Supplementary Information For:

Highly Active Urea-Functionalized Zr(IV)-UiO-67 Metal-Organic Framework as Hydrogen Bonding Heterogeneous Catalyst for Friedel-Crafts Alkylation

Aniruddha Das, a Nagaraj Anbu, b Mostakim Sk, a Amarajothi Dhakshinamoorthy g b and Shyam Biswas a

a Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India. E-mail: sbiswas@iitg.ac.in

b School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India. E-mail: admguru@gmail.com

* To whom correspondence should be addressed. E-mail: sbiswas@iitg.ernet.in; Tel: 91-3612583309.
Characterization of H$_2$L linker:

In order to characterize the H$_2$L linker molecule, we have performed both 1H and 13C NMR experiments in DMSO-d$_6$. The spectra are shown in Figure S1 and S2, Supporting Information. From the 1H NMR spectrum, it can be observed that there are peaks for eight protons. The 13C NMR spectrum shows that there are peaks for eight different carbon atoms. Therefore, both the 1H and 13C NMR spectra clearly indicated that the H$_2$L linker has been synthesized successfully in its pure form. 1H-NMR (400 MHz, DMSO-d$_6$): $\delta = 9.12$ (s, 2H, NH), 7.72 (m, 4H), 7.62 (t, 2H) ppm. 13C NMR (100 MHz, DMSO-d$_6$): $\delta = 167.18, 164.12, 140.77, 133.05, 131.99, 130.24, 125.23, 122.29$ ppm.

Figure S1. 1H NMR spectrum of the H$_2$L linker in DMSO-d$_6$. 1H NMR (400 MHz, DMSO-d$_6$): $\delta = 9.12$ (s, 2H, NH), 7.72 (m, 4H), 7.62 (t, 2H) ppm.
Figure S2. 13C NMR spectrum of the H$_2$L linker in DMSO-d$_6$. 13C NMR (100 MHz, DMSO-d$_6$): \(\delta = 167.18, 164.12, 140.77, 133.05, 131.99, 130.24, 125.23, 122.29 \) ppm.

Figure S3. FT-IR spectra of (a) H$_2$L linker, (b) as-synthesized 1, (c) activated 1’ and (d) 1’ after 4th catalytic cycle.
Figure S4. Pawley fit for the XRPD pattern of as-synthesized 1. Blue lines and red dots denote calculated and observed patterns, respectively. The peak positions and difference plot are displayed at the bottom ($R_p = 6.85$, $R_{wp} = 9.38$).

Figure S5. 1H NMR spectrum of digested 1' (digestion by adding CsF in D$_2$O) in D$_2$O. 1H NMR (400 MHz, D$_2$O): $\delta = 7.59$ (d, 2H), 7.50 (d, 2H,), 7.39 (d, 2H) ppm.
Figure S6. 13C NMR spectrum of digested 1′ (digestion by adding CsF in D$_2$O) in D$_2$O. 13C NMR (100 MHz, D$_2$O): $\delta = 173.52, 138.51, 137.13, 130.68, 129.33, 128.63, 125.07, 121.11$ ppm.

Figure S7. TG curves of as-synthesized 1 (black) and thermally activated 1′ (red) recorded in an argon atmosphere in the temperature range of 25-700 °C with a heating rate of 10 °C min$^{-1}$.
Figure S8. XRRD patterns of 1’ after stirring in different solvents: (a) 1’ (activated), (b) 1’ after stirring in water, (c) 1’ after stirring in glacial acetic acid and (d) 1’ after stirring in 1M HCl.

Figure S9. N\textsubscript{2} adsorption (solid circle) and desorption (empty circle) isotherms of 1’ measured at –196 °C.
Figure S10. FE-SEM images of 1′ before catalysis.

Figure S11. FE-SEM images of 1′ after catalysis.
Figure S12. EDX spectrum of 1′ before catalysis. Inset: complete image of EDX mapping of 1′ before catalysis.

