

¹H NMR (400 MHz, CDCl₃) δ 4.35 (m, 1H), 3.76 (ddd_{AB}, J = 10.3, 8.1, 4.8 Hz, 1H), 3.65 (ddd_{AB}, J = 10.3, 8.1, 4.8 Hz, 1H), 2.01 (m, 1H), 1.96 (d, J = 6.9 Hz, 3H), 1.79 (m, 1H), 0.89 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 62.8, 45.5, 29.2, 26.2, 26.0 (3C), 18.4, -5.19, -5.21

MS (EI) *m/z*: 258 (10, (M+1)-57, -*t*-Bu), 257 (89, (M-57, -*t*-Bu), 216 (8), 215 (100), 201 (6), 185 (60), 145 (4), 131 (5), 129 (30), 115 (9), 101 (14), 99 (6), 89 (18), 88 (4), 75 (50), 73 (41), 61 (6), 59 (19), 58 (11), 57 (12), 55 (47)

3-lodobutan-1-ol, S6

To a solution of *tert*-butyl(3-iodobutoxy)dimethylsilane **1.10** (1.5 g, 4.77 mmol, 1 equiv) in MeOH (47.7 mL) was added pTsOH.H₂O (181.6 mg, 0.95 mmol, 0.2 equiv). The reaction mixture was stirred at rt overnight. A saturated aqueous solution of NaHCO₃ was added and the aqueous phase was extracted with Et₂O. The combined organic phases were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 8:2) yielded iodo-alcohol **S6** (736.8 mg, 3.68 mmol, 77%) as a colourless liquid.

Formula: C₄H₉IO

Mass: 200.0 g.mol⁻¹

IR (neat): 3305, 1463, 1444, 1416, 1378, 1253, 1219, 1151, 1123, 1091, 1050, 1024 cm⁻¹

¹**H** NMR (400 MHz, $CDCI_3$) δ 4.42 – 4.28 (m, 1H), 3.83 (ddd_{AB}, *J* = 10.7, 5.8, 4.8 Hz, 1H), 3.74 (ddd_{AB}, *J* = 10.8, 8.1, 5.1 Hz, 1H), 2.04 (ddd, *J* = 19.7, 9.8, 5.0 Hz, 1H), 1.98 (d, *J* = 6.9 Hz, 3H), 1.85 (m, 1H), 1.60 (brs, 1H)

¹³C NMR (100 MHz, CDCl₃) δ 62.7, 44.9, 29.2, 26.1

MS (EI) *m/z*: 200 (4), 128 (1), 127 (2), 74 (3), 73 (52), 71 (1), 57 (3), 56 (5), 55 (100), 54 (1), 53 (2) **HRMS**: calculated for C₄H₉IOH [M+H]⁺: 200.9771, Found: 200.9770

tert-Butyl (3-iodobutyl)(tosyl)carbamate, 1.9

¹⁰ Hofmayer, M. S.; Hammann, J. M.; Cahiez, G.; Knochel, P. *Synlett*, **2018**, *29*, 65-70.

3-lodobutan-1-ol (730.0 mg, 3.65 mmol, 1 equiv), PPh₃ (957.3 mg, 3.65 mmol, 1 equiv) and NH(Boc)Ts (990.3 mg, 3.65 mmol, 1 equiv) were dissolved in THF (22 mL). DIAD was added by syringe pump over 10 min (4.32 mL/h, 0.72 mL, 3.65 mmol, 1 equiv) at 0 °C. The reaction mixture was allowed to warm to rt and stirred overnight. The reaction mixture was concentrated under reduced pressure and purification by flash chromatography on silica gel (PE/Et₂O 9:1) yielded iodine **1.9** (1.3 g, 2.89 mmol, 79%) as a colourless oil.

Formula: C₁₆H₂₄INO₄S

Mass: 453.3 g.mol⁻¹

IR (neat): 1725, 1597, 1495, 1475, 1445, 1394, 1352, 1288, 1257, 1234, 1186, 1154, 1140, 1088, 1050, 1020, 991, 947, 909 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 4.15 (dqd, J = 8.8, 6.8, 4.8 Hz, 1H), 3.99 (ddd_{AB}, J = 14.3, 10.0, 1.3 Hz, 1H), 3.83 (ddd_{AB}, J = 14.3, 10.0, 1.3 Hz, 1H), 2.44 (s, 3H), 2.27 (m, 1H), 2.10 (m, 1H), 1.98 (d, J = 6.9 Hz, 3H), 1.35 (s, 9H)

¹³**C NMR** (100 MHz, CDCl₃) δ 150.9, 144.3, 137.2, 129.4 (2C), 127.9 (2C), 84.6, 47.7, 42.5, 29.0, 28.0 (3C), 24.3, 21.68

HRMS: Calculated for C₁₆H₂₄INO₄SH [M+H]⁺: 454.0543, Found: 454.0543

tert-Butyl-4-iodopiperidine-1-carboxylate, 1.11¹¹

lodine **1.11** was prepared according to Procedure **A** from *tert*-butyl-4-hydroxypiperidine-1-carboxylate (682.5 mg). Purification by flash chromatography on silica gel (PE/Et₂O 95:5 to 9:1) yielded iodine **1.11** (217.8 mg, 0.70 mmol, 21%) as an off-white solid.

Formula: C₁₀H₁₈NO₂I

Mass: 311.2 g.mol⁻¹

mp: 46-49 °C

IR (neat): 1687, 1476, 1464, 1446, 1415, 1365, 1331, 1274, 1233, 1153, 1100, 1008, 994, 932 cm⁻¹ **¹H NMR** (400 MHz, CDCl₃) δ 4.44 (quint_{app}, *J* = 6.0 Hz, 1H), 3.58 (brdt, *J* = 13.3, 5.0 Hz, 2H), 3.27 (dt, *J* = 13.7, 5.9 Hz, 2H), 2.02 (brq_{app}, *J* = 5.8 Hz, 4H), 1.45 (s, 9H)

¹¹ Kulbitski, K.; Nisnevich, G.; Gandelman, M. Adv. Synth. Catal. **2011**, 353, 1438-1442.

¹³C NMR (100 MHz, CDCl₃) δ 154.8, 79.9, 44.0 (2C), 37.4 (2C), 28.5 (3C), 27.8
MS (EI) *m/z*: 311 (1, M⁺), 256 (4), 255 (2), 238 (8), 184 (21), 128 (33), 84 (29), 83 (2), 82 (3), 68 (3), 67 (4), 58 (4), 57 (100), 56 (11), 55 (10)

N-(But-3-en-1-yl)-4-methylbenzenesulfonamide, S7¹²

To a solution of $T_{s}NH_{2}$ (455.1 mg, 2.61 mmol, 1 equiv) in acetone was added $K_{2}CO_{3}$ (720 mg, 5.21 mmol, 2 equiv) and 4-bromo-1-butene (0.3 mL, 2.87 mmol, 1.1 equiv). The reaction mixture was refluxed overnight. A saturated aqueous solution of $NH_{4}Cl$ was added and the aqueous phase was extracted with $Et_{2}O$. The combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/EA 9:1 to 8:2) yielded homoallylamine **S7** (279.5 mg, 1.24 mmol, 48%) as a colourless oil.

 $\textbf{Formula:} \ C_{11}H_{15}NO_2S$

Mass: 225.3 g.mol⁻¹

IR (neat): 3280, 1641, 1598, 1495, 1425, 1321, 1305, 1290, 1155, 1093, 1074, 1019, 990, 916 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 5.62 (m, 1H), 5.03 (m, 2H), 4.63 (brs, 1H), 3.00 (q_{app}, J = 6.5 Hz, 2H), 2.42 (s, 3H), 2.19 (q_{app}, J = 6.7 Hz, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 143.5, 137.0, 134.2, 129.8 (2C), 127.2 (2C), 118.2, 42.1, 33.7, 21.6
MS (EI) *m/z*: 225 (1, M⁺), 185 (5), 184 (57), 157 (4), 156 (7), 155 (75), 92 (9), 91 (100), 89 (5), 66 (1), 65 (23), 63 (4)

trans-2-(4-Bromophenyl)-4-iodo-1-tosylpiperidine, 1.1213

Hexamethyldisilane (1.3 mL, 6.15 mmol, 4.1 equiv) and I_2 (777.0 mg, 3.00 mmol, 2 equiv) were heated in a sealed vial at 120 °C for 25 min until the violet colour almost disapeared (can be quite virulent, so extra care is necessary). The mixture was then cooled to rt before adding a solution of *N*-(but-3-en-1-yl)-4methylbenzene-1-sulfonamide **S7** (338.0 mg, 1.50 mmol, 1 equiv) and 4-bromobenzaldehyde (280.3 mg, 1.50 mmol, 1 equiv) in CH₂Cl₂ (3 mL). AlCl₃ (2 mg, 0.01 mmol, 7 mol %) was then added to the reaction mixture and the vial was sealed and the reaction mixture was stirred at rt for 23 h. H₂O was added to the mixture and the aqueous phase was extracted with Et₂O. The combined organic phases were washed

¹² Teichert, J. F.; Zhang, S.; van Zilj, A. W.; Slaa, J. W.; Minnaard, A. J.; Feringa, B. L. *Org. Lett.* **2010**, *12* 4658-4660.

¹³ Liu, G.-Q.; Cui, B.; Xu, R.; Li, Y.-M. *J. Org. Chem.* **2016**, *12*, 5144-5161.

with a saturated solution of $Na_2S_2O_3$, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 95:5 to 8:2) yielded iodine **1.12** (297.4 mg, 0.57 mmol, 38%) as a white solid (dr > 95:5).

Formula: C₁₈H₁₉BrINO₂S

Mass: 520.2 g.mol⁻¹

mp: 125-127 °C

IR (neat): 1597, 1489, 1450, 1397, 1370, 1334, 1303, 1284, 1261, 1246, 1210, 1174, 1154, 1118, 1091, 1076, 1061, 998, 950, 928, 906 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 5.12 (brd, *J* = 4.3 Hz, 1H), 4.06 (tt_{app}, *J* = 12.4, 3.7 Hz, 1H), 3.73 (brd_{app}, *J* = 14.4 Hz, 1H), 2.99 (td, *J* = 12.4, 2.9 Hz, 1H), 2.86 (brd, *J* = 13.8 Hz, 1H), 2.46 (s, 3H), 2.24 (td, *J* = 13.4, 5.3 Hz, 1H), 2.09 (brd_{app}, *J* = 11.9 Hz, 1H), 1.90 (qd_{app}, *J* = 12.7, 4.6 Hz, 1H)

¹³C NMR (100 MHz, CDCl₃) δ 143.8, 137.8, 136.4, 132.1 (2C), 130.1 (2C), 128.5 (2C), 127.0 (2C), 121.5, 57.3, 43.5, 40.5, 37.9, 21.7, 18.4

HRMS : Unstable compound

tert-Butyl-3-iodopyrrolidine-1-carboxylate, 1.13¹⁴

lodine **1.13** was prepared according to Procedure **B** from *tert*-butyl 3-hydroxypyrrolidine-1-carboxylate (600 mg). Purification by flash chromatography on silica gel (PE/Et₂O 95:5 to 8:2) yielded iodine **1.13** as a mixture of rotamers in a ratio a/b = 73:27 (706 mg, 2.37 mmol, 74%) as a colourless oil.

Formula: C₉H₁₆O₂I

Mass: 297.1 g.mol⁻¹

IR (neat): 1689, 1477, 1454, 1394, 1365, 1346, 1295, 1257, 1222, 1156, 1108, 977, 929, 916 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 4.35 (m, 1H), 3.89 – 3.72 (m, 1.46H), 3.67 (m, 0.54H), 3.57 (m, 1H), 3.42 (m, 1H), 2.32 – 2.15 (m, 2H), 1.45 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ [154.3, 154.2], [79.82, 79.76], [57.4, 57.1], [45.1, 44.8], [38.4, 37.7], 28.5 (3C), 20.0

MS (EI) *m/z*: 297 (2), 242 (23), 240 (4), 224 (8), 197 (7), 114 (4), 70 (17), 69 (4), 68 (6), 58 (5), 57 (100), 56 (10)

tert-Butyl-3-iodoazetidine-1-carboxylate, 1.14¹¹

¹⁴ Barré, B.; Gonnard, L.; Campagne, R.; Reymond, S.; Marin, J.; Ciapetti, Brellier, Guérinot, A.; Cossy, J. Org. Lett. **2014**, *16*, 6160-6163.

lodine **S20** was prepared according to Procedure **B** from *tert*-butyl 3-iodo-azetidine-1-carboxylate (1.0 g). Purification by flash chromatography on silica gel (PE/Et₂O 8:2) yielded iodine **S20** (1.6 g, 5.60 mmol, 100%) as a colourless oil.