Figure S13. EDX elemental mapping of 1′ before catalysis.
Figure S14. EDX spectrum of $1'$ after catalysis. Inset: complete image of EDX mapping of $1'$ after catalysis.

Figure S15. EDX elemental mapping of $1'$ after catalysis.
Figure S16. GC-MS trace of 3-(2-nitro-1-phenylethyl)-1H-indole.

Figure S17. 1H-NMR spectrum of 3-(2-nitro-1-phenylethyl)-1H-indole.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.68$ (s, 1H), 7.42 (d, $J = 7.8$ Hz, 1H), 7.28 (d, $J = 13.5$ Hz, 5H), 7.23 (d, $J = 1.9$ Hz, 1H), 7.15 (t, $J = 7.5$ Hz, 1H), 7.04 (t, $J = 7.4$ Hz, 1H), 6.95 (s, 1H), 5.15 (t, $J = 7.8$ Hz, 1H), 5.01 (dd, $J = 12.3$, 7.7 Hz, 1H), 4.89 (dd, $J = 11.6$, 9.2 Hz, 1H).
Figure S18. GC-MS trace of 1-methyl-3-(2-nitro-1-phenylethyl)-1H-indole.

Figure S19. 1H-NMR spectrum of 1-methyl-3-(2-nitro-1-phenylethyl)-1H-indole.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.37$ (d, $J = 7.8$ Hz, 1H), 7.28 – 7.21 (m, 4H), 7.19 (s, 1H), 7.17 – 7.09 (m, 2H), 6.99 (t, $J = 7.2$ Hz, 1H), 6.77 (s, 1H), 5.09 (t, $J = 7.8$ Hz, 1H), 4.95 (dd, $J = 12.1, 7.6$ Hz, 1H), 4.89 – 4.80 (m, 1H), 3.64 (s, 3H).
Figure S20. GC-MS trace of 2-methyl-3-(2-nitro-1-phenylethyl)-1H-indole.

![GC-MS trace of 2-methyl-3-(2-nitro-1-phenylethyl)-1H-indole]

Figure S21. ^1^H-NMR spectrum of 2-methyl-3-(2-nitro-1-phenylethyl)-1H-indole.

^1^H NMR (400 MHz, CDCl₃): δ = 7.69 (s, 1H), 7.25 (d, J = 7.5 Hz, 1H), 7.21 – 7.11 (m, 4H), 7.11 – 7.02 (m, 2H), 6.97 (t, J = 7.3 Hz, 1H), 6.90 (t, J = 6.9 Hz, 1H), 5.06 (dd, J = 17.3, 8.4 Hz, 2H), 4.96 (dd, J = 17.1, 10.7 Hz, 1H), 2.14 (s, 3H).
Figure S22. GC-MS trace of 5-methyl-3-(2-nitro-1-phenylethyl)-1H-indole.

Figure S23. 1H-NMR spectrum of 5-methyl-3-(2-nitro-1-phenylethyl)-1H-indole.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.97$ (s, 1H), 7.36 – 7.27 (m, 4H), 7.25 – 7.15 (m, 3H), 6.98 (dd, $J = 29.2$, 11.0 Hz, 2H), 5.15 (d, $J = 8.0$ Hz, 1H), 5.03 (d, $J = 7.4$ Hz, 1H), 4.97 – 4.83 (m, 1H), 2.37 (s, 3H).
Figure S24. GC-MS trace of 5-methoxy-3-(2-nitro-1-phenylethyl)-1H-indole.

Figure S25. 1H-NMR spectrum of 5-methoxy-3-(2-nitro-1-phenylethyl)-1H-indole.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.92$ (s, 1H), 7.21 (s, 4H), 7.15 (d, $J = 3.2$ Hz, 1H), 7.08 (d, $J = 9.2$ Hz, 1H), 6.83 (s, 1H), 6.74 (s, 2H), 5.02 (t, $J = 7.7$ Hz, 1H), 4.95 – 4.87 (m, 1H), 4.80 (dd, $J = 12.0$, 8.6 Hz, 1H), 3.66 (s, 3H).
Figure S26. GC-MS trace of 5-chloro-3-(2-nitro-1-phenylethyl)-1H-indole.