Formula: C₈H₁₄NO₂I

Mass: 283.1 g.mol⁻¹

IR (neat): 1696, 1536, 1477, 1456, 1381, 1365, 1302, 1254, 1201, 1145, 1140, 1032, 969, 886 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 4.73 – 4.52 (m, 2H), 4.45 (m, 1H), 4.34 – 4.17 (m, 2H), 1.42 (s, 9H) ¹³**C NMR** (100 MHz, CDCl₃) δ 155.6, 80.2, 61.6 (2C), 28.4 (3C), 2.7 **MS** (EI) *m/z*: 283 (1), 228 (6), 183 (7), 156 (5), 82 (10), 58 (4), 57 (100), 56 (24), 55 (4), 54 (4)

cis-4-(tert-Butyl)cyclohexan-1-ol, S8¹⁶

cis/trans > 95:5

To a solution of 4-*tert*-butylcyclohexanone (600 mg, 3.89 mmol, 1 equiv) in THF (19 mL) at 0 °C was added a solution of L-selectride (1 M in THF, 4.28 mL, 4.28 mmol, 1.1 equiv). The reaction mixture was stirred at 0 °C for 30 min and then warmed to rt and stirred for another 2 h. H_2O and HCl (1 M in H_2O) were added to the reaction mixture and the aqueous phase was extracted with CH_2Cl_2 . The combined organic phases were washed with a saturated aqueous solution of NaHCO₃, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 9:1 to 85:15) yielded alcohol **S8** (505.3 mg, 3.23 mmol, 83%) as a white solid as a single diastereomer (*cis/trans* > 95:5).

Formula: C₁₀H₂₀O

Mass: 156.3 g.mol⁻¹

mp: 78 °C

IR (neat): 3313, 3241, 1474, 1431, 1391, 1363, 1338, 1312, 1273, 1237, 1182, 1146, 1114, 1029, 1007, 958, 929, 917, 904 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 4.03 (m, 1H), 1.93 – 1.77 (m, 2H), 1.59 – 1.41 (m, 4H), 1.41 – 1.21 (m, 2H), 1.01 (m, 1H), 0.86 (s, 9H) -OH not visible

¹³C NMR (100 MHz, CDCl₃) δ 66.0, 48.1, 33.5 (2C), 32.6, 27.6 (3C), 21.0 (2C)

MS (EI) *m/z*: 156 (1, M⁺), 123 (11), 101 (6), 99 (24), 98 (6), 83 (28), 82 (38), 81 (38), 80 (31), 79 (8), 69 (6), 67 (47), 58 (5), 57 (100), 56 (35), 55 (20), 54 (11), 53 (5)

trans-1-(tert-Butyl)-4-iodocyclohexane, 1.15a¹⁵

trans/cis = 91:9

lodine **1.15a** was prepared according to Procedure **B** from *cis*-4-(*tert*-butyl)cyclohexan-1-ol **S8** (497.7 mg). Purification by flash chromatography on silica gel (PE 100%) yielded iodine XX as a mixture of diastereomers (*trans/cis* = 91:1) (231 mg, 0.87 mmol, 27%) as a colourless oil contaminated by 4-*tert*-butylcyclohex-1-ene (76.3 mg, 0.55 mmol, 17%). The mixture was dissolved in THF/H₂O = 1:5 and cooled to 0 °C before adding NMO (80.0 mg, 0.66 mmol, 1.2 equiv) followed by OsO_4 (0.35 mL, 0.03 mmol, 5 mol %, 0.08 M in *tert*-butanol). The reaction mixture was stirred at rt overnight concealed by aluminum foil before adding an aqueous solution of $Na_2S_2O_3$ and stirred again for 1 h. The mixture was extracted with Et₂O. Purification by flash chromatography on silica gel (PE 100%) yielded iodine **1.15a** as a mixture of diastereomers (*trans/cis* = 91:1) (219.4 mg, 0.82 mmol, 95%). Only the *trans* diastereomer is described below.

Formula: C₁₀H₁₉I

Mass: 266.2 g.mol⁻¹

IR (neat): 1478, 1448, 1393, 1365, 1338, 1310, 1265, 1228, 1196, 1187, 1147, 1079, 1036, 1014, 995, 931 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 4.09 (tt, *J* = 12.3, 4.1 Hz, 1H), 2.53 – 2.39 (m, 2H), 2.03 – 1.86 (m, 2H), 1.71 – 1.60 (m, 2H), 1.15 – 1.02 (m, 3H), 0.82 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 46.8, 41.2 (2C), 32.7, 31.0, 30.4 (2C), 27.5 (3C)

MS (EI) *m/z*: 266 (1), 139 (27), 123 (6), 97 (6), 83 (47), 81 (14), 79 (4), 71 (5), 69 (19), 67 (10), 58 (5), 57 (100), 55 (24)

trans-4-(tert-Butyl)cyclohexan-1-ol, S9¹⁶

trans/cis = 92:8

To a solution of LiAlH₄ (393.7 mg, 10.37 mmol, 4 equiv) in Et₂O (6 mL) was added a solution of 4-*tert*-butylcyclohexanone (400 mg, 2.60 mmol, 1 equiv) in Et₂O (7 mL). The reaction mixture was stirred for 10 min at rt and poured into ice water. Et₂O and HCl (1 M in H₂O) were added in order to have a clear solution. The aqueous phase was extracted with Et₂O. The combined organic phases were washed with a

¹⁵ Seel, S.; Dagousset, G.; Thaler, T.; Frischmuth, A. Chem. Eur. J. 2013, 19, 4614-4622.

¹⁶ Hofmayer, M. S.; Hammann, J. M. Cahiez, G.; Knochel, P. Synlett, **2018**, *29*, 65-70.

saturated aqueous solution of NaHCO₃, dried over MgSO₄, filtered and concentrated under reduced pressure. The alcohol **S9** (399.9 mg, 2.56 mmol, 99%) was obtained as a white solid as a mixture of diastereomers *trans/cis* = 92:2. Only the *trans*-diastereomer is described below.

Formula: C₁₀H₂₀O

Mass: 156.3 g.mol⁻¹

mp: 79 °C

IR (neat): 3252, 1448, 1392, 1364, 1337, 1290, 1263, 1240, 1225, 1186, 1133, 1065, 1037, 1009, 981, 961, 901 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 3.51 (tt, J = 10.9, 4.4 Hz, 1H), 2.07 – 1.94 (m, 2H), 1.82 – 1.71 (m, 2H), 1.29 – 1.13 (m, 2H), 1.10 – 0.91 (m, 3H), 0.84 (s, 9H) -OH not visible

¹³C NMR (100 MHz, CDCl₃) δ 71.3, 47.3, 36.2 (2C), 32.4, 27.7 (3C), 25.7 (2C)

MS (EI) *m/z*: 156 (1, M⁺), 138 (9), 123 (15), 110 (4), 99 (13), 95 (8), 83 (21), 82 (23), 81 (45), 80 (15), 79 (6), 69 (6), 67 (31), 58 (5), 57 (100), 56 (39), 55 (18), 54 (7), 53 (4)

cis-1-(tert-Butyl)-4-iodocyclohexane, 1.15b¹⁵

cis/trans = 87:13

lodine **1.15b** was prepared according to Procedure **B** from *trans*-4-(*tert*-butyl)cyclohexan-1-ol **S9** (379.9 mg). Purification by flash chromatography on silica gel (PE 100%) yielded iodine XX as a mixture of diastereomers (*cis/trans* = 87:13) (408.8 mg, 1.54 mmol, 63%) as a colourless oil contaminated by 4-*tert*-butylcyclohex-1-ene (76.3 mg, 0.55 mmol, 17%). The mixture was dissolved in THF/H₂O = 1:5 and cooled to 0 °C before adding NMO (80.0 mg, 0.66 mmol, 1.2 equiv) followed by OsO₄ (94 µL, 0.05 mmol, 0.7 mol %, 0.08 M in *tert*-butanol). The reaction mixture was stirred at rt overnight concealed by aluminum foil before adding an aqueous solution of Na₂S₂O₃ and stirred again for 1 h. The mixture was extracted with Et₂O. Purification by flash chromatography on silica gel (PE 100%) yielded iodine **1.15b** as a mixture of diastereomers (*cis/trans* = 87:13) (367.5 mg, 1.38 mmol, 92%). Only the *cis* diastereomer is described below.

Formula: C₁₀H₁₉I

Mass: 266.2 g.mol⁻¹

mp: ~33 °C

IR (neat): 1478, 1469, 1438, 1426, 1393, 1365, 1351, 1338, 1310, 1244, 1235, 1186, 1147, 1079, 1065, 1038, 1015, 996, 930, 919, 902 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 4.88 (brs, 1H), 2.17 – 2.04 (m, 2H), 1.69 – 1.42 (m, 6H), 1.06 (m, 1H), 0.89 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 47.9, 38.0, 36.9 (2C), 32.7, 27.5 (3C), 23.4 (2C)

MS (EI) *m/z*: 266 (1, M⁺), 139 (25), 123 (6), 97 (6), 83 (42), 81 (14), 79 (4), 71 (4), 69 (15), 67 (10), 58 (5), 57 (100), 55 (19)

1-(tert-Butoxycarbonyl)piperidine-3-carboxylic acid, S10¹⁷

To a solution of nipecotic acid (1.5 g, 11.38 mmol, 1 equiv) in MeOH (44 mL) at 0°C, were added Et₃N (1.92 mL, 13.66 mmol, 1.2 equiv) and Boc₂O (3.48 mL, 15.93 mmol, 1.4 equiv). The reaction mixture was allowed to warm up to rt and stirred overnight. A mixture of $CH_2Cl_2/H_2O = 5:1$ (60 mL) was added followed by HCl (1 N) to get pH = 3. The aqueous phase was extracted with CH_2Cl_2 . The combined organic phases were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel ($CH_2Cl_2/MeOH$ 95:5 to 85:15) yielded acid **\$10** (2.54 g, 11.08 mmol, 97%) as a white solid.

Formula: C₁₁H₁₉NO₄

Mass: 229.3 g.mol⁻¹

IR (neat): 1732, 1693, 1655, 1477, 1426, 1394, 1364, 1291, 1269, 1241, 1169, 1149, 1004, 935 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 9.90 (brs, 1H), 4.08 (brs, 1H), 3.87 (brd, *J* = 13.3 Hz, 1H), 3.04 (brs, 1H), 2.84 (brt_{app}, *J* = 11.0 Hz, 1H), 2.47 (m, 1H), 2.06 (brdd_{app}, *J* = 12.8, 3.8 Hz, 1H), 1.79 – 1.55 (m, 2H), 1.52 – 1.40 (m, 1H), 1.44 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 179.1, 154.8, 80.0, 45.6, 43.7, 41.2, 28.5 (3C), 27.2, 24.2
 MS (EI) *m/z*: 229 (1), 174 (4), 156 (12), 129 (4), 128 (14), 100 (4), 84 (15), 58 (5), 57 (100), 56 (38), 55 (8)
 mp: 158-160 °C

tert-Butyl-trans-2-(allyloxy)-3-iodopiperidine-1-carboxylate, 1.16

trans/cis = 85:15

To a solution of *N-tert*-butylcarboxylate-2-carboxylic acid piperidine **S10** (1.5 g, 6.41 mmol, 1 equiv) in CH_2CI_2 (88 mL) were added PhI(OAc)₂ (4.2 g, 12.82 mmol, 2 equiv) and I_2 (1.4 g, 5.45 mmol, 0.85 equiv). The reaction mixture was stirred at rt for 2 h, then quenched with 2-propen-1-ol (4.4 mL, 64.12 mmol, 10 equiv). The reaction mixture was stirred at rt for another 2 h before being quenched by the addition of a saturated solution of $Na_2S_2O_3$ and the aqueous phase was extracted with CH_2CI_2 . The combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/Et₂O 99:1 to 98:2) afforded the title

¹⁷ Catalano, A.; Carocci, A.; Corbo, F.; Franchini, C.; Muraglia, M.; Scilimati, A.; De Bellis, M.; De Luca, A.; Camerino, D. C.; Sinicropi, M. S.; Tortorella, V. *Eur. J. Med. Chem.* **2008**, *43*, 2535-2540.

compound **1.16** (581 mg, 1.58 mmol, 25%) as a yellow oil as a mixture of diastereomers (*trans/cis* = 85:15) as a mixture of rotamers (a/b = 70:30). Only the *trans*-diastereomer is described below. **Formula**: $C_{13}H_{22}NO_{3}I$ **Mass**: 367.2 g.mol⁻¹ **IR** (neat): 1698, 1475, 1455, 1410, 1391, 1379, 1365, 1348, 1303, 1281, 1255, 1239, 1200, 1172, 1146, 1108, 1093, 1043, 988, 965, 926 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 5.87 (m, 1H), 5.66 (s, 0.3H), 5.52 (s, 0.7H), 5.26 (brdd, *J* = 17.2, 1.5 Hz, 1H), 5.18 (brd, *J* = 10.3 Hz, 1H), 4.47 (brs_{app}, 1H), 4.06 – 3.80 (m, 3H), 3.10 – 2.81 (m, 1H), 2.21 – 2.07 (m, 1H), 1.95 (qt_{app}, *J* = 13.2, 4.4 Hz, 1H), 1.85 (brd_{app}, *J* = 14.6 Hz, 1H), 1.49 - 1.47 (m, 1H), 1.48 (s, 9H) ¹³**C NMR** (100 MHz, CDCl₃) δ 134.1, 117.3, 84.4, 80.6, 68.0, 37.4, 30.7, 28.4 (3C), 28.3, 21.1 – CO not visible **MS** (EI) *m/z*: 310 (4), 254 (41), 226 (3), 210 (9), 184 (12), 181 (4), 140 (14), 128 (5), 127 (19), 126 (14), 98 (8), 84 (5), 83 (19), 82 (11), 70 (5), 68 (5), 58 (9), 57 (100), 56 (7), 55 (13), 54 (4)

HRMS: Calculated for C₁₃H₂₂NO₃INa [M+Na]⁺: 390.0537, Found: 390.0538

2-2 GRIGNARD REAGENT SYNTHESIS

- Cyclopropylmagnesium bromide

Mg turnings (1.46 g, 60.00 mmol, 2 equiv) were covered by freshly distilled MeTHF¹⁸ (3 mL) and a crystal of I_2 was added. The reaction mixture was warmed at 40 °C and a few drops of a cyclopropylbromide (2.4 mL, 30.00 mmoL, 1 equiv in 17 mL MeTHF) were added without any stirring to start the reaction. When the I_2 colour disappeared, a cyclopropylbromide solution (2.4 mL, 30.00 mmoL, 1 equiv in 17 mL MeTHF) were added without any stirring to start the reaction. When the I_2 colour disappeared, a cyclopropylbromide solution (2.4 mL, 30.00 mmoL, 1 equiv in 17 mL MeTHF) was added dropwise over 10 min with stirring. The reaction mixture was stirred at reflux for 1.5. The Grignard reagent formed was titrated and measured to be 0.48 M.

- Cyclobutylmagnesium bromide

Mg turnings (371 mg, 15.25 mmol, 1.5 equiv) were covered by freshly distilled MeTHF¹⁸ (2 mL) and a crystal of I_2 was added. The reaction mixture was warmed by a H₂O bath (40 °C) and a few drops of a cyclobutylbromide solution in THF (2.4 mL, 30 mmoL, 1 equiv in 8 mL MeTHF) were added without any stirring to start the reaction. When the I_2 colour disappeared, a cyclobutylbromide solution in MeTHF (1.0 mL, 10.17 mmoL, 1 equiv in 8 mL MeTHF) was added dropwise over 10 min with stirring. The reaction mixture was stirred at reflux for 1.5 h. The Grignard reagent formed was titrated and measured to be 0.38 M.

¹⁸ Distilled over Na and benzophenone.

3 CROSS-COUPLINGS

Procedure C:

To iodide (0.2173 mmol, 1 equiv) was added a solution of $Co(acac)_2$ (2.016 mg, 3.5 mol %) in THF (0.15 mL), followed by TMEDA (0.2173 mmol, 32.8 µL, 1 equiv) and THF (0.15 mL). The reaction mixture was cooled to 0 °C with an ice bath and stirred while the Grignard reagent (1.2 equiv) was added slowly via syringe pump (0.52 mmol/h) over 30 min. After addition of the Grignard reagent, the reaction mixture was stirred for another 30 min at 0 °C. The reaction was quenched with an aqueous saturated solution of NH₄Cl and the aqueous phase was extracted with diethyl ether. The combined organic phases were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel afforded the desired coupling product.

Procedure D:

To iodide (0.2173 mmol, 1 equiv) was added a solution of Co(acac)₂ (2.016 mg, 3.5 mol %) in THF (0.15 mL), followed by TMEDA (0.2173 mmol, 32.8 μ L, 1 equiv) and THF (0.15 mL). The Grignard reagent (1.2 equiv) was added slowly via syringe pump (0.52mmol/h) over 30 min at rt. After addition of the Grignard reagent, the reaction mixture was stirred for another 30 min at 0 °C. The reaction was quenched with an aqueous saturated solution of NH₄Cl and the aqueous phase was extracted with diethyl ether. The combined organic phases were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel afforded the desired coupling product.

Procedure E:

To iodide (0.2173 mmol, 1 equiv) was added a solution of $Co(acac)_2$ (2.016 mg, 3.5 mol %) in THF (0.15 mL), followed by TMEDA (0.2173 mmol, 32.8 μ L, 1 equiv) and THF (0.15 mL). The reaction mixture was cooled to 0 °C in an ice bath and stirred while the Grignard reagent (1.2 equiv), premixed with LiCl (1.2 equiv), is added slowly by syringe pump (0.52 mmol/h) over 30 min. After addition of the Grignard reagent, the reaction mixture was stirred for another 30 min at 0 °C. The reaction was quenched with an aqueous saturated solution of NH₄Cl and the aqueous phase was extracted with diethyl ether. The combined organic phases were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel afforded the desired coupling product

3-1 CROSS-COUPLING WITH CYCLOPROPYLMAGNESIUM BROMIDE

Optimization

Homo = homocoupling product of the respective iodide. Black = ratios. Blue & brackets = isolated yields.

Without catalyst

Ar I 1.1 MgBr	THF, rt, 3 h manual dropwise	1 1	Ar	Ar	Ar	Ar	Ното	
A		1.1	5.1	4.1C	4.12	5.1	пощо	2.1
Ar = MeO		13	1	0	0	13	0	0
Ligand screening	5							
Ar I 1.1 MgBr	CoCl₂ (10 mol %) L (20 mol %) THF, rt, 3 h manual dropwise	1.1	3.1	4.1E	4.1Z	5.1	Homo	2.1
	TMEDA	0	0	1 (17)	0	0.5 (3)	0	3.3 (56)
	TMCD	0	0	1 (28)	0	0.5 (11)	0	1.5 (42)
	TMPDA	t	0.3	1	0	0.6	0	0.5
	Віру	0.1	1	0.6	0	0.8	0	0.6
~ ~ ~	IMes	2.6	1	0.1	0	0.7	0	0.6
Ar =	PPh₃	0.2 <mark>(2)</mark>	0.1 <mark>(2)</mark>	1 (20)	0.3 <mark>(4)</mark>	0.5 <mark>(6)</mark>	0	1.1 (28)
Meo	O=PPh₃	0	1	0.5	Т	1.2	0	0.5
Mee	Dppe	0.6	0.1	1	0.2	0.7	0	0
	Dppp	Т	0.2	1	0.3	1.5	0	0
	Dppbz	0.3	1	1.3	0.3	6.2	0	0
	Xantphos	t	t	1	0.3	2.7	0	1

Ar

Iron vs Cobalt								
Ar	Catalytic system							
1.1	THF, rt, 3 h	1.1	3.1	4.1E	4.1Z	5.1	Homo	2.1
MgBr	manual dropwise							
	FeCl ₃ (10 mol %)	0	1 (19)	0.1 (2)	0	0.8 (15)	0	1.7 (32)
A=	TMEDA (20 mol %)	·	- ()	0(-)	·	0.0 (20)	·	
MeO	(FeCl ₃) ₂ (TMEDA) ₃ (10 mol %)	1.1	1 (11)	0	0	0.7 <mark>(8)</mark>	0	1.4 (23)
	CoCl₂ (10 mol %) TMEDA (20 mol %)	0	0	1 (17)	0	0.5 (3)	0	3.3 (56)
Temperature								
Manual dronwi	ise							
	CoCl ₂ (10 mol %)							
Ar ~ I 1.1	TMEDA (20 mol %)	1 1	2.1	A 1F	4 17	г 1	llomo	2.1
MaBr	THF, T , 3 h	1.1	5.1	4.1C	4.12	5.1	потто	2.1
INIGEI	manual dropwise							()
Ar - ~ ~	rt	0	0	1 (17)	0	0.5 (3)	0	3.3 (56)
	0°C	0.1 (0)	1 (6)	0.7 (4)	0	0.7(3)	0	12 (69)
MeO	-10°C	07(13)	1 (14)	1(10)	0	0.5 (5)	0	4.5 (77)
Syringe-pump	25 C	0.7 (13)	1 (14)	0.2 (3)	0	0.4 (0)	U	2.5 (57)
	CoCl ₂ (10 mol %)							
Ar ~ I 1.1	TMEDA (20 mol %)		2.4	4 4 5	4 1 7	F 4		2.1
MaDr	THF, T , 1 h	1.1	3.1	4.1E	4.12	5.1	Homo	2.1
Тиды	0.52 mmol/h							
	rt	t (0)	t (1)	1 (5)	0	1.2 (6)	0	9.2 (69)
$Ar = \int$	0 °C	0	0.5 (1)	1 (2)	0	0.8 (3)	0	17.5 (76)
MeO	-10 °C	0.2 (1)	1.1 (6)	1 (6)	0	0.7 (3)	0	12.0 (77)
	-25 °C	2.5 (14)	1 (3)	0	0	0.8 (1)	0	13.0 (60)
Rate								
	CoCl ₂ (10 mol %)							
Ar' ~ 'I	TMEDA (20 mol %)		• •					• •
···	, THF, 0 °C, 1 h	1.1	3.1	4.1E	4.1Z	5.1	Homo	2.1
MgBr	V							
Ar =	manual dropwise	0.1 (0)	1 (6)	0.7 (4)	0	0.7 (3)	0	12 (69)
	0.52 mmol/h	0	0.5 <mark>(1)</mark>	1 (2)	0	0.8 <mark>(3)</mark>	0	17.5 <mark>(76)</mark>
MeO´ 💛	1.04 mmol/h	0.1 <mark>(0)</mark>	0.8 <mark>(3)</mark>	1 (4)	0	0.7 <mark>(2)</mark>	0	15.2 (77)

So	wont
30	VEIIL

Ar 1.1 MgBr Ar =	CoCl ₂ (1 TMEDA (S , 0 ° 0.52 n T	.0 mol %) 20 mol %) °C, 1 h nmol/h HF	1.1	3.1	4.1E	4.1Z	5.1 0.8 (3)	Homo	2.1 17.5 (76)
	Me	THF	0	0.7 (1)	1 (3)	0	0.8 <mark>(2)</mark>	0	17.4 <mark>(78)</mark>
MeO	M	TBE	t (0)	0.9 (3)	1 (4)	0	0.7 (3)	0	13.2 (72)
Catalytic charge	CoCl₂ () TMEDA THF, 0	X mol %) (Y mol %)) °C, 1 h	1.1	3.1	4.1E	4.1Z	5.1	Homo	2.1
MgBr	0.52 n	nmol/h							
	(X	(/Y)							
	1(0/0	0.1	1	0.8	0	1.4	0	1.4
	10/20		0	0.5 (1)	1 (2)	0	0.8 (3)	0	17.5 (76)
	10	/10	0.2 (1)	0.4 (1)	1 (4)	0	0.8 (2)	0	15.8 (74)
$Ar = \int \sqrt{2}$	5,	/10	0.2 (1)	1 (3)	1 (2)	0	0.8 (3)	0	17.7 (76)
MeO	5	/5	0	1 (5)	0.7 (3)	0	0.7 (2)	0	11.3 (70)
	3.5/7		t (0)	1 (6)	0.4 <mark>(3)</mark>	0	0.7 <mark>(3)</mark>	0	11.3 <mark>(76)</mark>
	3.5/3.5		0.1 (1)	1 (5)	0.5 <mark>(2)</mark>	0	0.6 <mark>(2)</mark>	0	10.3 <mark>(73)</mark>
	2.5/5		7.1 (21)	1 (1)	0	0	1.2 (1)	0	21.0 <mark>(62)</mark>
Cobalt source Ar 1.1 MgBr	Cobalt source Ar I [Co] (3.5 mol %) 1.1 TMEDA (X mol %) THF, 0 °C, 1 h 0 52 mmol/h		1.1	3.1	4.1E	4.1Z	5.1	Homo	2.1
		CoCl ₂	t (0)	1 (6)	0.4 <mark>(3)</mark>	0	0.7 (3)	0	11.3 <mark>(76)</mark>
	X =	CoCl ₂	0.3 <mark>(2)</mark>	1 (5)	0.4 (3)	0	0.7 (3)	0	9.1 (67)
6	7 mol %	CoBr ₂	0.3 <mark>(2)</mark>	1 (7)	0.5 <mark>(3)</mark>	0	0.6 <mark>(3)</mark>	0	9.4 <mark>(73)</mark>
Ar =		Co(acac)₂	0	1 (5)	0.5 <mark>(2)</mark>	0	0.6 <mark>(3)</mark>	0	11.1 <mark>(75)</mark>
Mag	X =	CoCl ₂	0.1 (1)	1 (5)	0.5 <mark>(2)</mark>	0	0.6 (2)	0	10.3 (73)
MEO	3.5 mol	Co(acac)₃	t (2)	1 (5)	0.6 (2)	0	0.8 (3)	0	12.0 (72)
	%	Co(acac) ₂	0.2 (1)	1 (3)	0.2 (1)	0	1 (1)	0	19.5 (80)
	X = 0 %	Co(acac) ₂	2.6 (37)	1 (10)	0.6 (7)	0	1.4 (13)	0	1.7 (16)
) (==+()	- / . / / / /				

CoCl₂ (99.999%), CoCl₂ (98%), CoBr₂ (99%), Co(acac)₂ (97%), Co(acac)₃ (99.99%)

Dilution factor

Ar 1.1 MgBr v _{Gr}	Co(acac) ₂ (3.5 mol %) TMEDA (3.5 mol %) THF (v _{TFH}), 0 °C, 1 h 0.52 mmol/h 	1.1	3.1	4.1E	4.1Z	5.1	Homo	2.1
	0.25 / 0.54 mL -> 0.87-0.28 M	0.1 (1)	1 (7)	0.5 <mark>(3)</mark>	0	0.7 (5)	0	6.8 (64)
Ar =	2.0 / 0.41 mL -> 0.11-0.09 M	5.5 <mark>(28)</mark>	1 <mark>(4)</mark>	t (3)	0	0.8 (1)	0	12.5 (59)
MeO	10.0 / 0.54 mL -> 0.02-0.02 M	2.0 (43)	t (0)	t (0)	0	0.2 (1)	0	1 (13)
TMEDA equiv								
BocN 1.11 MgBr	Co(acac)₂ (3.5 mol %) TMEDA (X) THF, 0 °C, 1 h 0.52 mmol/h	1.11	Bo	ocN	BocN		2.11	
	3.5 mol %	0	-	L (5-20)	0.3 <mark>(2</mark>	-6)	2.6 (54-62)	
	0.5 equiv	0		1 (6)	0.3 (3)	15.5 <mark>(85)</mark>	
	1 equiv	0		2 <mark>(2)</mark>	1 <mark>(</mark> 2)	75 <mark>(96)</mark>	
	2 equiv	0		2 (3)	1 (4)	55 <mark>(89)</mark>	

Same trend with 3-iodo-pyrrolidine

Grignard reagent

The idea was to mimic an old load of Grignard reagent (presence of a lot of salts MgBr₂) but without compromising the concentration of the Grignard reagent. Therefore, the addition of dry MgBr₂ to the mixture was done.

Ar 1.1 MgBr	Co(acac) ₂ (3.5 mol %) TMEDA (1 equiv) MgBr₂ (X equiv) THF, 0 °C, 1 h 0.52 mmol/h	1.1	3.1	4.1E	4.1Z	5.1	Homo	2.1
Ar =	0	0	1 (3)	0.4 <mark>(1)</mark>	0	0.4 <mark>(1)</mark>	0	33.1 (84)
MeO	1	0.1 (0)	1 (7)	0.3 (3)	0	0.4 (3)	0	5.4 (70)

lodoester								
MeO 1.7 MaBr	Co(acac) ₂ (3. TMEDA (3.5 Salt (3 THF, 0 °C	5 mol %) 5 mol %) X) C, 1 h	1 7	E	E		$\overline{\nabla}$	2.7
	0.52 1111	101/11	0	+ (0)	0	2.7.0H		2.7
	Lil (7mc	ol %)	0	0	0	0		1 (71)
	LiCl (7 m	ol %)	22.6	t	0	1		19
	LiCl (1 e	quiv)	0	0.5 (2)	t (1)	1 (5)		4.3 (45)
$E = CO_2 Me$	Mgl₂ (7 m	nol %)	Major	-	-	t		t
	MgI ₂ (1 e	quiv)	0.3 <mark>(0)</mark>	t (0)	t (0)	1 (17)		2.7 (12)
	MgBr ₂ (7 r	nol %)	t (0)	t (0)	t (0)	1 (5)		19 (52)
	MgBr ₂ (1	MgBr ₂ (1 equiv)		t (0)	t (0)	1 (3)		9 (53)
No effect on a reg	gular substrate with o(acac) ₂ (3.5 mol %) IMEDA (3.5 mol %) Lil (X mol %) THF, 0 °C, 1 h 0.52 mmol/h	Lil: 1.1	3.1	4.1E	4.1Z	5.1	Homo	2.1
Ar =	0	0.2 <mark>(1)</mark>	1 (3)	0.2 <mark>(1)</mark>	0	1 (1)	0	19.5 <mark>(80)</mark>
MeO	7	0.1 (1)	1 (6)	0.3 (2)	0	0.7 (3)	0	11.1 (73)
Iron vs Cobalt								
O II	[M] (3.5 n	nol %)				он		
MeO	▲ TMEDA (3.5)	mol %)		E	E	$ \longrightarrow $	\frown	
1.7	THF, 0 °C	C, 1 h				\checkmark	\bigvee	
MgBr	0.52 mm	nol/h	1.7			2.7.OH		2.7
	Co(aca	c) ₂	0	t (0)	0	1 (19)		2.2 (39)
	FoCla	[a]	0	2.2	0.7	1		19
$E = CO_2 Me$	Fecis	FeCl ₃ ^[a]		2.2	0.7	_		1.5
	FeCl	2	0	1	0.2	1		0.3

[a] = 7 mol % of TMEDA

Bromide

Ar Br 1.1 MgBr	[Co] (X mol %) TMEDA (Y mol %) additive (Z mol %) THF, 0 °C, 1 h 0.52 mmol/h	т	1.1	3.1	4.1E	4.1Z	5.1	Homo	2.1
	CoCl ₂ 10 TMEDA 20	0 °C	0	1 (15)	1 (15)	0	1 (14)	0	3.1 (51)
	Co(acac)₂ 10 TMEDA 20 Nal 10	0 °C	0.7 (5)	1 (10)	0.9 (10)	0	0.8 <mark>(8)</mark>	0	3.9 (43)
Ar =	Co(acac)₂ 3.5 TMEDA 3.5 Lil 7	0 °C	12.3 (46)	2 (10)	1 (5)	0	1.3 (6)	0	3.1 (18)
	Co(acac)₂ (3.5 mol %) TMEDA (1 équiv)	0 °C	4.8 (64)	1 (9)	0.4 <mark>(4)</mark>	0	0.3 (3)	0	1 (9)
	Co(acac)₂ (3.5 mol %) TMEDA (1 équiv)	rt	0.2 (3)	1 (15)	0.7 (10)	0	0.5 (7)	0	2.7 (45)

References without Cobalt salt

Primary iodides

Cyclopropane **2.1** was prepared according to Procedure **C** from 1-(3-iodopropyl)-4-methoxybenzene **1.1** (60 mg) and cyclopropylmagnesium bromide (0.54 mL, 0.48 M in MeTHF, 1.08 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 50:0.35) yielded cyclopropane **2.1** (33.2 mg, 0.17 mmol, 80%) contaminated by dehalogenated and elimination products (up to 2.5 mg, 6%) as a colourless oil.

Formula: C₁₃H₁₈O

Mass: 190.3 g.mol⁻¹

IR (neat): 1612, 1584, 1511, 1462, 1441, 1300, 1245, 1177, 1119, 1038, 1014 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.11 (brd, J = 8.5 Hz, 2H), 6.87-6.81 (brd, J = 8.7 Hz, 2H) 3.80 (s, 3H), 2.59 (t_{app}, J = 7.8 Hz, 2H), 1.71 (dddd, J = 7.8, 7.7, 7.3, 7.3 Hz, 2H), 1.29-1.20 (m, 2H), 0.69 (m, 1H), 0.41 (ddd, J = 8.1 Hz, 5.6 Hz and 4.1Hz, 2H), 0.04-(-)0.02 (m, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ 157.7, 135.0, 129.3 (2C), 113.7 (2C), 55.3, 34.9, 34.4, 31.7, 10.8, 4.5 (2C) **MS** (EI) *m/z*: 190 (18), 162 (11), 161 (16), 159 (7), 148 (5), 147 (29), 135 (5), 134 (24), 122 (11), 121 (100), 119 (4), 117 (4), 109 (4), 91 (15), 78 (10), 77 (14), 65 (6)

((4-Cyclopropylbutoxy)methyl)benzene, 2.2

Cyclopropane **2.2** was prepared according to Procedure **C** from ((4-iodobutoxy)methyl)benzene **1.2** (63.1 mg) and cyclopropylmagnesium bromide (0.42 mL, 0.63 M, 0.84 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 99:1) yielded cyclopropane **2.2** (38.0 mg, 0.19 mmol, 86%) contaminated by dehalogenated and elimination products (2.7 mg, 7%) as a colourless oil.

 $\textbf{Formula:} \ C_{14}H_{20}O$

Mass: 204.3 g.mol⁻¹

IR (neat): 1496, 1454, 1361, 1204, 1100, 1028, 1013, 956, 909 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (brd, *J* = 4.4 Hz, 4H,), 7.29 (m, 1H), 4.52 (s, 2H), 3.48 (t, *J* = 6.6 Hz, 2H), 1.67 (quint_{app}, *J* = 7.3 Hz, 2H), 1.49 (quint_{app}, *J* = 7.3 Hz, 2H), 1.22 (q_{app}, *J* = 7.3 Hz, 2H), 0.67 (m, 1H), 0.40 (ddd, *J* = 7.8, 4.8, 4.6 Hz, 2H), 0.01 (q_{app}, *J* = 4.7 Hz, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 138.8, 128.4 (2C), 127.7 (2C), 127.5, 73.0, 70.6, 34.6, 29.7, 26.3, 10.9, 4.5 (2C, C_{11})

MS (EI) *m/z*: 204 (1), 107 (5), 106 (2), 104 (24), 95 (6), 92 (16), 91 (100), 85 (10), 79 (5), 71 (6), 67 (8), 65 (9), 55 (11)

HRMS: Calculated for C₁₄H₂₀ONa [M+Na]⁺: 227.1406, Found: 227.1403

tert-Butyl(4-cyclopropylbutoxy)diphenylsilane, 2.3

Cyclopropane **2.3** was prepared according to Procedure **C** from *tert*-butyl(4-iodobutoxy)diphenylsilane **1.3** (95.3 mg) and cyclopropylmagnesium bromide (0.47 mL, 0.55 M in MeTHF, 0.94 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 50:0.1) yielded cyclopropane **2.3** (68 mg, 0.19 mmol, 89%) contaminated by dehalogenated and elimination products (4.4 mg, 7%) as a colourless oil.

Formula: C₂₃H₃₂OSi

Mass: 352.6 g.mol⁻¹

IR (neat): 1472, 1461, 1427, 1389, 1361, 1106, 1012, 998, 938, 915 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.71-7.64 (m, 4H), 7.45-7.34 (m, 6H), 3.67 (t, *J* = 6.5 Hz, 2H), 1.60 (quint_{app}, *J* = 7.3 Hz, 2H), 1.50-1.41 (m, 2H), 1.18 (q_{app}, *J* = 7.3 Hz, 2H), 1.06 (s, 9H), 0.64 (m, 1H), 0.45-0.31 (m, 2H), -0.02 (brq_{app}, *J* = 4.8 Hz, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 135.7 (4C), 134.3 (2C), 129.6 (2C), 127.7 (4C), 64.1, 34.5, 32.5, 27.0 (3C), 25.9, 19.3, 10.9, 4.5 (2C)

MS (EI) *m/z*: 296 (24, (M+1)-57, -*t*-Bu), 295 (88, M-57, -*t*-Bu), 217 (18), 200 (18), 199 (100), 197 (10), 189 (7), 183 (33), 181 (17), 177 (13), 175 (10), 163 (10), 161 (11), 137 (7), 135 (12), 123 (18), 121 (10), 105 (11), 95 (9), 91 (6), 77 (16), 55 (8)

HRMS: Calculated for C₂₃H₃₂OSiH [M+H]⁺: 353.2295, Found: 353.2294

1-Bromo-4-(3-cyclopropylpropyl)benzene, 2.4

Cyclopropane **2.4** was prepared according to Procedure **C** from 1-bromo-4-(3-iodopropyl)benzene **1.4** (70.6 mg) and cyclopropylmagnesium bromide (0.54 mL, 0.48 M in MeTHF, 1.08 mL/h). Purification by flash chromatography on silica gel (PE 100%) yielded cyclopropane **2.4** (40.6 mg, 0.17 mmol, 78%) contaminated by dehalogenated and elimination products (2.1 mg, 5%) as a colourless oil.

Formula: C₁₂H₁₅Br

Mass: 239.2 g.mol⁻¹

IR (neat): 1488, 1459, 1403, 1352, 1178, 1041, 1011 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (brd, J = 8.3 Hz, 2H), 7.06 (brd, J = 8.2 Hz, 2H), 2.59 (t_{app}, J = 7.7 Hz, 2H), 1.70 (quint_{app}, J = 7.7 Hz, 2H), 1.23 (q_{app}, J = 7.4 Hz, 2H), 0.68 (m, 1H), 0.46-0.37 (m, 2H), 0.04-(-)0.04 (m, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 131.3 (2C), 130.2 (2C), 119.3, 35.2, 34.3, 31.3, 10.8, 4.5 (2C) HRMS: Unstable compound

5-Cyclopropylpentanenitrile and 1,5-dicyclopropylpentan-1-one, 2.5 and 2.5.CO

Cyclopropanes **2.5** and **2.5.CO** were obtained according to Procedure **C** from 5-iodopentanenitrile **1.5** (45.4 mg) and cyclopropylmagnesium bromide (0.47 mL, 0.55 M in MeTHF, 0.94 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 97:3 to 95:5) yielded cyclopropane **2.5** (8.2 mg, 0.07 mmol, 31%) and cyclopropane **2.5.CO** (3.6 mg, 0.02 mmol, 10%).

5-Cyclopropylpentanenitrile, 2.5

Formula: $C_8H_{13}N$ Mass: 123.2 g.mol⁻¹ IR (neat): 2246, 1461, 1427, 1387, 1327, 1269, 1043, 1015, 953, 938, 905 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 2.34 (t, *J* = 7.0 Hz, 2H), 1.74-1.64 (m, 2H), 1.60-1.51 (m, 2H), 1.23 (q_{app}, *J* = 7.4 Hz, 2H), 0.65 (m, 1H), 0.45-0.38 (m, 2H), 0.04-(-)0.03 (m, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 119.9, 33.9, 28.9, 25.3, 17.3, 10.6, 4.5 (2C) HRMS: Calculated for C₈H₁₃NH [M+H]⁺: 124.1121, Found: 124.1120 **1,5-Dicyclopropylpentan-1-one, 2.5.CO** Contaminated by an impyrity

Formula: C₁₁H₁₈O Mass: 166.3 g.mol⁻¹ IR (neat): 1699, 1460, 1444, 1432, 1387, 1233, 1196, 1159, 1137, 1120, 1086, 1060, 1014, 971 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 2.54 (t_{app} , J = 7.5 Hz, 2H), 1.92 (m, 1H), 1.64 (quint_{app}, J = 7.7 Hz, 2H), 1.45 - 1.36 (m, 2H), 1.20 (q_{app}, J = 7.3 Hz, 2H), 1.03-0.97 (m, 2H), 0.89 - 0.80 (m, 2H), 0.65 (m, 1H), 0.44 - 0.34 (m, 2H), 0.03-(-)0.05 (m, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ 211.4, 43.7, 34.6, 29.4, 24.0, 20.4, 10.8, 10.6 (2C), 4.5 (2C)

MS (EI) *m/z*: 151 (2, M-15), 137 (4), 123 (4), 109 (4), 97 (45), 84 (41), 83 (13), 82 (5), 81 (4) 79 (5), 70 (5), 69 (100), 67 (6), 56 (10), 55 (36)

HRMS: Calculated for C₁₁H₁₈OH [M+H]⁺: 167.1430, Found: 167.1430

6-Cyclopropyl-2,2-dimethylhexanenitrile, 2.6

Cyclopropane **2.6** was prepared according to Procedure **C** from 6-iodo-2,2-dimethylhexanenitrile **1.6** (54.6 mg) and cyclopropylmagnesium bromide (0.46 mL, 0.57 M in MeTHF, 0.92 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 50:0.3 to 50:0.5) yielded cyclopropane **2.6** (29.1 mg, 0.18 mmol, 81%) contaminated by dehalogenated and elimination products (1 mg, 2%) as a colourless oil. **Formula**: $C_{11}H_{19}N$

Mass: 165.3 g.mol⁻¹

IR (neat): 2360, 2341, 2234, 1692, 1471, 1462, 1389, 1369, 1321, 1279, 1170, 1045, 1014, 955 cm⁻¹ **¹H NMR** (400 MHz, CDCl₃) δ 1.54-1.47 (m, 4H), 1.47-1.37 (m, 2H), 1.33 (s, 6H), 1.26-1.17 (m, 2H), 0.71 - 0.58 (m, 1H), 0.44-0.35 (m, 2H), 0.02-(-)0.04 (m, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 125.3, 41.2, 34.5, 32.5, 29.7, 26.8 (2C), 25.1, 10.8, 4.5 (2C

HRMS: Calculated for C₁₁H₁₉NH [M+H]⁺: 166.1590, Found: 166.1590

Methyl-5-cyclopropylpentanoate and 1,1,5-tricyclopropylpentan-1-ol, 2.7 and 2.7.OH

Cyclopropanes **2.7** and **2.7.0H** were obtained according to Procedure **C** from methyl-5-iodopentanoate **1.7** (52.6 mg) and cyclopropylmagnesium bromide (0.46 mL, 0.57 M in MeTHF, 0.92 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 97:3 to 96:4) yielded cyclopropane **2.7** as a colourless oil (19.1 mg, 0.12 mmol, 56%) and cyclopropane **2.7.0H** as a colourless oil (2.4 mg, 0.01 mmol, 5%). **Methyl-5-cyclopropylpentanoate**, **2.7**

Formula: C₉H₁₆O₂

Mass: 156.2 g.mol⁻¹

IR (neat): 1738, 1459, 1436, 1362, 1308, 1238, 1195, 1169, 1119, 1074, 1014, 953, 913 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 3.66 (s, 3H), 2.30 (t, *J* = 7.5 Hz, 2H), 1.64 (quint_{app}, *J* = 7.6 Hz, 2H), 1.41 (quint_{app}, *J* = 7.7 Hz, 2H), 1.19 (q_{app}, *J* = 7.4 Hz, 2H), 0.64 (m, 1H), 0.38 (ddd, *J* = 7.9, 5.3, 5.0 Hz, 2H), -0.02 (q_{app}, *J* = 4.8 Hz, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 51.5, 34.4, 34.2, 29.3, 24.9, 10.8, 4.5 (2C)

MS (EI) *m/z*: 156 (1, M⁺), 124 (13), 107 (8), 97 (8), 96 (41), 87 (39), 83 (16), 82 (31), 81 (13), 79 (8), 74 (100), 69 (9), 68 (33), 67 (17), 59 (29), 57 (6), 56 (6), 55 (68), 54 (13), 53 (8) **HRMS**: Calculated for C₉H₁₆O₂Na [M+Na]⁺: 179.1043, Found: 179.1036

1,1,5-Tricyclopropylpentan-1-ol, 2.7.OH

Formula: C₁₄H₂₄O

Mass: 208.3 g.mol⁻¹

IR (neat): 3496, 1463, 1428, 1378, 1319, 1295, 1264, 1203, 1171, 1042, 1015, 985, 952, 911 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 1.65-1.45 (m, 4H), 1.45-1.34 (m, 2H), 1.35 − 1.16 (m, 2H), 0.86 − 0.76 (m, 2H), 0.66 (m, 1H), 0.47-0.32 (m, 6H), 0.32-0.22 (m, 4H), 0.04-(-)0.06 (m, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ 70.9, 42.8, 34.9, 30.5, 23.8, 18.6 (2C), 11.0, 4.5 (2C), 0.9 (2C), -0.6 (2C), -OH not visible

MS (EI) *m/z*: 190 (1, M-H₂O), 121 (3), 119 (3), 112 (8), 111 (100), 93 (8), 91 (7), 83 (7), 81 (5), 79 (12), 77 (5), 69 (57), 67 (9), 55 (21), 53 (4)

HRMS: Calculated for C₁₄H₂₄OH [M+H]⁺: 209.1900, Found: 209.1899

Secondary Iodide

1-(3-Cyclopropylpentyl)-4-methoxybenzene, 2.8

Cyclopropane **2.8** was prepared according to Procedure **C** from 1-(3-iodopentyl)-4-methoxybenzene **1.8** (66.1 mg) and cyclopropylmagnesium bromide (0.49 mL, 0.53 M in MeTHF, 0.98 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 50:0.6) yielded cyclopropane **2.8** (25.8 mg, 0.12 mmol, 54%) contaminated by dehalogenated and elimination products (14.7 mg, 0.08 mmol, 38%) as a colourless oil. **Formula**: $C_{15}H_{22}O$

Mass: 218.3 g.mol⁻¹

IR (neat): 1511, 1463, 1441, 1377, 1300, 1243, 1176, 1115, 1083, 1038, 1016, 966, 944 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.13 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 3.80 (s, 3H), 2.75 - 2.56 (m, 2H), 1.76 - 1.63 (m, 2H), 1.54 - 1.45 (m, 2H), 0.96 (t, *J* = 7.5 Hz, 3H), 0.63 - 0.50 (m, 2H), 0.50 - 0.37 (m, 2H), 0.14 - 0.03 (m, 2H)

 $^{13}\textbf{C}$ NMR (100 MHz, CDCl₃) δ 157.6, 135.6, 129.2 (2C), 113.8 (2C), 55.3, 44.6, 36.8, 32.6, 27.4, 15.9, 11.3, 4.0, 3.9

MS (EI) *m/z*: 219 (M+1, 2), 218 (M⁺, 14), 189 (7), 162 (10), 161 (7), 148 (4), 147 (32), 135 (6), 134 (23), 122 (12), 121 (100), 109 (5), 91 (9), 78 (6), 77 (9), 55 (10)

HRMS: Calculated for C₁₅H₂₂OH [M+H]⁺: 219.1743, Found: 219.1743

tert-Butyl (3-cyclopropylbutyl)(tosyl)carbamate, 2.9

Cyclopropane **2.9** was prepared according to Procedure **C** from *tert*-butyl-(3-iodobutyl)(tosyl)carbamate **1.9** (98.5 mg) and cyclopropylmagnesium bromide (0.47 mL, 0.55 M in MeTHF, 0.94 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 94:6) yielded cyclopropane **2.9** (67.4 mg, 0.18 mmol, 84%) contaminated by the dehalogenated and elimination products (2.1 mg, 0.01 mmol, 3%) as a colourless oil.

Formula: C₁₉H₂₉NO₄S

Mass: 367.5 g.mol⁻¹

IR (neat): 1724, 1598, 1455, 1394, 1352, 1285, 1257, 1186, 1154, 1138, 1088, ,1045, 1016, 988 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 3.96 (ddd, J_{AB} = 14.1, 11.2, 5.5 Hz, 1H), 3.83 (ddd, J_{AB} = 14.2, 11.3, 4.8 Hz, 1H), 2.43 (s, 3H), 1.90 (m, 1H), 1.75 (m, 1H), 1.33 (s, 9H), 1.03 (d, *J* = 6.7 Hz, 3H), 0.75 (m, 1H), 0.56 (m, 1H), 0.47 (m, 1H), 0.40 (m, 1H), 0.11 (m, 1H), 0.04 (m, 1H) ¹³**C NMR** (100 MHz, CDCl₃) δ 151.0, 144.0, 137.7, 129.3 (2C), 127.9 (2C), 84.0, 46.0, 37.9, 37.0, 28.0 (3C), 21.7, 20.0, 17.7, 4.8, 3.1

HRMS: Calculated for C₁₉H₂₉NO₄SH [M+H]⁺: 368.1890, Found: 368.1890

tert-Butyl(3-cyclopropylbutoxy)dimethylsilane, 2.10

Cyclopropane **2.10** was prepared according to Procedure **C** from *tert*-butyl(3-iodobutoxy)dimethylsilane **1.10** (68.3 mg) and cyclopropylmagnesium bromide (0.48 mL, 0.54 M in MeTHF, 0.96 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 98:2) yielded cyclopropane **2.10** (36.4 mg, 0.16 mmol, 73%) contaminated by the dehalogenated and elimination products (1 mg, 0.01 mmol, 2%) as a colourless liquid.

Formula: C₁₃H₂₈OSi

Mass: 228.5 g.mol⁻¹

IR (neat): 1472, 1462, 1406, 1388, 1361, 1255, 1091, 1044, 1016, 996, 938 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 3.74 - 3.63 (m, 2H), 1.68 (td, J_{AB} = 13.4, 6.9 Hz, 1H), 1.49 (td, J_{AB} = 13.6, 6.9 Hz, 1H), 0.96 (d, J = 6.7 Hz, 3H), 0.89 (s, 9H), 0.79 (m, 1H), 0.48 (m, 1H), 0.43 - 0.30 (m, 2H), 0.13 - (-)0.03 (m, 2H), 0.04 (s, 6H)

¹³C NMR (100 MHz, CDCl₃) δ 61.6, 40.6, 35.4, 26.1 (3C), 20.1, 18.4, 18.1, 4.5, 3.2, -5.16, -5.19

MS (EI) *m/z*: 172 ((M+1)-57, -*t*-Bu, 7), 171 (48, M⁺-57, -*t*-Bu), 143 (11), 142 (14), 141 (100), 115 (10), 114 (6), 113 (51), 101 (36), 99 (41), 95 (7), 89 (32), 85 (10), 81 (5), 76 (7), 75 (91), 73 (35), 69 (5), 67 (5), 61 (5), 59 (23), 55 (9)

HRMS: Calculated for C13H28OSiH [M+H]⁺: 229.1982, Found: 229.1984

tert-Butyl-4-cyclopropylpiperidine-1-carboxylate, 2.11

Cyclopropane **2.11** was prepared according to Procedure **C** from *tert*-butyl-4-iodopiperidine-1-carboxylate **1.11** (67.6 mg) and cyclopropylmagnesium bromide (0.45 mL, 0.58 M in MeTHF, 0.90 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 93:7) yielded cyclopropane **2.11** (47.8, 0.21 mmol, 98%) as a mixture of rotamers contaminated by the dehalogenated and elimination products (1.6 mg, 0.01 mmol, 4%) as a colourless oil.

Formula: C₁₃H₂₃NO₂

Mass: 225.3 g.mol⁻¹

IR (neat): 1690, 1447, 1422, 1392, 1365, 1352, 1325, 1283, 1236, 1159, 1126, 1099, 1069, 1019, 985, 963, 945 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 4.05 (brs, 2H), 2.63 (brt, *J* = 12.2 Hz, 2H), 1.70 (brd_{app}, *J* = 12.4 Hz, 2H), 1.45 (s, 9H), 1.24 (m, 2H), 0.67-0.46 (m, 2H), 0.44-0.34 (m, 2H), 0.12-0.01 (m, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 155.0, 79.2, 43.8 (2C), 41.5, 31.9 (2C), 28.6 (3C), 16.8, 3.2 (2C)

MS (EI) *m/z*: 225 (M⁺, 1), 170 (6), 169 (12), 168 (5), 152 (10), 141 (5), 140 (47), 126 (9), 124 (4), 113 (20),

112 (5), 96 (18), 82 (10), 81 (5), 69 (7), 58 (5), 57 (100), 56 (22), 55 (9)

HRMS: Calculated for C₁₃H₂₃NO₂H [M+H]⁺: 226.1802, Found: 226.1801

tert-Butyl-trans-4-cyclopropyl-2-(4-bromophenyl)piperidine-1-carboxylate, 2.12

trans/cis > 95:5

Cyclopropane **2.12** was prepared according to Procedure **C** from *trans*-2-(4-bromophenyl)-4-iodo-1tosylpiperidine (113.0 mg) and cyclopropylmagnesium bromide (0.58 mL, 0.45 M in MeTHF, 1.16 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 85:15) yielded cyclopropane **2.12** as a colourless oil (76.4 mg, 0.18 mmol, 81%).

Formula: C₂₁H₂₄BrNO₂S

Mass: 434.4 g.mol⁻¹

IR (neat) cm⁻¹ 1597, 1488, 1451, 1435, 1397, 1372, 1349, 1333, 1303, 1290, 1255, 1204, 1179, 1154, 1092, 1076, 1047, 1008, 965, 933, 906

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.6, 2H), 5.27 (brd, *J* = 4.9 Hz, 1H), 3.90 (brd_{app}, *J* = 14.5 Hz, 1H), 2.86 (ddd, *J* = 14.4, 13.4, 2.9 Hz, 1H), 2.44 (s, 3H), 2.27 (brd_{app}, *J* = 13.9 Hz, 1H), 1.58 – 1.36 (m, 2H), 1.06 (m, 1H), 0.55 (m, 1H), 0.39 – 0.07 (m, 3H), 0.01-(-)0.11 (m, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ 143.3, 138.6, 138.2, 131.8 (2C), 129.8 (2C), 128.7 (2C), 127.1 (2C), 120.9, 54.9, 41.8, 35.8, 33.7, 30.7, 21.6, 17.0, 3.2, 3.1

MS (EI) *m/z*: 4.5 (M⁺, 2), 434 (M+1, 2), 433 (M⁺, 2), 406 (6), 404 (6), 281 (9), 280 (62), 279 (26), 278 (100), 277 (25), 276 (23), 264 (25), 262 (21), 251 (10), 250 (14), 236 (14), 223 (22), 210 (12), 184 (17), 183 (6), 171 (17), 169 (20), 155 (43), 91 (99), 90 (15), 89 (11), 81 (8), 77 (9), 68 (12), 67 (21), 65 (19), 55 (21), 53 (8)

HRMS: Calculated for C₂₁H₂₄BrNO₂SH [M+H]⁺: 434.0784 and 436.0763, Found: 434.0795 and 436.0773

tert-Butyl-3-cyclopropylpyrrolidine-1-carboxylate, 2.13

Cyclopropane **2.13** was prepared according to Procedure **C** from *tert*-butyl-3-iodopyrrolidine-1-carboxylate **1.13** (64.6 mg) and cyclopropylmagnesium bromide (0.45 mL, 0.58 M in MeTHF, 0.90 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 94:6 to 9:1) yielded cyclopropane **2.13** as a mixture of rotamers (40.6 mg, 0.19 mmol, 88%) contaminated by the dehalogenated and elimination products (1.4 mg, 4%) as a colourless oil.

Formula: C₁₂H₂₁NO₂

Mass: 211.3 g.mol⁻¹

IR (neat): 1694, 1478, 1454, 1396, 1365, 1344, 1251, 1168, 1121, 1084, 1047, 1018, 981, 948 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 3.56-3.33 (m, 2H), 3.23 (m, 1H), 3.03 (m, 1H), 1.93 (m, 1H), 1.64 (m, 1H), 1.55-1.38 (m, 1H), 1.45 (s, 9H), 0.65 (m, 1H), 0.52-0.36 (m, 2H), 0.19-0.03 (m, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ 154.7, 79.0, [51.3, 50.7], [45.8, 45.4], [44.2, 43.2], [31.5, 30.8], 28.6 (3C), 13.4, 3.25 (2C)

MS (EI) *m/z*: 211 (M⁺, 3), 156 (12), 155 (6), 154 (11), 152 (3), 138 (7), 127 (4), 126 (8), 95 (5), 88 (18), 83 (4), 82 (16), 70 (3), 68 (6), 67 (9), 58 (5), 57 (100), 56 (8), 55 (6)

HRMS: Calculated for $C_{12}H_{21}NO_2H$ [M+H]⁺: 212.1645 , Found: 212.1644

tert-Butyl 3-cyclopropylazetidine-1-carboxylate, 2.14

Cyclopropane **2.14** was prepared according to Procedure **C** from *tert*-butyl-3-cyclopropylazetidine-1carboxylate **1.14** (61.5 mg) and cyclopropylmagnesium bromide (0.47 mL, 0.55 M in MeTHF, 0.94 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 85:15) yielded cyclopropane **2.14** as a colourless oil (38.86 mg, 0.20 mmol, 91%).

Formula: C₁₁H₁₉NO₂

Mass: 197.3 g.mol⁻¹

IR (neat): 1699, 1479, 1456, 1410, 1386, 1365, 1253, 1125, 1047, 1018, 932 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 3.94 (t_{app} , J = 8.5 Hz, 2H), 3.60 (dd, J = 9.0 Hz and 5.8 Hz, 2H), 2.12 (m, 1H), 1.42 (s, 9H), 0.96 (m, 1H), 0.52-0.42 (m, 2H), 0.15-0.08 (m, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 156.5, 79.2, 53.6 (2C), 32.7, 28.5 (3C), 14.0, 2.8 (2C)

MS (EI) *m/z*: 141 (7, (M+1)-57, -*t*-Bu), 140 (3, M-57, -*t*-Bu), 126 (5), 124 (5), 96 (5), 82 (16), 81 (7) 69 (4), 68 (22), 67 (16), 58 (5), 57 (100), 56 (7), 55 (4), 53 (5)

HRMS: Calculated for C₁₁H₁₉NO₂Na [M+Na]⁺: 220.1308, Found: 220.1300

(1r,4r)-1-(tert-Butyl)-4-cyclopropylcyclohexane, 2.15

trans/cis > 95:5

Cyclopropane **2.15** was prepared according to Procedure **C** from *trans*-1-(*tert*-butyl)-4-iodocyclohexane **1.15a** or *cis*-1-(*tert*-butyl)-4-iodocyclohexane **1.15b** (57.8 mg) and cyclopropylmagnesium bromide (0.52 mL, 0.50 M in MeTHF, 1.04 mL/h). Purification by flash chromatography on silica gel (PE 100%) yielded cyclopropane **2.15** as a colourless oil (32.1 mg, 0.18 mmol, 82%).

Formula: C₁₃H₂₄

Mass: 180.3 g.mol⁻¹

IR (neat): 1479, 1466, 1448, 1393, 1365, 1313, 1194, 1170, 1157, 1087, 1016, 957, 929 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 1.90-1.81 (m, 2H), 1.81-1.71 (m, 2H), 1.04 (q_{app}, *J* = 12.0 Hz, 2H), 1.10 - 0.80 (m, 5H), 0.83 (s, 9H), 0.50-0.29 (m, 4H), -0.01 (m, 2H)

¹³C NMR (100 MHz, CDCl₃) δ 48.3, 43.4, 33.5 (2C), 32.5, 27.7 (3C), 27.4 (2C), 17.6, 3.1 (2C)

MS (EI) *m/z*: 180 (M⁺, 1), 137 (6), 124 (14), 123 (15), 122 (13), 109 (19), 97 (5), 96 (28), 95 (12), 94 (5), 83 (19), 82 (19), 81 (51), 80 (7), 79 (11), 69 (12), 68 (7), 67 (28), 57 (100), 56 (14), 55 (21), 53 (6)

Experiment with a radical clock

tert-Butyl-(3aR,7aS)-3-(cyclopropylmethyl)hexahydrofuro[2,3-b]pyridine-7(4H)-carboxylate, 2.16

Cyclopropane **2.16** was prepared according to procedure **C** from *tert*-butyl-(2S,3R)-2-(allyloxy)-3iodopiperidine-1-carboxylate (79.8 mg) and cyclopropylmagnesium bromide (0.58 mL, 0.45 M, 1.16 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 8:2) yielded cyclopropane **2.16** (33.0 mg, 0.12 mmol, 54%) as a mixture of diastereomers ($\alpha/\beta = 80:20$) as a colourless oil.

Formula: C₁₆H₂₇NO₃

Mass: 281.4 g.mol⁻¹

IR (neat): 1699, 1476, 1450, 1421, 1389, 1365, 1349, 1292, 1251, 1155, 1091, 1016, 976, 960, 942 cm⁻¹ ¹**H NMR** (400 MHz, DMSO-d6) δ 5.53 (m, 0.2H), 5.47 (d, *J* = 5.0 Hz, 0.8H), 3.99 (dd, *J* = 8.5, 7.2 Hz, 0.8H), 3.79 (t_{app}, *J* = 8.0 Hz, 0.2H), 3.65 (brd_{app}, *J* = 12.8 Hz, 1H), 3.42 (dd, *J* = 10.5, 7.8 Hz, 0.2H), 3.30 (dd, *J* = 8.7, 4.1 Hz, 0.8H), 2.70 (brt_{app}, *J* = 11.0 Hz, 1H), 2.43 (m, *J* = 16.2 Hz, 0.2H), 1.92 (m, 0.8H), 1.80 (m, 0.8H), 1.67 – 1.51 (m, 2.2H), 1.35 (s, 9H), 1.33 – 1.08 (m, 4H), 0.65 (m, 0.8H), 0.56 (m, 0.2H), 0.40 – 0.29 (m, 2H), 0.06 - (-)0.09 (m, 2H)

¹³**C NMR** (100 MHz, DMSO-d6) δ 154.9, 83.0, 79.8, 69.9, 45.0 (C_a), 42.5 (C_β), 38.4, 28.4 (3C), 25.9, 22.8, 10.0 (C_β), 9.7 (C_α), 4.9 (C_α), 4.8 (C_α), 4.7 (2C, C_β) –CH₂N not visible and CH₂C<u>H</u>CH₂ under solvent pic The same NMR spectras were obtained at 80 °C and 100 °C in DMSO-d6.

MS (EI) *m/z*: 226 (M-55, -C₄H₇, 6), 224 (43), 195 (7), 180 (38), 143 (21), 140 (28), 124 (5), 122 (5), 98 (5), 97 (6), 96 (59), 95 (5), 83 (11), 82 (12), 81 (12), 79 (7), 70 (5), 69 (10), 68 (5), 67 (9), 58 (6), 57 (100), 56 (11), 55 (21), 53 (5)

HRMS: Calculated for $C_{16}H_{27}NO_{3}H [M+H]^{+}$: 282.2064, Found: 282.2064

3-2 CROSS-COUPLING WITH ISOPROPENYLMAGNESIUM BROMIDE, 1-PROPENYLMAGNESIUM BROMIDE AND 2-METHYL-1-PROPENYLMAGNESIUM BROMIDE

Primary iodides

1-Methoxy-4-(4-methylpent-4-en-1-yl)benzene, 6.1

MeO

Olefin **6.1** was prepared according to Procedure **D** from 1-(3-iodopropyl)-4-methoxybenzene **1.1** (60 mg) and isopropenylmagnesium bromide (0.70 mL, 0.37 M in THF, 1.40 mL/h). Purification by flash

chromatography on silica gel (PE/Et₂O 50:0.35) yielded olefin **6.1** (29.7 mg, 0.16 mmol, 72%) contaminated by the dehalogenated and elimination products (1.1 mg, 0.01 mmol, 3%) as a colourless oil.

Formula: C₁₃H₁₈O

Mass: 190.3 g.mol⁻¹

IR (neat): 1649, 1612, 1584, 1511, 1454, 1442, 1374, 1319, 1280, 1243, 1176, 1152, 1107, 1037, 965 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) 7.11 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 4.73 (brs, 1H), 4.70 (brs, 1H), 3.80 (s, 3H), 2.56 (t_{app}, J = 8.0 Hz, 2H), 2.06 (t, J = 7.6 Hz, 2H), 1.80 – 1.64 (m, 5H) ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 145.8, 134.7, 129.4 (2C), 113.8 (2C), 110.0, 55.3, 37.4, 34.6, 29.7, 22.5 MS (EI) m/z: 190 (M⁺, 2), 135 (11), 134 (100), 122 (4), 121 (41), 119 (7), 91 (8), 78 (5), 77 (7), HRMS: Calculated for C₁₃H₁₈ONa [M+Na]⁺: 213.1250, Found: 213.1246

1-Methoxy-4-(5-methylhex-4-en-1-yl)benzene, 6.2¹⁹

Olefin **6.2** was prepared according to Procedure **D** from 1-(3-iodopropyl)-4-methoxybenzene **1.1** (60 mg) and 2-methyl-1-propenylmagnesium bromide (0.97 mL, 0.27 M in THF, 1.96 mL/h) premixed with LiCl. Purification by flash chromatography on silica gel (PE/Et₂O 50:0.35) yielded olefin **6.2** (18.9 mg, 0.09 mmol, 43%) contaminated by the dehalogenated and elimination products (4.2 mg, 13%) as a colourless oil.

Formula: C₁₄H₂₀O

Mass: 204.3 g.mol⁻¹

IR (neat): 1671, 1647, 1612, 1584, 1511, 1463, 1454, 1441, 1376, 1300, 1244, 1176, 1111, 1038, 964 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 7.10 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 5.15 (brt, *J* = 7.1 Hz, 1H), 3.80 (s, 3H), 2.56 (t_{app}, *J* = 7.9 Hz, 2H), 2.01 (q_{app}, *J* = 7.3 Hz, 2H), 1.71 (s, 3H), 1.68-1.57 (m, 2H), 1.60 (s, 3H) ¹³**C NMR** (100 MHz, CDCl₃) δ 157.7, 134.9, 131.7, 129.3 (2C), 124.5, 113.7 (2C), 55.3, 34.7, 31.9, 27.7, 25.8, 17.8

MS (EI) *m/z*: 205 (M+1, 8), 204 (M⁺, 54), 161 (7), 148 (15), 147 (53), 135 (19), 134 (49), 122 (17), 121 (100), 119 (5), 105 (8), 96 (6), 91 (17), 81 (12), 79 (6), 78 (9), 77 (15), 69 (6), 65 (6), 55 (14)

Secondary iodides

tert-Butyl(3-cyclopropylbutoxy)dimethylsilane, 6.3²⁰

Olefin **6.3** was prepared according to Procedure **C** from *tert*-butyl(3-iodobutoxy)dimethylsilane **1.10** (683 mg) and isopropenylmagnesium bromide (7.1 mL, 0.37 M in THF, 1.42 mL/h). Purification by flash

¹⁹ Nagasawa, S.; Sasano, Y.; Iwabuchi, Y.; *Chem. Eur. J.* **2017**, *23*, 10276-10279.

²⁰ Speck, K.; Magauer, T. *Chem. Eur. J.* **2017**, *23*, 1157-1165.
chromatography on silica gel (PE/Et₂O 99:1) yielded olefin **6.3** (443.3 mg, 1.94 mmol, 89%) as a yellowish liquid.

Formula: C₁₃H₂₈OSi

Mass: 228.5 g.mol⁻¹

IR (neat): 1471, 1462, 1387, 1361, 1254, 1100, 1005, 981, 939, 890 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 4.70 – 4.65 (m, 2H), 3.56 (t, *J* = 6.9 Hz, 2H), 2.30 (sext_{app}, *J* = 7.0 Hz, 1H), 1.68 - 1.65 (m, 3H), 1.62 (m, 1H), 1.50 (quint_{app}, *J* = 6.7 Hz, 1H), 1.01 (d, *J* = 6.9 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 6H)

¹³**C NMR** (100 MHz, CDCl₃) δ 149.9, 109.5, 61.6, 38.0, 37.6, 26.1 (3C), 19.8, 19.1, 18.4, -5.19, -5.21 **MS** (EI) *m/z*: 172 ((M+1)-57, -*t*-Bu, 12), 171 (M-57, -*t*-Bu, 75), 143 (5), 141 (29), 129 (12), 127 (5), 115 (7), 113 (12), 103 (4), 102 (6), 101 (59), 99 (35), 95 (8), 89 (23), 85 (13), 81 (5), 76 (7), 75 (100), 73 (26), 59 (17), 55 (8)

tert-Butyl 4-(prop-1-en-2-yl)piperidine-1-carboxylate, 6.421

Olefin **6.4** was prepared according to Procedure **D** from *tert*-butyl-4-iodopiperidine-1-carboxylate **1.11** (67.6 mg) and isopropenylmagnesium bromide (0.70 mL, 0.37 M in THF, 1.40 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 85:15) yielded olefin **6.4** (40.7 mg, 0.18 mmol, 83%) as a mixture of rotamers contaminated by the dehalogenated and elimination products (2.0 mg, 0.01 mmol 5%) as a colourless oil.

 $\textbf{Formula:} \ C_{13}H_{23}NO_2$

Mass: 225.3 g.mol⁻¹

IR (neat): 1692, 1645, 1477, 1446, 1419, 1392, 1365, 1334, 1313, 1291, 1276, 1245, 1229, 1163, 1123, 1084, 1043, 989, 962, 938, 887 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 4.71 (brs, 1H), 4.68 (brs, 1H), 4.26-4.03 (brs, 2H), 2.68 (brt_{app}, *J* = 11.9 Hz, 2H), 1.98 (brtt, *J* = 12.1 Hz and 3.2 Hz, 1H), 1.73-1.63 (m, 2H), 1.71 (s, 3H), 1.45 (s, 9H), 1.34 (qd_{app}, *J* = 12.4 Hz and 4.1 Hz, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ 154.9, 149.1, 109.1, 79.4, 44.2 (2C), 43.6, 30.8 (2C), 28.5 (3C), 20.9 **MS** (EI) *m/z*: 170 (M-55, -C₄H₆, 2), 169 (12), 152 (9), 126 (10), 124 (4), 113 (36), 100 (8), 83 (5), 82 (42), 69 (5), 67 (6), 58 (5), 57 (100), 56 (47), 55 (9)

tert-Butyl 3-(prop-1-en-2-yl)pyrrolidine-1-carboxylate, 6.5

²¹ Gonnard, L.; Guérinot, A.; Cossy, J. Chem. Eur. J. 2015, 21, 12797-12803.

Olefin **6.5** was prepared according to Procedure **D** from *tert*-butyl-3-iodopyrrolidine-1-carboxylate **1.13** (64.6 mg) and isopropenylmagnesium bromide (0.69 mL, 0.38 M in THF, 1.38 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 9:1) yielded olefin **6.5** (37.1 mg, 0.16 mmol, 81%) as a mixture of rotamers (a/b = 1:1) contaminated by the elimination product (0.6 mg, 0.003 mmol, 2%) as a colourless oil.

 $\textbf{Formula:} C_{12}H_{21}NO_2$

Mass: 211.3 g.mol⁻¹

IR (neat): 1693, 1649, 1478, 1453, 1399, 1365, 1339, 1292, 1253, 1167, 1121, 1091 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 4.77 (brs, 1), 4.73 (brs, 1H), 3.65-3.39 (m, 2H), 3.27 (m, 1H), 3.09 (m, 1H), 2.70 (m, 1H), 1.97 (m, 1H), 1.75 (m, 1H), 1.73 (s, 3H), 1.45 (s, 9H)

¹³**C NMR** (100 MHz, CDCl₃) δ 154.6, 144.7, [110.34, 110.29], 79.1, [50.0, 49.6], [45.9, 45.5], [45.5, 44.7], [30.4, 29.6], 28.6 (3C), [21.4, 21.3]

MS (EI) *m/z*: 156 (M-55, -C₄H₆, 5), 155 (29), 140 (5), 138 (11), 112 (7), 96 (6), 94 (5), 83 (12), 82 (5), 67 (8), 58 (5), 57 (100), 56 (5), 55 (5)

HRMS: Calculated for C₁₂H₂₁NO₂Na [M+Na]⁺: 234.1465, Found: 234.1465

tert-Butyl 3-cyclopropylazetidine-1-carboxylate, 6.6

Olefin **6.6** was prepared according to Procedure **D** from *tert*-butyl-3-iodopropylazetidine-1-carboxylate **1.14** (61.5 mg) and isopropenylmagnesium bromide (0.90 mL, 0.29 M in THF, 1.80 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 85:15) yielded olefin **6.6** as a mixture of rotamers as a colourless oil (34.2 mg, 0.17 mmol, 80%).

 $\textbf{Formula:} \ C_{11}H_{19}NO_2$

Mass: 197.3 g.mol⁻¹

IR (neat): 1700, 1650, 1602, 1479, 1455, 1392, 1375, 1365, 1298, 1249, 1162, 1128, 1031, 969 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 4.84 (m, 1H), 4.78 (m, 1H), 4.01 (t_{app} , *J* = 8.6 Hz, 2H), 3.80 (dd, *J* =8.4 Hz and 6.5 Hz, 2H), 3.16 (quint_{app}, *J* = 7.6 Hz, 1H), 1.73 (s, 3H), 1.42 (s, 9H)

 $^{13}\textbf{C}$ NMR (100 MHz, CDCl₃) δ 156.5, 144.2, 110.9, 79.4 , 53.1 (2C), 35.0 , 28.4 (3C), 19.6

MS (EI) *m/z*: 142 (M-55, -C₄H₆, 1), 141 (6), 140 (4), 126 (6), 82 (26), 81 (7), 68 (20), 67 (9), 58 (5), 57 (100), 56 (6), 55 (5)

HRMS: Calculated for C₁₁H₁₉NO₂Na [M+Na]⁺: 220.1308, Found: 220.1316

3-3 CROSS-COUPLING WITH CYCLOBUTYLMAGNESIUM BROMIDE

Primary iodides

1-(3-Cyclobutylpropyl)-4-methoxybenzene, 8.1

Cyclobutane **8.1** was prepared according to Procedure **C** from 1-(3-iodopropyl)-4-methoxybenzene **1.1** (60 mg) and cyclobutylmagnesium bromide (0.58 mL, 0.45 M in MeTHF, 1.16 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 50:0.35) yielded cyclobutane **8.1** (354 mg, 0.17 mmol, 80%) contaminated by the dehalogenated and elimination products (1.1 mg, 3%) as a colourless oil.

Formula: C₁₄H₂₀O

Mass: 204.3 g.mol⁻¹

IR (neat): 1612, 1584, 1511, 1463, 1441, 1300, 1243, 1176, 1117, 1038, 965, 913 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.10 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 3.80 (s, 3H), 2.53 (t_{app}, J = 7.5 Hz, 2H), 2.28 (hept_{app}, J = 7.7 Hz, 1H), 2.10 – 1.96 (m, 2H), 1.92 – 1.72 (m, 2H), 1.64 – 1.55 (m, 2H), 1.55 – 1.46 (m, 2H), 1.46 – 1.37 (m, 2H)

¹³**C NMR** (100 MHz, CDCl₃) δ 157.7, 135.1, 129.3 (2C), 113.7 (2C), 55.3, 36.7, 36.1, 35.1, 29.4, 28.4 (2C), 18.6

MS (EI) *m/z*: 204 (M⁺, 19), 161 (10), 134 (15), 122 (10), 121 (100), 91 (7), 78 (5), 77 (6) **HRMS**: Calculated for C₁₄H₂₀ONa [M+Na]⁺: 227.1406, Found: 227.1408

Secondary iodides

tert-Butyl 3-cyclobutylpyrrolidine-1-carboxylate, 8.2

Cyclobutane **8.2** was prepared according to Procedure **C** from *tert*-butyl-3-iodopyrrolidine-1-carboxylate **1.13** (64.6 mg) and cyclobutylmagnesium bromide (0.69 mL, 0.38 M in MeTHF, 1.38 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 9:1) yielded cyclobutene **8.2** (31.5 mg, 0.14 mmol, 64%) as a mixture of rotamers (a/b = 1:1) contaminated by the elimination product (1.29 mg, 0.01 mmol, 4%) as a colourless oil.

Formula: C₁₃H₂₃NO₂ Mass: 225.3 g.mol⁻¹ IR (neat): 1694, 1478, 1453, 1399, 1365, 1343, 1249, 1168, 1123, 1109, 979 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 3.47-3.29 (m, 2H), 3.29-3.15 (m, 1H), 2.89 (dd, J = 10.8 Hz and 7.2 Hz, 0.5H), 2.81 (dd, J = 10.8 Hz and 6.9 Hz, 0.5H), 2.27-2.06 (m, 2H), 2.06-1.94 (m, 2H), 1.92-1.72 (m, 3H), 1.72-1.58 (m, 2H), 1.50-1.36 (m, 1H), 1.44 (s, 9H)

¹³**C NMR** (100 MHz, CDCl₃) δ 154.8, 78.9, [49.5, 45.7], [49.0, 45.4], [45.2, 44.2], [38.42, 38.37], [29.2, 26.8], 28.6 (3C), 26.6 (2C), [18.3, 18.2]

MS (EI) *m/z*: 225 (M⁺, 3), 170 (16), 169 (11), 168 (13), 152 (9), 141 (6), 126 (7), 124 (5), 108 (6), 96 (5), 88 (5), 82 (14), 81 (4), 79 (5), 70 (8), 68 (6), 67 (7), 57 (100), 56 (7), 55 (8)

HRMS: Calculated for C₁₃H₂₃NO₂Na [M+Na]⁺: 248.1621, Found: 248.1622

tert-Butyl 3-cyclobutylazetidine-1-carboxylate, 8.3²²

Cyclobutane **8.3** was prepared according to Procedure **C** from *tert*-butyl-3-iodobutylazetidine-1carboxylate **1.14** (61.5 mg) and cyclobutylmagnesium bromide (0.69 mL, 0.38 M in MeTHF, 1.38 mL/h). Purification by flash chromatography on silica gel (PE/Et₂O 92:8) yielded cyclobutane **8.3** as a colourless oil (27.2 mg, 59 mmol, 59%).

Formula: C₁₂H₂₁NO₂

Mass: 211.3 g.mol⁻¹

IR (neat): 1701, 1479, 1455, 1397, 1365, 1340, 1297, 1250, 1159, 1142 982, 931 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 3.91 (t_{app}, J = 8.0 Hz, 2H), 3.53 (dd, J = 8.2 Hz and 4.1 Hz, 2H), 2.59-2.46 (m, 2H, H₂), 2.08-1.93 (m, 2H), 1.96-1.74 (m, 2H), 1.71-1.56 (m, 2H), 1.42 (s, 9H)

¹³C NMR (100 MHz, CDCl₃) δ 156.5, 79.2, 52.4 (2C), 38.3, 33.1, 28.5 (3C), 24.9 (2C), 17.9

MS (EI) *m/z*: 211 (M⁺, 1), 156 (9), 138 (5), 96 (4), 94 (12), 88 (4), 83 (7), 82 (9), 79 (9), 68 (9), 67 (7), 58 (4), 57 (100), 56 (10), 55 (8), 54 (21)

4 CYCLOPROPANATION

Procedure E:

$$R \xrightarrow{R'} R'' \xrightarrow{CICH_2I (2 equiv)}_{(CICH_2)_2, 0 °C, 1 h} R'' = H, alkyl$$

To a solution of olefin (1 equiv) in 1,2-dichloroethane at 0 °C, was added Et₂Zn (2 equiv) and then chloroiodomethane (4 equiv) was slowly added via syringe. The reaction mixture was stirred at 0 °C for 1 h

²² Vyzir, I. I.; Iminov, R. T.; Tverdokhlebov, A.; Tolmachev, A. A.; Scherbatiuk, A. V.; Mykhailiuk, P. K.; Biitseva, A.; V. *Synthesis*, **2015**, *47*, 3963-3971.

before the addition of a saturated aqueous solution of NH₄Cl. The organic layer was extracted with Et₂O and the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel afforded the desired cyclopropane.

1-Methoxy-4-(3-(1-methylcyclopropyl)propyl)benzene, CA484 7.1

Cyclopropane **7.1** was prepared according to Procedure **E** from 1-methoxy-4-(4-methylpent-4-en-1-yl)benzene **6.1** (50 mg, 0.27 mmol). Purification by flash chromatography on silica gel (PE/Et_2O 50:0.35) yielded cyclopropane **7.1** as a colourless oil (45.1 mg, 0.22 mmol, 84%) contaminated by a small amount of an impurity.

Formula: C₁₄H₂₀O

Mass: 204.3 g.mol⁻¹

IR (neat) cm⁻¹ 1612, 1584, 1511, 1461, 1442, 1383, 1366, 1319, 1300, 1244, 1176, 1110, 1088, 1038, 1009, 935, 909

¹**H NMR** (400 MHz, CDCl₃) δ 7.11 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.3 Hz, 2H), 3.80 (s, 3H), 2.55 (t_{app}, *J* = 7.8 Hz, 2H), 1.73 - 1.63 (m, 2H), 1.31-1.23 (m, 2H), 1.03 (s, 3H), 0.23 (brd_{app}, *J* = 6.8 Hz, 4H)

¹³C NMR (100 MHz, CDCl₃) δ 157.7, 135.1, 129.3 (2C), 113.7 (2C), 55.3, 39.1, 35.3, 29.2, 22.8, 15.3, 13.0 (2C)

MS (EI) *m/z*: 205 (M+1, 2), 204 (16), 189 (7), 175 (8), 161 (8), 148 (6), 147 (36), 135 (9), 134 (55), 122 (11), 121 (100), 119 (5), 91 (12), 78 (7), 77 (10), 65 (4), 55 (4)

1-(3-(2,2-Dimethylcyclopropyl)propyl)-4-methoxybenzene, 7.2

Cyclopropane **7.2** was prepared according to Procedure **E** from 1-methoxy-4-(5-methylhex-4-en-1-yl)benzene **6.2** (50 mg, 0.25 mmol). Purification by flash chromatography on silica gel (PE/Et₂O 100:0 to 50:0.35) yielded quantitatively cyclopropane **7.2** as a colourless oil (56.8 mg, 0.25 mmol, quant.).

Formula: C₁₅H₂₂O

Mass: 218.3 g.mol⁻¹

IR (neat): 1613, 1584, 1511, 1456, 1442, 1419, 1376, 1300, 1244, 1177, 1111, 1039 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.11 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 2.58 (td, J = 7.9 Hz and 2.9 Hz, 2H), 1.72-1.61 (m, 2H), 1.42-1.24 (m, 2H), 1.02 (s, 3H), 1.01 (s, 3H), 0.48 (m, 1H), 0.36 (dd, J = 8.4 Hz and 4.0 Hz, 1H), (-)0.13 (t_{app}, J = 4.7 Hz, 1H)

 $^{13}\textbf{C}$ NMR (100 MHz, CDCl₃) δ 157.7, 135.1, 129.3 (2C), 113.7 (2C), 55.3, 35.0, 32.4, 29.5, 27.7, 24.7, 20.0, 19.8, 15.4

MS (EI) *m/z*: 219 (M+1, 3), 218 (M⁺, 21), 162 (21), 161 (5), 148 (5), 147 (41), 135 (8), 134 (53), 122 (11), 121 (100), 119 (4), 91 (12), 78 (7), 77 (10), 69 (5), 55 (8)

HRMS: : Calculated for C₁₅H₂₂OH [M+H]⁺: 219.1743, Found: 219.1743

tert-Butyldimethyl(3-(1-methylcyclopropyl)butoxy)silane, 7.3

Cyclopropane **7.3** was prepared according to Procedure **E** *tert*-butyl(3-cyclopropylbutoxy)dimethylsilane **1.10** (50 mg, 0.22 mmol). Purification by flash chromatography on silica gel (PE/Et₂O 50:0.1) yielded cyclopropane **7.3** as a colourless oil (43.6 mg, 0.18 mmol, 82%).

Formula: C₁₄H₃₀OSi

Mass: 242.5 g.mol⁻¹

IR (neat): 1472, 1462, 1429, 1387, 1361, 1254, 1096, 1007, 982, 93 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 3.70-3.58 (m, 2H), 1.69 (m, 1H), 1.45 (m, 1H), 0.93 (d, *J* = 6.7 Hz, 3H), 0.91 - 0.87 (m, 3H), 0.89 (s, 9H), 0.84-0.76 (m, 1H), 0.30-0.13 (m, 4H), 0.04 (s, 6H)

¹³**C NMR** (100 MHz, CDCl₃) δ 61.9, 38.1, 37.9, 26.1 (3C), 19.6, 18.4, 17.8, 17.6, 14.1, 12.9, -5.2, -5.3

MS (EI) *m/z*: 186 (M+1-57, -*t*-Bu, 11), 185 (M-57, -*t*-Bu, 66), 157 (12), 155 (38), 143 (11), 129 (19), 127 (26), 115 (12), 114 (7), 113 (63), 109 (8), 102 (5), 101 (45), 99 (14), 95 (10), 89 (29), 85 (9), 82 (14), 75 (100), 73 (36), 67 (14), 59 (20), 55 (19)

HRMS: Calculated for C₁₄H₃₀OSiH [M+H]⁺: 243.2139, Found: 243.2141

ⁱ Love, B. E.; Jones, E. G. J. Org. Chem., **1999**, 64, 3755-3756

-138.5 ~128.5 ~127.7 ~127.7 —_____73.0 —___69.1 <30.7 30.5 ---6.9 1.2 (¹³C NMR, 100 MHz, CDCl₃) Т Т Т Т f1 (⊯pīm)

NC 1.5	— 119.2	
(¹³ C NMR, 100 MHz, CDC ₅)		
adartelyyniaetaataataataa godyddaaataanteenaadaataa yn toetti tii godynd, synapalaan hyddaadaa tan bartiinaa yn stadabr		and and the property of the second
<u>, , , , , , , , , , , , , , , , , , , </u>		<u>, , , , , , , , , , , , , , , , , , , </u>
200 190 180 170 160 150 140	130 120 110 100 90 80 70 60 f1 (sp m)	50 40 30 20 10 0

NC 1.6 (¹³C NMR, 100 MHz, CDCl₃)

T	T	1 1	I	1	1	1	1	· 1			· 1	1	·	1	1	1	1	1	1	1	1
200		190	180	170	160	150	140	130	120	110	100 f1 (j5p m	90	80	70	60	50	40	30	20	10	C

— 124.9

ليعر الدراري والطل

اربير انطحانات

OH I S5

(¹³C NMR, 100 MHz, CDCl₃)

- T - I	1 1	1 1	1 1	I	'	· · ·	'		·		I	1 1	, 1 ,	I	1	1	'	1	- I	1 1
200	190	180	170	160	150	140	130	120	110	100 f1 (app)	90 n)	80	70	60	50	40	30	20	10	0

-62.7 -44.9 —29.2 —26.1

Т		'	1	·	1		' 1	1	·	·	·	·	·	1	'	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100 f1 (p 7p m	90 ı)	80	70	60	50	40	30	20	10	0

—155.6

—61.6

-28.4

		- i - i	

	41
	1 A

 	yr lyneradd dan yr ach yn ar yn yr ar yn yn yr ar y	uthan phina terror and a state of the state	-

Т		·	·	·		· 1	·	1	1	1		·	·	'	1	1	1		1	
200	190	180	170	160	150	140	130	120	110	100 f1 (appm)	90)	80	70	60	50	40	30	20	10	0

ut the second

بال الليان

Т

Т

Т

		- o
8.01		
2'\2 b'\7 0'\2		
		- 140
		- - - - -
		06
		100
Δ'ειι		
		120
		1 -
		- - 140
		150
L'ZSI	_	
3)		- - 16
		110
ÅR, do 2		- - 180
MeO 13C NN		190
ωαα	808	dd dd

				-0
G,Å — ——				
6'01				
£'6L——				- 1
52'0				
L' † 9				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				02
				- - - - -
				- 110
				20
2 2 2 1 9'67 1			_	- 130 -
2'981				140
				- 150
	ci ³)			160
	Hz, CD			
	2.3 100 M			
	3 ₆₁)			
udd				p ¹ 200
		C100		_

					_ 0
9'₽ 9'0↓					
34'3 32'5				_	- (1)
					- 40
					50
					09
					02
					- 08
					- 06
					100
					110
٤'6۱۱					20
5,121 2,130,2					-130
6'171					140
					150
	(°)				. 1 160
	Hz, cDC				170
	2:4 2:4 7, 100 M				180
					. 06
ا د ایر ر	2				- EC
udd		S	5104		Ъ́р-

				⊢∘ -
<u></u> ۲'۲				
8,01				 - -
				20
5¢'∂				-
2'tzs				30
34,4				
			ŧ	- 4
C ⁽¹)C				50
			ł	- 09
				- 2 - -
			 \leq	- 08
				- 06
				110
				120
				13
				140
				150
	(16(
Þ'Þ᠘L	WHZ			È
	2:7			180
	M_ (¹³ C			19(19(
udd				- mqd
		0110		•

9'0		_		Ŀ.
6'0 <i></i> 9'7			1	-
				-
0.11				-
9,81				
8,53,8				-
c'oc				08
				-
				1 04
42,8				-
				20
				-
				- 09
6'0Z——				- 02
				Ē
				- 8
			1	-
				- 06
				-
				100
				-
				110
				Ē
				120
				130
				- 4
				-
				15
				- 00
	0			
				1
	ζ ζ			-
	→ HO. No Mit			- 08
	R, 2, 1			ļ -
	MN		ł	1 - 1
	(13C			
udd				- udd
			-	1

2.10 (¹H NMR,400 MHz,CDC⊌)

SP

والمحافظ والمعار المتعاق الأربي والمراجع والمراجع المتلا

فالريبا يتبادى النائد منشأتهم أنتتازها الأأم ممتعظات الأتسام المطالب والتطلب والجاملان وإقافت ويرعده مشتول فاسرالأرجو يم

т т	- I I	I	<u>, l i</u>	1 1	I	· · · ·	· · · ·	1	·		I	· · · ·	· · · ·	· · ·	1 1		·	· · · ·		· · · ·
200	190	180	170	160	150	140	130	120	110	100 f1s{pppo	90 m)	80	70	60	50	40	30	20	10	0

60'0	
300	- - - -
۰	20
12 ¹ /22	30
	160
G Q	1
5 MH2, CC	
IMR, 100	
(¹³ C N	
wdd	Land Land

-2'5 -2'3		
0,85 6,91 8,71		
9,35,00 3,75		
8,10		
-		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cDCI ³		7 1
Si 0 7.3 R, 100 MHz, 0		
udd	S156	u u u u u u u u u u u u u u u u u u u