Figure S27. 1H-NMR spectrum of 5-chloro-3-(2-nitro-1-phenylethyl)-1H-indole.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.18$ (s, 1H), 7.36 (s, 1H), 7.27 (s, 5H), 7.18 (d, $J = 8.4$ Hz, 1H), 7.09 (d, $J = 8.3$ Hz, 1H), 6.99 (s, 1H), 5.08 (t, $J = 7.6$ Hz, 1H), 5.02 – 4.91 (m, 1H), 4.87 (dd, $J = 11.6$, 8.2 Hz, 1H).
Figure S28. GC-MS trace of 5-bromo-3-(2-nitro-1-phenylethyl)-1H-indole.

Figure S29. 1H-NMR spectrum of 5-bromo-3-(2-nitro-1-phenylethyl)-1H-indole.

1H NMR (400 MHz, CDCl$_3$): δ = 8.10 (s, 1H), 7.46 (s, 1H), 7.20 (dt, $J = 8.3, 7.2$ Hz, 6H), 7.11 (d, $J = 8.6$ Hz, 1H), 6.95 (s, 1H), 5.03 (t, $J = 7.8$ Hz, 1H), 4.92 (dd, $J = 12.3, 8.1$ Hz, 1H), 4.82 (dd, $J = 12.4, 8.0$ Hz, 1H).
Figure S30. GC-MS trace of 5-nitro-3-(2-nitro-1-phenylethyl)-1H-indole.

Figure S31. GC-MS trace of 2-(2-nitro-1-phenylethyl)-1H-pyrrole.
Figure S32. 1H-NMR spectrum of 2-(2-nitro-1-phenylethyl)-1H-pyrrole.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.80$ (s, 1H), 7.25 (dd, $J = 12.7$, 6.3 Hz, 3H), 7.15 (d, $J = 6.9$ Hz, 2H), 6.60 (s, 1H), 6.05 (d, $J = 33.2$ Hz, 2H), 4.90 (dd, $J = 11.5$, 7.2 Hz, 1H), 4.85 – 4.78 (m, 1H), 4.72 (dd, $J = 10.8$, 7.6 Hz, 1H).

Figure S33. GC-MS trace of N,N-dimethyl-4-(2-nitro-1-phenylethyl)aniline.
Figure S34. 1H-NMR spectrum of N,N-dimethyl-4-(2-nitro-1-phenylethyl)aniline.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.19$ (d, $J = 6.2$ Hz, 2H), 7.13 (d, $J = 6.5$ Hz, 3H), 6.98 (d, $J = 7.3$ Hz, 2H), 6.56 (d, $J = 7.9$ Hz, 2H), 4.81 (d, $J = 3.2$ Hz, 2H), 4.71 (d, $J = 7.0$ Hz, 1H), 2.79 (s, 6H).

Figure S35. Density functional theory pore-size distribution of compound 1′ as determined from its N$_2$ adsorption isotherms at -196 °C.
Table S1. Unit cell parameters of as-synthesized Zr-Uio-67-urea obtained by indexing its XRPD pattern. The obtained values were compared with those of the previously reported un-functionalized and functionalized Zr-Uio-67 MOFs.

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Zr-Uio-67-urea MOF (This work)</th>
<th>Un-functionalized Zr-Uio-67 MOF (Reported)¹</th>
<th>Zr-Uio-67-Me2-MOF (Reported)²</th>
<th>Zr-Uio-67-BN-MOF (Reported)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal System</td>
<td>cubic</td>
<td>cubic</td>
<td>cubic</td>
<td>cubic</td>
</tr>
<tr>
<td>a = b = c (Å)</td>
<td>26.841(3)</td>
<td>26.783(3)</td>
<td>26.869 (3)</td>
<td>26.816 (2)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>19336.4(33)</td>
<td>19212(4)</td>
<td>19397.9 (6)</td>
<td>19284.8 (4)</td>
</tr>
</tbody>
</table>

References: