## **Supporting Information**

for

# High-frequency and -field EPR (HFEPR) Investigation of a Pseudotetrahedral Cr<sup>IV</sup> Siloxide Complex and Computational Studies of Related Cr<sup>IV</sup>L<sub>4</sub> Systems

Lukas Bucinsky, <sup>€</sup> Martin Breza, <sup>€</sup> Michal Malček, <sup>€</sup> David C. Powers, <sup>▼</sup> Seung Jun Hwang, <sup>†</sup>
J. Krzystek, <sup>\$</sup> Daniel G. Nocera, <sup>†</sup> and Joshua Telser<sup>1,\*</sup>

<sup>&</sup>lt;sup>€</sup> Institute of Physical Chemistry and Chemical Physics, of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia.

<sup>▼</sup> Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

<sup>&</sup>lt;sup>†</sup> Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States.

<sup>§</sup> National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310. United States.

Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States.

# **Table of Contents**

| I. Extended discussion of EPR in the context of ML <sub>4</sub> complexes where $M = d^2$ ion                                                                                                                                                   | S4  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| II. Extended discussion of LFT as applied to CrL <sub>4</sub> complexes                                                                                                                                                                         | S6  |
| Figure S1. Energy level diagram for Cr(DTBMS) <sub>4</sub> using alternate choice of Racah parameter                                                                                                                                            | ers |
|                                                                                                                                                                                                                                                 | S14 |
| Table S1. CrL <sub>4</sub> metrical parameters from X-ray diffraction and DFT geometry optimization                                                                                                                                             |     |
|                                                                                                                                                                                                                                                 | S17 |
| <b>Table S2.</b> Continuous shape measures analysis of $[ML_4]^{0,-}$ complexes $(M = Cr^{IV}, V^{III})$                                                                                                                                        |     |
|                                                                                                                                                                                                                                                 | S18 |
| <b>Table S3.</b> LFT fit results for electronic absorption bands of CrL4 complexes                                                                                                                                                              | S20 |
| <b>Table S4.</b> LFT term relative energy level output for selected $ML_4$ ( $M = Cr^{IV}$ , $Mo^{IV}$ ) complex                                                                                                                                | xes |
|                                                                                                                                                                                                                                                 | S22 |
| <b>Table S5.</b> LFT output using the program Ligfield to show the effect of SOC on the energy loof selected CrL <sub>4</sub> complexes.                                                                                                        |     |
| III. QCT Calculations of CrL4 complexes: QTAIM analysis                                                                                                                                                                                         | S29 |
| Table S6. QTAIM BCP characteristics for CrL4 complexes                                                                                                                                                                                          | S31 |
| Table S7. QTAIM atomic charge and volumes for CrL4 complexes                                                                                                                                                                                    | S32 |
| <b>Figure S2.</b> QTAIM molecular graph of CrF <sub>4</sub>                                                                                                                                                                                     | S33 |
| <b>Figure S3.</b> QTAIM molecular graph of Cr <sup>t</sup> Bu <sub>4</sub>                                                                                                                                                                      | S33 |
| Figure S4. QTAIM molecular graph of Cr(NMe <sub>2</sub> ) <sub>4</sub>                                                                                                                                                                          | S34 |
| <b>Figure S5.</b> QTAIM molecular graph of Cr(OMe) <sub>4</sub>                                                                                                                                                                                 | S34 |
| <b>Figure S6.</b> QTAIM molecular graph of Cr(O'Bu) <sub>4</sub>                                                                                                                                                                                | S35 |
| <b>Figure S7.</b> QTAIM molecular graph of Cr(OSiMe <sub>3</sub> ) <sub>4</sub>                                                                                                                                                                 | S35 |
| IV. QCT Calculations of CrL4 complexes: Energetics and electronic structure                                                                                                                                                                     | S36 |
| <b>Table S8.</b> Spin squares ( $\langle S^2 \rangle$ ), DFT energies ( $E_{DFT}$ ) and Gibbs free energies at 298 K ( $G_{298}$ ) B3LYP/6-311G* optimized structures of neutral CrL <sub>4</sub> complexes in singlet and triplet spin states. |     |
| <b>Table S9.</b> BLYP/6-311G* d-orbital populations and localized orbitals of Cr-L bonds                                                                                                                                                        |     |

| Deferences S61                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figures S13 – S28.</b> Calculated vibrational and electronic spectra of selected CrL <sub>4</sub> complexes S55–S60                                                                                                                                                        |
| VII. Discussion of vibrational spectra of CrL4 complexes                                                                                                                                                                                                                      |
| VI. Discussion of electronic absorption spectra of CrL4 complexes                                                                                                                                                                                                             |
| <b>Figure S12.</b> BLYP/6-311G* <i>D</i> parameter dependence upon geometrical distortion of bond angles for Cr(OMe) <sub>4</sub> and CrF <sub>4</sub>                                                                                                                        |
| <b>Figure S11.</b> BLYP/6-311G* <i>D</i> parameter dependence upon geometrical distortion of bond lengths for Cr(OMe) <sub>4</sub> and CrF <sub>4</sub>                                                                                                                       |
| <b>Table S15.</b> CASSCF/6-311G* and NEVPT2/6-311G* zfs contributions for selected CrL <sub>4</sub> complexes: <b>a)</b> <i>D</i> and, <b>b)</b> <i>E</i> parameters                                                                                                          |
| Table S14. Calculated spin Hamiltonian (zfs and g-tensor) parameters in the 6-311G* basis set         S47                                                                                                                                                                     |
| V. Spin Hamiltonian parameters: Excited state SOC contributions to zfs                                                                                                                                                                                                        |
| <b>Figure S10.</b> BLYP/6-311G* UNOs of <sup>3</sup> [Cr(NMe <sub>2</sub> ) <sub>4</sub> ] and FMOs of <sup>1</sup> [Cr(NMe <sub>2</sub> ) <sub>4</sub> ]                                                                                                                     |
| <b>Figure S9.</b> Localized BLYP/6-311G* orbitals of Cr(DTBMS) <sub>4</sub>                                                                                                                                                                                                   |
| <b>Figure S8.</b> Localized BLYP/6-311G* orbitals of selected CrL <sub>4</sub> complexes                                                                                                                                                                                      |
| <b>Table S13b.</b> BLYP/6-311G* UNOs occupation numbers, including MO eigenvalues, showing the metal and ligand percentage of each orbital and the $T_d$ -like symmetry label ${}^3[Cr(NMe_2)_4]$ , ${}^1[Cr(NMe_2)_4]$ , and ${}^3[Cr(OMe)_4]$ .                             |
| <b>Table S13a.</b> BLYP/6-311G* UNOs occupation numbers, including MO eigenvalues, showing the metal and ligand percentage of each orbital and the $T_d$ -like symmetry label $^3$ [Cr(DTBMS) <sub>4</sub> ] and $^3$ [Cr'Bu <sub>4</sub> ]                                   |
| Table S12. CASSCF/6-311G* and NEVPT2/6-311G* electronic transitions for selected CrL4 complexes         S39                                                                                                                                                                   |
| <b>Table S11.</b> Energies (in hartree; calculated using 6-311G* basis set) of lowest triplet and singlet state roots of selected CrL <sub>4</sub> complexes from CASSCF(2,5) and NEVPT2 calculations based on either triplet or singlet reference state                      |
| <b>Table S10.</b> Total energies (in hartree; calculated using 6-311G* basis set) from BLYP and state averaged CASSCF(2,5) calculations of triplet and singlet states of selected neutral CrL <sub>4</sub> complexes, using the particular B3LYP/6-311G* optimized structures |

#### I. Extended discussion of EPR in the context of $ML_4$ complexes where $M = d^2$ ion.

#### a) Conventional EPR of S = 1 complexes

Molecular complexes of general formula  $Cr^{IV}L_4$ , such as where L = R = 1-norbornyl,  $CH_2CMe_nPh_{3-n}$   $(n = 0 - 3), ), ^{2-4}L = Ar^{nCl}$  = pentachlorophenyl, 2,4,6-trichloro-phenyl, and 2,6dichlorophenyl,  $^{5-6}$  and L = OR = O'Bu anions.  $^{7}$  have been investigated by X-band EPR. In these nearly tetrahedral complexes (see Tables S1 and S2), the zfs is very small (D = 0 for a perfectly tetrahedral d<sup>2</sup> complex; see section II below) so that the EPR signal is often superficially similar to that of a spin doublet, namely an isotropic  $\Delta M_S = \pm 1$  transition at a g value slightly below 2.0, as expected for a less than half-filled electron shell. There is in addition, a weak feature at low magnetic field, a so-called "half-field transition", or  $B_{min}$ , which is a signature of triplet EPR response and corresponds to a turning point in the  $\Delta M_S = 2$  transition ( $\langle S, M_S | = \langle 1, \pm 1 | \rightarrow \langle 1, \pm 1 \rangle$ )  $\mp$  11). Also, a feature near g=2.0, but sharper than the  $\Delta M_S=\pm 1$  transition may appear, which is due to a double-quantum (DQ) transition ( $\langle S, M_S | = \langle 1, \pm 1 | \rightarrow \langle 1, 0 | \rightarrow \langle 1, \mp 1 |$ ). The DQ transition has been studied in the case of Ni<sup>II</sup> complexes,<sup>8</sup> which are relevant here since octahedral d<sup>8</sup> is equivalent to tetrahedral d<sup>2</sup>, by the electron-hole formalism. Altogether, this type of EPR spectrum is not particularly informative, except to demonstrate that the ground state is indeed a triplet with very small zfs ( $|D| \ll hv$ ). In contrast, frozen solution X-band EPR spectra of several tetraalkylchromium(IV) complexes,<sup>3</sup> exhibited a triplet pattern,<sup>9-10</sup> with resolved fine structure, so that zfs parameters could be directly extracted. These results inspired us to calculate the zfs for such complexes by modern computational methods. Conventional EPR had also been applied to analogous tetraamidochromium species, but no signals were observed. The explanation proposed was that the minimum temperature employed (98 K) was too high and that liquid helium temperatures would have been required. 11 However, that tetraalkylchromium(IV) complexes gave EPR spectra even at room temperature,<sup>4</sup> and in frozen solution at 140 K,<sup>3</sup> the failure to observe spectra from Cr(NR<sub>2</sub>)<sub>4</sub> at even lower temperatures suggests that temperature may not have been the problem. Moreover, we observed HFEPR spectra for Cr(DTBMS)<sub>4</sub> at temperatures as high as 282 K. Instead, it may be that the zfs of Cr(NR<sub>2</sub>)<sub>4</sub> complexes is too large for observation at conventional frequencies and fields. Although such amido complexes have yet to be structurally characterized and thus is beyond the scope of this study, Cr(NR<sub>2</sub>)<sub>4</sub> was subject to computational analysis to shed light on previous experimental studies and to provide insight into the electronic structure of a range of homoleptic CrL<sub>4</sub> species.

Lastly, we note that isoelectronic, spin triplet  $V^{\rm III}$  complexes,  $[V(Ar^{nCl})_4]^-$  afforded X-band EPR spectra from which zfs parameters were determined. 12-13 In the sole structurally characterized complex,  $[V(C_6Cl_5)_4](NEt_4)$  (CSD code OCEWIC), the perchlorophenyl groups lead to a relatively larger deviation from tetrahedral geometry than in any of the CrL4 complexes, whether from XRD or calculated geometries (see Table S1). Analysis of X- and Q-band spectra afforded the following spin Hamiltonian parameters: |D| = 0.453 cm<sup>-1</sup>, |E| = 0.72 cm<sup>-1</sup> (|E/D| = 0.16), g = 1.98. 12 These values are comparable to those observed for Cr(DTBMS)<sub>4</sub> and show the effect of the bulky and non-cylindrical perchlorophenyl ligands. Computational analysis of these  $V^{\rm III}$  complexes is beyond the scope of this study.

#### b) Heterogeneity in EPR spectra of S = 1 ML<sub>4</sub> complexes

The modest spin Hamiltonian parameter differences among the three spin triplet species observed (A, B, and C) for Cr(DTBMS)<sub>4</sub>, and their temperature dependence, may be related to disorder in the solid material. The published crystal structure shows disorder in the *t*-Bu groups of DTBMS.<sup>14</sup> Small structural changes, which could also be temperature dependent, can affect

the zero-field splitting of high-spin complexes, such as has been documented for  $Mn^{III15}$  and  $V^{III\_16-17}$ 

Similar heterogeneity was observed by Mowat et al. for the complexes CrR<sub>4</sub> (R = CH<sub>2</sub>CMe<sub>3</sub>, CH<sub>2</sub>SiMe<sub>3</sub>, and CH<sub>2</sub>CMe<sub>2</sub>Ph), even in frozen solution.<sup>3</sup> There would have been no reason for these workers to study their complexes in the solid state, given their solubility in noncoordinating solvents and the sensitivity of X-band EPR to nearly isotropic species with  $g \approx 2.0$ . For example, in petroleum ether (a non-interacting solvent) Cr(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>4</sub> clearly gave two distinct spin triplet species as seen by X-band EPR at 115 K. This heterogeneity was extensively discussed by Mowat et al. and they concluded that it was due to different molecular conformations, perhaps due to rotation about the Cr-C bond. Other tetraalkylchromium(IV) complexes exhibited heterogeneity in their frozen solution X-band EPR spectra, but distinct triplet species could not be identified.<sup>3</sup> Likewise, Ward et al. observed four species for Cr(Nor)<sub>4</sub> in frozen isooctane solution at 93 K (zfs parameters are given in Table 4, main text). Due to the microwave frequency in HFEPR being one, or possibly nearly two, orders of magnitude larger than the X-band microwave quantum ( $\sim 100~\mathrm{GHz} \le v < 900~\mathrm{GHz}$  versus  $\sim 9~\mathrm{GHz} \le v < 10~\mathrm{GHz}$ , respectively), with a corresponding larger magnetic field range, the spectral resolution of HFEPR is much greater. Thus, the three similar triplet species in Cr(DTBMS)<sub>4</sub> were easily resolved, and HFEPR might also resolve distinct CrR<sub>4</sub> triplet species as well.

#### II. Extended discussion of LFT as applied to CrL4 complexes.

#### a) Discussion of electronic spectra of CrR4 complexes, R = Me, CH2CMe3, CH2SiMe3, Nor.

Each of the CrR<sub>4</sub> complexes reported by Mowat *et al.* exhibited a strong ( $\varepsilon \approx 1000$  L mol<sup>-1</sup> cm<sup>-1</sup>) band observed at ~20 000 cm<sup>-1</sup> (~500 nm), which was thus assigned to  ${}^{3}\text{A}_{2}$   $\rightarrow {}^{3}\text{T}_{1}(F)$ . Fixing the Racah parameter somewhat arbitrarily to B = 450 cm<sup>-1</sup> with

assignment of this band to  ${}^3A_2 \rightarrow {}^3T_1(F)$  yields only slight variation among the  $\sigma$ -bonding parameters in  $T_d$  symmetry: R = Me:  $\varepsilon_{\sigma} = 12~996~cm^{-1}$ ;  $CH_2CMe_3$ :  $\varepsilon_{\sigma} = 12~202.5~cm^{-1}$ ;  $CH_2SiMe_3$ :  $\varepsilon_{\sigma} = 10~986~cm^{-1}$ .

The more recent, detailed study by Abrahamson *et al.* identified in  $Cr(Nor)_4$ , in addition to the main band at 20 580 cm<sup>-1</sup> (486 nm,  $\varepsilon = 1340$ ), a second transition at 16 130 cm<sup>-1</sup> (620 nm), which was assigned to  ${}^3A_2 \rightarrow 3T_2$ . Using these two transitions, a unique solution to the LFT parameters for a  $CrR_4$  species with  $T_d$  point group symmetry obtains, namely Racah B = 409.870(5) cm<sup>-1</sup> (~40% of the free-ion value;<sup>20</sup> possible in such a covalent complex) and either the crystal-field<sup>21</sup> parameter Dq = 1613.0 cm<sup>-1</sup> or the

angular overlap model (AOM)<sup>22</sup> parameter  $\varepsilon_{\sigma}$  = 12097.5 cm<sup>-1</sup>, where  $\left(\varepsilon_{\sigma} = \left(\frac{15}{2}\right)Dq\right)$ . The transition  ${}^{3}A_{2} \rightarrow {}^{3}T_{1}(P)$  is calculated to be at 33 958 cm<sup>-1</sup> (294 nm), which, perhaps coincidentally, agrees exactly with a shoulder observed on a strong ligand-to-metal charge-transfer (LMCT) band. Use of Racah C/B = 4.11, C = 1684.6 cm<sup>-1</sup>, <sup>20</sup> gives spin forbidden (i.e., spin-flip within  $e^{2}t_{2}^{0}$ ) transitions  ${}^{3}A_{2} \rightarrow {}^{1}E$  and  ${}^{1}A_{1}$  at respectively 6587 and 12 247 cm<sup>-1</sup> (see Table S3, for the AOM parameters for Cr(Nor)<sub>4</sub> and other CrL<sub>4</sub> complexes), neither of which corresponds to the shoulders reported at 18 730 cm<sup>-1</sup> (534 nm) and 18 080 cm<sup>-1</sup> (553 nm). <sup>18</sup>

Using the analysis for  $Cr(Nor)_4$ , <sup>18</sup> we return to the work of Mowat et al., <sup>3</sup> who did report two components for each of the visible bands, as follows:  $CrMe_4$  (20 000 cm<sup>-1</sup> and 22 200 cm<sup>-1</sup> ( $\varepsilon \approx 600$ )),  $Cr(CH_2CMe_3)_4$  (18 500 cm<sup>-1</sup> and 21 100 cm<sup>-1</sup> ( $\varepsilon = 1090$ )), and  $Cr(CH_2SiMe_3)_4$  (17 100 cm<sup>-1</sup> and 19 400 cm<sup>-1</sup> ( $\varepsilon = 1060$ )). In the case of  $CrMe_4$  the bands are too close together to be used viably, but for  $Cr(CH_2CMe_3)_4$  and  $Cr(CH_2SiMe_3)_4$ , it is possible to fit exactly the

assignment of the observed bands, respectively with  $\varepsilon_{\sigma} = 13~875.0~\text{cm}^{-1}$  and 12 825.0 cm<sup>-1</sup>, but with an unreasonably low Racah *B* parameter; respectively, 225.9 cm<sup>-1</sup> and 199.4 cm<sup>-1</sup> – only ~20% of the free-ion value. Therefore, the two components instead represent a tetragonal splitting, which also gives rise to the small zfs observed in X-band EPR, but absent structural information, is not worth pursuing. Mowat et al. also observed a very weak band at ~15 000 cm<sup>-1</sup>, which may indeed be from  ${}^3A_2 \rightarrow {}^3T_2$ . Such an assignment gives  $\varepsilon_{\sigma} = 11~250~\text{cm}^{-1}$  for  $Cr(CH_2CMe_3)_4$  and  $Cr(CH_2SiMe_3)_4$ , respectively with  $B = 613.4~\text{cm}^{-1}$  and 409.1 cm<sup>-1</sup>. As noted by Mowat et al.,  ${}^3A_2 \rightarrow {}^3T_2$  should be very sensitive to the donor strength of the ligands, so use of the same, approximate value for both complexes is useful only in giving a rough idea as to the electronic structure of the complexes. Nevertheless, simple LFT adequately explains the key electronic spectral features of a range of tetraalkylchromium(IV) complexes.

Inclusion of spin-orbit coupling (SOC), e.g., with  $\zeta=180~\text{cm}^{-1}$  (~60% of the free-ion value<sup>23</sup>), only minimally affects the transitions and thus does not provide an explanation for the observed shoulders at ~18 500 cm<sup>-1</sup> (~540 nm). SOC does provide a basis for the experimental breadth of the spin-allowed bands as  ${}^3A_2 \rightarrow {}^3T_2$  is at 16 045 – 16 175 cm<sup>-1</sup>,  ${}^3A_2 \rightarrow {}^1T_2(D)$  is at 20 570 – 20 600 cm<sup>-1</sup>, which is not too far from the proposed spin-forbidden shoulders, and  ${}^3A_2 \rightarrow {}^3T_1(P)$  is at 33 915 – 34 065 cm<sup>-1</sup>. These results, calculated using Ligfield<sup>24</sup> are given in Table S5a.

#### b) Discussion of electronic spectra of $M(NR_2)_4$ complexes, R = Me, Et; M = Cr, Mo.

None of the green amido complexes,  $Cr(NR_2)_4$ , was structurally characterized or produced X-band EPR spectra.<sup>11</sup> That with R = Et gave a single, strong ( $\varepsilon = 1200$ ) visible band at 13 700 cm<sup>-1</sup> (730 nm) and its possible assignment to one of the three d-d transitions described above was thoughtfully considered,<sup>11</sup> with no assignment being ideal. This band is much red-

shifted from the corresponding major band seen in CrR<sub>4</sub> (~500 nm), so that the same assignment ( ${}^3A_2 \rightarrow {}^3T_1(F)$ ) also with  $B=450~{\rm cm}^{-1}$  gives  $\epsilon_{\sigma}=7067~{\rm cm}^{-1}$  ( $Dq=9423~{\rm cm}^{-1}$ ), which is unreasonably low. He has band is assigned to  ${}^3A_2 \rightarrow {}^3T_2$ , then  $Dq=1370~{\rm cm}^{-1}$  (or  $\epsilon_{\sigma}=10~275~{\rm cm}^{-1}$ ), which is reasonable in comparison to the larger value for the stronger-field alkyl donors. The mystery is that the allowed  ${}^3A_2 \rightarrow {}^3T_1(F)$  transition would be well within the visible region for any realistic value of B, e.g., in the range 17 960 – 18 810 cm<sup>-1</sup> (~560 – 530 nm) for  $B=400~{\rm cm}^{-1}$ , and thus should be readily observable – more so than the forbidden  ${}^3A_2 \rightarrow {}^3T_2$  transition. The  ${}^3A_2 \rightarrow {}^3T_1(P)$  transition would be above 29 000 cm<sup>-1</sup> and obscured by charge-transfer bands.

Intrigued by this difficulty, we also considered the structurally characterized complex Mo(NMe<sub>2</sub>)<sub>4</sub>, which has  $D_{2d}$  symmetry, and a singlet ground state ( ${}^{1}A_{1}$ ,  $d_{x^{2}-y^{2}}{}^{2}(b_{1}^{2})$ ) with a more informative electronic absorption spectrum.<sup>25</sup> An AOM fit of this system was successful, albeit not a unique solution, using their assignment of bands at 10 500 cm<sup>-1</sup> to  ${}^{1}A_{1} \rightarrow {}^{1}B_{1}$  ( $d_{x^{2}-y^{2}}(b_{1}) \rightarrow d_{z^{2}}(a_{1})$ ; forbidden in  $D_{2d}$ ), 14 300 cm<sup>-1</sup> to  ${}^{1}A_{1} \rightarrow {}^{1}E$  ( $\rightarrow d_{xz,yz}(e)$ ; xy allowed), and  $\sim$  20 000 cm<sup>-1</sup> to  ${}^{1}A_{1} \rightarrow {}^{1}A_{2}$  ( $\rightarrow d_{xy}(b_{2})$ ; forbidden). The fit results are given in Table S3 and the energy levels with free-ion parentage are given in Table S4. The AOM included  $\pi$ -donation in the proper orientation (i.e., normal to the NEt<sub>2</sub> plane;  $\varepsilon_{\pi^{-}c} = 5162.2$  cm<sup>-1</sup>) with  $\varepsilon_{\sigma} = 11~876.4$  cm<sup>-1</sup> – a reasonable value for the strong  $\sigma$ -donor amido ligand. The Racah parameter B was 484.4 cm<sup>-1</sup>;  $\sim$ 70% of the free-ion value, with C fixed at C/B = 4.47, also based on the free-ion value.<sup>26-27</sup> We thus favor the assignment of the single band for Cr(NEt<sub>2</sub>)<sub>4</sub> to  ${}^{3}A_{2} \rightarrow {}^{3}T_{2}$ , but have no explanation from LFT for the absence of the other expected bands.

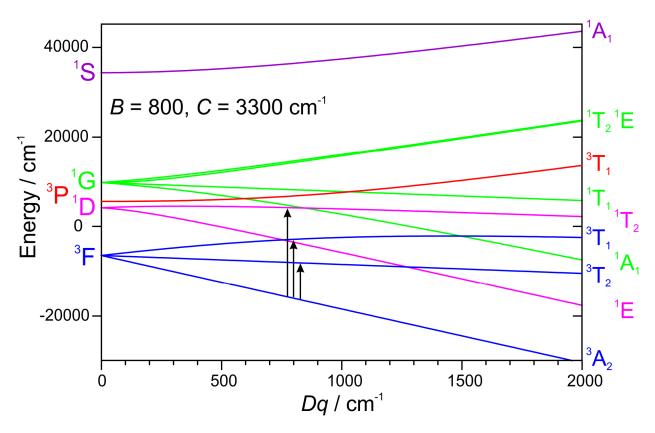
#### c) Discussion of electronic spectrum of Cr(O'Bu)4.

In contrast to the amido complexes,  $Cr(O^tBu)_4$  displayed a relatively informative electronic absorption spectrum.<sup>7</sup> Bands centered at 9100 cm<sup>-1</sup> ( $\varepsilon$  = 10), 15 200 cm<sup>-1</sup> ( $\varepsilon$  = 560), and 25 000 cm<sup>-1</sup> (sh,  $\varepsilon \approx 500$ ) were observed and assigned respectively to  ${}^3A_2 \rightarrow {}^3T_2$ ,  ${}^3A_2 \rightarrow {}^3T_1(F)$ , and  ${}^3A_2 \rightarrow {}^3T_1(P)$ , analogously to the tetraalkyls described above. In  $T_d$  symmetry, these three bands can be fitted (each to within 200 cm<sup>-1</sup>) using: B = 816.8 cm<sup>-1</sup> (~80% of the free-ion value<sup>20</sup>), Dq = 927.4 cm<sup>-1</sup>.<sup>28</sup> Use of the AOM with  $T_d$  symmetry and only  $\sigma$ -bonding analogously gives B = 816.4 cm<sup>-1</sup>,  $\varepsilon_{\sigma} = 6954.5$  cm<sup>-1</sup>.

One can next use experimentally determined structures, rather than ideal  $T_d$  symmetry. There is no reported structure of  $Cr(O'Bu)_4$ , but we can use that for  $Cr(OCH'Bu_2)_4$ ,  $^{29}$ with idealized  $D_{2d}$  symmetry (average  $\angle O$ -Cr- $O = 111.4^\circ$ ; relevant metrics are given in Table S1. The slight tetragonal compression of this complex is reflected in the following angles: 112.45°, 110.36°,  $108.75^\circ \times 2$ ,  $108.27^\circ \times 2$ , thus nearly defining an  $S_4$  axis. This AOM fits the observed bands moderately well using B = 817.2 cm<sup>-1</sup>,  $\varepsilon_{\sigma} = 6961.3$  cm<sup>-1</sup>. In addition to this use of a more realistic structure, one can include  $\pi$ -donation by the alkoxide ligands, which was not appropriate for the alkyls. This bonding type, however, has little effect. If only  $\varepsilon_{\pi-s}$  is included, then its value is driven to zero; if only  $\varepsilon_{\pi-c}$  is included, then the fit yields only a very modest value (140 cm<sup>-1</sup>); the resulting energy levels are given in Table S3. If cylindrical  $\pi$ -bonding is included, then the fitting simply drives the  $\pi$ -bonding to zero, giving essentially the same result as with only  $\sigma$ -bonding. Thus, use of an experimentally based geometry and inclusion of  $\pi$ -bonding have little effect so that the alkoxides behave functionally the same as alkyls: strong  $\sigma$ -donors with slight distortion from ideal tetrahedral symmetry due to ligand steric effects.

#### d) Discussion of electronic spectrum of Cr(DTBMS)4.

An alternate crystal field model for  $Cr(DTBMS)_4$  from that described in the main text is to assume that the  ${}^3A_2 \rightarrow {}^3T_1(P)$  transition is above ~22 000 cm<sup>-1</sup> (below 450 nm), i.e., obscured by the edge of the intense CT band. If we assign this transition to a hypothetical band at 22 700 cm<sup>-1</sup> (440 nm), then the three spin-allowed transitions are each fitted to within ~400 cm<sup>-1</sup> using B = 792 cm<sup>-1</sup> and Dq = 773 cm<sup>-1</sup>. This tetrahedral crystal field splitting is close to that in the preferred model, i.e., that described in the main text, while the B parameter is more consistent with that for  $Cr(O'Bu)_4$  and is not so reduced from the free-ion value. For illustration we present in Figure S1 an energy level diagram analogous to that shown in Figure 5, but here with B = 800 cm<sup>-1</sup> and C = 3300 cm<sup>-1</sup> (so as to use round numbers; C/B = 4.125, versus 4.11 in the free-ion<sup>20</sup>).


To apply the AOM, we note that the O-Cr-O angles in Cr(DTBMS)<sub>4</sub> are:  $108.02^{\circ}$  (×2),  $108.21^{\circ}$  (×2),  $111.83^{\circ}$ , and  $112.61^{\circ}$ . The four essentially identical angles (crystallographic two-fold axis) define the  $S_4$  axis in  $D_{2d}$  idealized symmetry, and we then use the average of the two larger angles:  $112.22^{\circ}$ , so that two siloxide O donors are at  $\theta = 56.11^{\circ}$ , and two are at  $\theta = 123.89^{\circ}$ . The x axis is chosen to lie between the Cr-O bonds (along  $C_2$ ). Cr(DTBMS)<sub>4</sub> thus exhibits a slightly "squashed" tetrahedral geometry, very slightly more so than Cr(OCH'Bu<sub>2</sub>)<sub>4</sub> (see Tables S1 and S2),<sup>29</sup> but much less than Cr(N=C'Bu<sub>2</sub>)<sub>4</sub>, for which the angles are roughly  $98^{\circ}$  (×4) and  $136^{\circ}$  (×2) (so  $\theta = 68^{\circ}$ ).<sup>30</sup>

We then fit the observed electronic transitions as before, except now only the central of the three orbital terms of the  ${}^3T_{1,2}$  parent term in  $T_d$  is used, i.e., we make no determination as to  ${}^3B_1 \rightarrow {}^3E({}^3T_2(F))$  versus  ${}^3B_1 \rightarrow {}^3B_2({}^3T_2(F))$ . However, in  $D_{2d}$  the former is x,y-dipole-allowed but the latter is forbidden, so the latter is more likely that which is observed. It is possible using only  $\sigma$ -bonding to match the spin-allowed transitions quite closely, and subsequent adjustment of the

Racah C parameter allows fitting the spin-forbidden band at 540 nm. This model can be further refined by inclusion of a small degree of  $\pi$ -donation by the siloxido ligands, as given by  $\varepsilon_{\pi-c}$  = 230 cm<sup>-1</sup>, together with  $\varepsilon_{\sigma} = 6600$  cm<sup>-1</sup>. It is thus possible to fit all of the originally assigned spin-allowed and -forbidden transitions exactly, as summarized in Table S3. The ligand-field energy levels, with free-ion parentage, for both the favored (in main text; Tanabe-Sugano diagram in Figure 5) and disfavored (that described here; Tanabe-Sugano diagram in Figure S1) models of Cr(DTBMS)<sub>4</sub> are given in Table S4. We do not claim that either is a unique solution, but the AOM can minimally provide a reasonable description of the electronic structure of this complex. The SOC interaction can then be included so as to reproduce the experimental zfs. Use of  $\zeta = 198 \text{ cm}^{-1}$  (62% of the free-ion value<sup>23</sup>) exactly reproduces the zfs of the major component (B), D = +0.565 cm<sup>-1</sup>. The results of this calculation for the preferred (main text) model are given in Table S5b. The  $\zeta$  parameter can be increased or decreased to match the D value of components A or C, respectively. Another, more physically attractive way to model the several species is to alter slightly the AOM. The bonding parameters have been maintained as the same among the four ligands; this may not necessarily be the case, but since the four Cr-O bond lengths are essentially identical, we shall explore only slight angular changes. For example, if  $\theta$ is changed from the crystallographically determined average value of 56.11° by only one degree to 57.11° (i.e., a slight increase in tetragonal distortion – "squashing"), then the D value increases to +0.81 cm<sup>-1</sup>, a value already greater than that determined for component A. We also note than an idealized  $D_{2d}$  symmetry has been used thus far. If the real, rather than average  $\theta$  values are used, then D = +0.566 cm<sup>-1</sup>, essentially the same, but now with |E| = 0.01 cm<sup>-1</sup> (|E/D| = 0.02). But if the  $\phi$  angle of a pair of ligands is changed by only one degree from ideal  $S_4$  (i.e., to  $45^\circ$ , 134°, 225°, 314°) then the D value is unchanged, but |E| increases to 0.062 cm<sup>-1</sup>, (|E/D| = 0.11).

The point is that the zfs is very sensitive to small changes in geometry and a four-coordinate geometry is inherently susceptible to small distortions of the type described here – changes on the order of one degree can lead to the variation in zfs observed for the several components seen for Cr(DTBMS)<sub>4</sub>. These geometrical effects are explored more extensively using QCT and shown graphically in Figures S11 and S12.

Lastly, one can also use the second set of assignments, i.e., that with the larger B value (Figure S1), also with the AOM, but then the  ${}^3B_1 \rightarrow {}^3E({}^3T_2(F))$  transition is always higher in energy than  ${}^3B_1 \rightarrow {}^3B_2({}^3T_2(F))$ , so that a negative D value obtains (see Eqn 4). The magnitude of D is also too low unless an unreasonably large (i.e., essentially the free-ion value) for  $\zeta$  is employed. Therefore, the constraints from zfs parameters, extracted by HFEPR, allows a seemingly reasonable set of assignments for electronic transitions to be discarded.



**Figure S1.** Energy diagram for Cr(DTBMS)<sub>4</sub> generated using Racah parameters  $B = 800 \text{ cm}^{-1}$ ,  $C = 3300 \text{ cm}^{-1}$  and the tetrahedral crystal field splitting range as indicated on the abscissa. The three vertical arrows represent possible assignments using  $Dq \approx 800 \text{ cm}^{-1}$  of the three transitions observed at (left to right) 18 520 cm<sup>-1</sup> (540 nm), 12 500 cm<sup>-1</sup> (800 nm), and 8070 cm<sup>-1</sup> (1240 nm). The electronic transitions are matched as shown here, but the AOM when applied to this parameter set does not reproduce the observed zfs of Cr(DTBMS)<sub>4</sub>, giving the incorrect sign of D. The analogous diagram that matches both optical and HFEPR spectroscopic data is shown in Figure 5 (main text), and is thus the preferred model. The ligand-field energy levels of the disfavored model shown here and the favored model (Figure 5) are listed in Table S4 with their free-ion parentage.

#### e) Discussion of putative electronic spectrum of molecular CrF<sub>4</sub>.

The final compound is the fluoride, molecular CrF<sub>4</sub>. For the synthesis of this species, one can go far back in the literature,<sup>31</sup> as well as more recently.<sup>32</sup> This paper by von Wartenberg even reported a gas phase absorption spectrum,<sup>31</sup> but this spectrum was likely due to a dimer,<sup>33</sup> as later suggested by the electronic absorption spectrum of authentic CrF<sub>4</sub> isolated in a neon matrix,<sup>34</sup>

which shows no absorption beyond 450 nm.<sup>35</sup> For illustrative purposes, if we simply define the transition  ${}^3A_2 \rightarrow {}^3T_1(P)$  as being at 400 nm, then this band can be fitted using B = 964 cm<sup>-1</sup>,  $\epsilon_{\sigma} = 8165$  cm<sup>-1</sup>, and  $\epsilon_{\pi} = 1633$  cm<sup>-1</sup>, where  $\epsilon_{\pi-c} \equiv \epsilon_{\pi-s} = \epsilon_{\pi} \equiv \epsilon_{\sigma}/5$ ; admittedly all arbitrary, but reasonable, which parameter set gives  ${}^3A_2 \rightarrow {}^3T_1(F)$  at 745 nm and  ${}^3A_2 \rightarrow {}^3T_2$  at 1290 nm, both of which bands might not be observed in the visible spectrum in a matrix. The electronic spectrum of CrF<sub>4</sub> is examined by QCT methods (see Table S10 and Figure S15).

#### f) Further discussion of perturbation theory equations for spin Hamiltonian parameters.

Mowat et al.<sup>3</sup> gave a further expression for D by including values for the energy denominators in Eqn 4 (see main text) and combining like terms. Their result is given below:

$$D \approx \zeta^{2} \delta \left\{ \frac{1}{\Delta^{2}} - \frac{1}{\left[\Delta + 8B + 2C\right]^{2}} \right\} - 2\zeta \left(\zeta_{\parallel} - \zeta_{\perp}\right) \left\{ \frac{1}{\Delta} - \frac{1}{\left[\Delta + 8B + 2C\right]} \right\}$$
 (S1)

where  $\Delta$  is the tetrahedral splitting (10Dq),  $\delta$  is the tetragonal splitting, and  $\zeta_{\perp}$  and  $\zeta_{\perp}$  are the SOC constants in the parallel (collinear with z) and perpendicular directions, respectively. For a CrR4 complex, Mowat et al. used for illustration  $\Delta = 14\,500\,\mathrm{cm}^{-1}$ ,  $\delta = 2500\,\mathrm{cm}^{-1}$ ,  $B = C/4 = 450\,\mathrm{cm}^{-1}$ , and  $\zeta = 104\,\mathrm{cm}^{-1}$ , which is only one third of the free-ion value. These values give  $D \approx 0.07\,\mathrm{cm}^{-1}$ , using only the first part of Eqn S1 (i.e., assuming isotropic SOC), which is in the range of the small zfs seen for tetraalkylchromium(IV) complexes. The problem is that the second part of Eqn S1 could range from zero to a magnitude as large as the first part depending on how much SOC anisotropy one wishes to introduce. We have explored this using a spreadsheet and find that anywhere in the range  $-0.06 < D < +0.07\,\mathrm{cm}^{-1}$  is readily achievable. Moreover, the denominator for the  $^{1}\mathrm{T}_{2}$  excited state energy is based only on diagonal matrix elements, as given by McClure<sup>36</sup>), which give the  $^{3}\mathrm{A}_{2}$  ground state at (-8B-12Dq) and a  $^{1}\mathrm{T}_{2}$  excited state at (2C-2Dq), so the energy difference is indeed (2C+8B+10Dq). The problem here is that this  $^{1}\mathrm{T}_{2}$  state

actually corresponds in the strong-field limit to  $e^0t_2^2$ , which is not an accessible excited state; the correct  ${}^1T_2$  state, which is  $e^1t_2{}^1$  in strong field notation is at (B+2C), based only on diagonal elements. Using an exact calculation with the Dq, B, and C parameters of Mowat et al.<sup>3</sup> puts the correct  ${}^1T_2$  excited state (of roughly two thirds  ${}^1D$  and one third  ${}^1G$  free-ion parentage) at 21 539 cm $^{-1}$ , rather than 21 700 cm $^{-1}$ , so that everything works out in the end. Nevertheless, if we use only the first part of Eqn S1 with  $\Delta \approx 8000$  cm $^{-1}$ ,  $\delta \approx 1000$  cm $^{-1}$  (based on the splitting within the  $^{1,3}T_2$  states using the AOM) and the energy of the  ${}^1T_2$  excited state calculated exactly (in  $T_d$  symmetry) at 16 020 cm $^{-1}$  (also see Figure 5), then with  $190 \le \zeta \le 255$  cm $^{-1}$  (60 - 80% of the free-ion value<sup>23</sup>), the experimental range of D values is reproduced. Alternatively, and perhaps more realistically, the tetragonal distortion can be varied, with  $\zeta$  fixed at 60% of the free-ion value. The range of  $1000 \le \delta \le 1700$  cm $^{-1}$  then covers the experimental range of D values. This exercise provides a semi-quantitative basis for the several species seen by HFEPR, namely a small change in tetragonal distortion.

**Table S1.**  $CrL_4$  ( $Cr(ER_n)_4$ , n = 0 - 3, E = F, O, N, C) metrical parameters from X-ray diffraction and DFT geometry optimization.<sup>a</sup>

| Complex                                                                           | d Cr-E (Å)                       | ∠ E-Cr-E (deg.)                                |
|-----------------------------------------------------------------------------------|----------------------------------|------------------------------------------------|
| $CrF_4 - expt.^{37}$                                                              | 1.706(2)                         | essentially $T_d$ symmetry (109.5)             |
| CrF <sub>4</sub> – optimized triplet                                              | 1.714                            | $109.4 \times 2, 109.5 \times 3, 109.6$        |
| CrF <sub>4</sub> – optimized singlet                                              | 1.713                            | $109.3 \times 3$ , $109.4$ , $109.7$ , $109.8$ |
|                                                                                   | Alkyls                           |                                                |
| $Cr(cHx)_4 - expt.^{38b}$                                                         | $2.010 \times 4$                 | $106.2 \times 2, 107.8 \times 2, 114.5, 114.6$ |
| $Cr(^{t}Bu)_{4}$ – optimized triplet                                              | $2.014 \times 4$                 | $109.5 \times 6$                               |
| $Cr(^{t}Bu)_{4}$ – optimized singlet                                              | 2.082, 2.084, 2.085, 2.086       | $109.2, 109.4, 109.5, 109.6 \times 3$          |
| Cr(CH <sub>2</sub> SiMe <sub>3</sub> ) <sub>4</sub> – optimized                   | $1.999, 2.001, 2.002 \times 2$   | 107.6, 108.7, 108.9, 109.2, 110.9,             |
| triplet                                                                           |                                  | 111.4                                          |
| $Cr(CH_2SiMe_3)_4$ – optimized                                                    | $1.988 \times 2, 1.989 \times 2$ | 107.9, 108.2, 109.3, 110.0. 110.2,             |
| singlet                                                                           |                                  | 111.2                                          |
|                                                                                   | Amidos                           |                                                |
| $Cr(NMe(CH^tBu_2))_4$ – optimized                                                 | 1.946, 1.952, 1.960. 1.972       | 105.3, 105.8, 107.7, 108.1, 114.0.             |
| triplet <sup>38</sup>                                                             | 1.010 0.1000 1.000               | 116.3                                          |
| $Cr(NMe(CH^tBu_2))_4$ – optimized                                                 | $1.919 \times 2, 1.932, 1.939$   | 101.6, 104.4, 110.9, 111.0. 112.4,             |
| $\frac{\text{singlet}}{\text{Cr}(\text{NMe}_2)_4 - \text{optimized triplet, no}}$ | 1.0562.1.0572                    | 116.8                                          |
| symmetry restrictions                                                             | $1.856 \times 2, 1.857 \times 2$ | $102.9 \times 2, 112.8, 112.9 \times 3$        |
| Cr(NMe <sub>2</sub> ) <sub>4</sub> – optimized singlet,                           | 1.835 × 4                        | 108.2, 108.3, 108.4 × 2, 111.8 × 2             |
| preserved $C_2$ symmetry                                                          | 1.633 X 4                        | 106.2, 106.3, 106.4 × 2, 111.6 × 2             |
| preserved e <sub>2</sub> symmetry                                                 | Alkoxides                        |                                                |
| $Cr(OCH'Bu_2)_4 - expt.^{29}$                                                     | $1.771 \times 2, 1.775 \times 2$ | $108.3 \times 2, 108.8 \times 2, 110.4, 112.4$ |
| $Cr(OCH'Bu_2)_4$ – optimized                                                      | $1.782 \times 4$                 | 107.9 × 4, 112.6 × 2                           |
| triplet                                                                           | 11,02                            | 10/15/// 1, 11210/// 2                         |
| $Cr(OCH^tBu_2)_4$ – optimized                                                     | 1.778 × 4                        | 108.2 × 4, 112.1, 112.2                        |
| singlet                                                                           |                                  |                                                |
| $Cr(O^tBu)(OCMe^tBu_2)_3 - expt.^{39}$                                            | 1.740. 1.781, 1.782, 1.796       | 105.6, 105.6, 107.5, 112.2, 112.3,             |
|                                                                                   |                                  | 113.2                                          |
| Cr(O'Bu)₄ − optimized triplet                                                     | 1.772 × 4                        | $106.5 \times 4, 115.6 \times 2$               |
| Cr(O'Bu) <sub>4</sub> – optimized singlet                                         | $1.766 \times 3, 1.767$          | $108.0 \times 4, 112.5 \times 2$               |
| Cr(OMe) <sub>4</sub> – optimized triplet                                          | 1.758, 1.764, 1.767, 1.774       | 103.8, 107.3, 110.6, 110.8, 111.8,             |
|                                                                                   |                                  | 112.2                                          |
| Cr(OMe) <sub>4</sub> – optimized singlet                                          | $1.760 \times 4$                 | $109.1, 109.2, 109.3, 109.5, 109.8 \times 2$   |
|                                                                                   | Siloxides                        |                                                |
| $Cr(DTBMS)_4 - expt.^{14}$                                                        | $1.764 \times 2, 1.765 \times 2$ | $108.0 \times 2, 108.2 \times 2, 111.8, 112.6$ |
| Cr(DTBMS) <sub>4</sub> – optimized triplet,                                       | $1.772 \times 4$                 | 111.0. 110.9, 108.7, $108.8 \times 3$          |
| triplet ground state                                                              |                                  | 100 ( 100 0 100 1 100 0 110 0                  |
| Cr(DTBMS) <sub>4</sub> – optimized singlet                                        | $1.770 \times 4$                 | 108.6, 108.8, 109.1, 109.2, 110.5,             |
| Cr(OC:Ma)                                                                         | 1.760 4                          | 110.6                                          |
| Cr(OSiMe <sub>3</sub> ) <sub>4</sub> – optimized triplet,                         | $1.760 \times 4$                 | $108.5 \times 4, 111.4 \times 2$               |
| preserved $C_2$ symmetry $Cr(OSiMo_2) = \text{optimized singlet}$                 | 1 757 × 1                        | 100 1 × 4 110 1 × 2                            |
| Cr(OSiMe <sub>3</sub> ) <sub>4</sub> – optimized singlet                          | 1.757 × 4                        | 109.1 × 4, 110.1 × 2                           |

<sup>&</sup>lt;sup>a</sup> See Table S2 for a continuous shape measures analysis that quantifies the deviation from ideal tetrahedral geometry for many of the complexes in this table. <sup>14, 39</sup>
<sup>b</sup> cHx = cyclohexyl.

**Table S2.** Continuous shape measures analysis of selected  $[ML_4]^{0,-}$  complexes  $(M = Cr^{IV}, V^{III})$ . S H A P E v2.1 Continuous Shape Measures calculation

(c) 2013 Electronic Structure Group, Universitat de Barcelona, Contact: <u>llunell@ub.edu</u>

SP-4 1  $D_{4h}$  Square (Here, CShM = 33.3 corresponds to ideal  $T_d$ ; zero to ideal square); calculated x, y, z coordinates are given.

T-4 2  $T_d$  Tetrahedron (Here, CShM = 0 corresponds to ideal  $T_d$ ); calculated x, y, z coordinates are given.

| 1 -4 |   | i eti alleulo |              |         |         |         | $\Pi I_{d}$ , can |         |         | maics are g |
|------|---|---------------|--------------|---------|---------|---------|-------------------|---------|---------|-------------|
|      | 1 | [SESROZ       | _cleaned]    |         | SP-4    | 31.1    |                   | T-4     | 0.058   |             |
| Cr   |   | 5.638         | -6.078       | -0.276  | 5.634   | -6.078  | -0.276            | 5.634   | -6.078  | -0.276      |
| O1   |   | 6.616         | -7.545       | -0.276  | 5.634   | -7.542  | -0.274            | 6.652   | -7.518  | -0.274      |
| O2   |   | 4.649         | -6.081       | -1.737  | 5.634   | -6.079  | -1.740            | 4.615   | -6.079  | -1.716      |
| O1   |   | 6.616         | -4.610       | -0.276  | 5.633   | -4.613  | -0.277            | 6.652   | -4.637  | -0.277      |
| O2   |   | 4.649         | -6.074       | 1.186   | 5.634   | -6.076  | 1.189             | 4.615   | -6.076  | 1.165       |
|      | 2 | [ALUHOF       | -[ortho]     |         | SP-4    | 32.9    |                   | T-4     | 0.084   |             |
| Cr   |   | -17.192       | -10.673      | -17.780 | -17.219 | -10.731 | -17.778           | -17.219 | -10.731 | -17.778     |
| O    |   | -16.200       | -12.153      | -17.780 | -17.209 | -12.183 | -17.773           | -16.152 | -12.146 | -17.781     |
| O    |   | -16.222       | -9.228       | -17.780 | -17.230 | -9.278  | -17.783           | -16.241 | -9.253  | -17.790     |
| O    |   | -18.259       | -10.810      | -19.217 | -17.237 | -10.736 | -19.230           | -18.253 | -10.767 | -19.218     |
| O    |   | -18.224       | -10.790      | -16.332 | -17.201 | -10.726 | -16.325           | -18.232 | -10.757 | -16.323     |
|      | 3 | [LIBCRB_      | _ortho]      |         | SP-4    | 31.8    |                   | T-4     | 0.034   | _           |
| C    |   | 6.945         | -2.708       | -9.235  | 6.945   | -2.715  | -9.227            | 6.945   | -2.715  | -9.227      |
| O    |   | 7.977         | -4.148       | -9.235  | 7.974   | -3.457  | -9.959            | 7.975   | -4.157  | -9.213      |
| O    |   | 7.979         | -1.265       | -9.235  | 7.987   | -1.964  | -8.524            | 7.962   | -1.263  | -9.269      |
| O    |   | 5.940         | -2.671       | -7.777  | 5.916   | -1.973  | -8.495            | 5.942   | -2.691  | -7.766      |
| O    |   | 5.886         | -2.783       | -10.656 | 5.903   | -3.466  | -9.931            | 5.902   | -2.748  | -10.660     |
|      | 4 | [FEFTUF]      |              |         | SP-4    | 29.2    |                   | T-4     | 0.203   | _           |
| Cr   |   | -2.062        | 0.521        | 3.829   | -2.062  | 0.520   | 3.829             | -2.062  | 0.520   | 3.829       |
| C    |   | -0.441        | 1.607        | 4.312   | -0.437  | 0.520   | 4.296             | -0.486  | 1.679   | 4.282       |
| C    |   | -1.611        | -0.566       | 2.200   | -1.595  | 0.520   | 2.204             | -1.609  | -0.639  | 2.254       |
| C    |   | -3.682        | 1.607        | 3.347   | -3.687  | 0.520   | 3.362             | -3.638  | 1.679   | 3.377       |
| C    |   | -2.513        | -0.566       | 5.459   | -2.529  | 0.520   | 5.454             | -2.515  | -0.639  | 5.405       |
|      | 5 | [Cr(OSiM      | $e^t Bu_2)]$ |         | SP-4    | 32.1    |                   | T-4     | 0.016   | _           |
| Cr   |   | -0.001        | 0.001        | 0.001   | 0.000   | 0.001   | 0.001             | 0.000   | 0.001   | 0.001       |
| O    |   | -1.371        | 0.558        | 0.975   | -1.394  | 0.433   | -0.021            | -1.358  | 0.557   | 0.994       |
| O    |   | -0.455        | -1.507       | -0.811  | -0.431  | -1.381  | 0.185             | -0.451  | -1.497  | -0.830      |
| O    |   | 1.417         | -0.303       | 1.019   | 1.394   | -0.430  | 0.023             | 1.405   | -0.298  | 1.037       |
| O    |   | 0.408         | 1.258        | -1.180  | 0.430   | 1.384   | -0.183            | 0.403   | 1.243   | -1.196      |
|      | 6 | $[Cr(O^tBu)]$ | 4]           |         | SP-4    | 28.4    |                   | T-4     | 0.287   | _           |
| Cr   |   | 0.000         | 0.000        | 0.000   | 0.000   | 0.000   | 0.000             | 0.000   | 0.000   | 0.000       |
| O    |   | 1.097         | 0.128        | -1.386  | 0.596   | -0.653  | -1.211            | 1.116   | 0.215   | -1.356      |
| O    |   | 0.622         | -1.313       | 1.014   | 1.123   | -0.532  | 0.839             | 0.540   | -1.358  | 0.998       |
| O    |   | -0.094        | 1.434        | 1.036   | -0.595  | 0.653   | 1.211             | -0.032  | 1.474   | 0.978       |
| O    |   | -1.623        | -0.249       | -0.665  | -1.123  | 0.532   | -0.839            | -1.624  | -0.332  | -0.620      |
|      |   |               |              |         |         |         |                   |         |         |             |
|      |   |               |              |         |         |         |                   |         |         |             |
|      |   |               |              |         |         |         |                   |         |         |             |
|      |   |               |              |         |         |         |                   |         |         |             |

|    | 7  | [Cr(OCH <sup>t</sup> I             | 3u <sub>2</sub> ) <sub>4</sub> ] |        | SP-4   | 30.7   | ,      | T-4    | 0.077  |        |
|----|----|------------------------------------|----------------------------------|--------|--------|--------|--------|--------|--------|--------|
| Cr |    | 0.000                              | 0.000                            | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| O  |    | 0.683                              | 1.501                            | -0.676 | 0.982  | 0.597  | -0.938 | 0.651  | 1.527  | -0.647 |
| O  |    | -0.718                             | -0.927                           | -1.342 | -1.017 | -0.023 | -1.079 | -0.687 | -0.964 | -1.331 |
| O  |    | -1.280                             | 0.308                            | 1.201  | -0.982 | -0.597 | 0.938  | -1.274 | 0.356  | 1.193  |
| O  |    | 1.316                              | -0.881                           | 0.816  | 1.017  | 0.023  | 1.079  | 1.309  | -0.919 | 0.785  |
|    | 8  | [Cr(OMe)                           |                                  |        | SP-4   | 31.8   |        | T-4    | 0.104  |        |
| Cr |    | 0.046                              | -0.105                           | -0.091 | 0.005  | -0.110 | -0.074 | 0.005  | -0.110 | -0.074 |
| O  |    | 0.018                              | -1.232                           | -1.441 | -0.283 | -0.288 | -1.492 | 0.040  | -1.247 | -1.423 |
| O  |    | 0.552                              | -0.890                           | 1.409  | 0.293  | 0.068  | 1.344  | 0.612  | -0.904 | 1.380  |
| O  |    | 1.040                              | 1.301                            | -0.476 | 1.347  | 0.355  | -0.404 | 1.021  | 1.282  | -0.451 |
| O  |    | -1.631                             | 0.377                            | 0.228  | -1.336 | -0.575 | 0.256  | -1.653 | 0.428  | 0.198  |
| -  | 9  | [Cr <sup>t</sup> Bu <sub>4</sub> ] |                                  | ,      | SP-4   | 33.3   | ,      | T-4    | 0.000  |        |
| Cr |    | 0.000                              | 0.000                            | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| C  |    | -0.482                             | -1.748                           | -1.088 | -1.235 | -0.805 | -0.899 | -0.481 | -1.748 | -1.088 |
| C  |    | -1.322                             | 0.197                            | 1.638  | -0.570 | -0.745 | 1.449  | -1.322 | 0.197  | 1.638  |
| C  |    | 1.986                              | -0.137                           | 0.711  | 1.235  | 0.804  | 0.899  | 1.986  | -0.137 | 0.710  |
| C  |    | -0.183                             | 1.687                            | -1.260 | 0.570  | 0.745  | -1.449 | -0.183 | 1.687  | -1.260 |
|    | 10 | [Cr(NMe <sub>2</sub> )             | )4]                              | ,      | SP-4   | 30.8   | ,      | T-4    | 0.328  |        |
| Cr |    | 0.000                              | -0.001                           | -0.001 | 0.000  | -0.001 | 0.000  | 0.000  | -0.001 | 0.000  |
| N  |    | 0.147                              | 1.095                            | -1.491 | 0.876  | 1.014  | -0.767 | 0.064  | 1.149  | -1.453 |
| N  |    | -1.670                             | -0.799                           | 0.147  | -0.876 | -1.016 | 0.766  | -1.651 | -0.841 | 0.051  |
| N  |    | 1.368                              | -1.232                           | -0.254 | 0.554  | -1.143 | -0.880 | 1.336  | -1.276 | -0.162 |
| N  |    | 0.156                              | 0.932                            | 1.597  | -0.554 | 1.141  | 0.879  | 0.252  | 0.963  | 1.563  |
|    | 11 | [Cr(NMe-0                          | $CH^tBu_2)$ ]                    |        | SP-4   | 28.8   | ,      | T-4    | 0.259  |        |
| Cr |    | -0.005                             | -0.014                           | 0.013  | -0.005 | 0.002  | 0.022  | -0.005 | 0.002  | 0.022  |
| N  |    | 0.443                              | 1.888                            | -0.254 | 0.635  | 1.149  | -0.980 | 0.387  | 1.907  | -0.179 |
| N  |    | -0.875                             | -0.394                           | 1.728  | -0.646 | -1.145 | 1.024  | -0.850 | -0.310 | 1.757  |
| N  |    | 1.704                              | -0.956                           | -0.021 | 1.481  | -0.234 | 0.702  | 1.657  | -1.021 | -0.087 |
| N  |    | -1.293                             | -0.515                           | -1.358 | -1.492 | 0.237  | -0.659 | -1.216 | -0.568 | -1.404 |
|    | 12 | [CrF <sub>4</sub> ]                |                                  | 1      | SP-4   | 33.3   | ,      | T-4    | 0.000  |        |
| Cr |    | 0.001                              | 0.000                            | 0.001  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| F  |    | 0.200                              | 1.550                            | 0.706  | 0.927  | 0.900  | 0.538  | 0.200  | 1.548  | 0.707  |
| F  |    | -1.654                             | -0.252                           | -0.369 | -0.927 | -0.901 | -0.538 | -1.655 | -0.251 | -0.369 |
| F  |    | 0.926                              | -0.095                           | -1.439 | 0.198  | 0.554  | -1.270 | 0.926  | -0.095 | -1.439 |
| F  |    | 0.528                              | -1.204                           | 1.100  | -0.199 | -0.554 | 1.270  | 0.529  | -1.203 | 1.100  |
|    | 13 | [OCEWIC                            | ]                                | 1      | SP-4   | 27.8   |        | T-4    | 0.803  |        |
| V  |    | 6.546                              | 2.288                            | 8.460  | 6.567  | 2.291  | 8.449  | 6.567  | 2.291  | 8.449  |
| C  |    | 5.101                              | 0.704                            | 8.435  | 5.225  | 1.418  | 7.570  | 5.246  | 0.607  | 8.492  |
| C  |    | 7.938                              | 2.143                            | 6.816  | 7.805  | 1.289  | 7.555  | 7.789  | 2.195  | 6.694  |
| C  |    | 7.977                              | 2.309                            | 10.067 | 7.909  | 3.164  | 9.328  | 7.814  | 2.265  | 10.189 |
| C  |    | 5.273                              | 4.012                            | 8.468  | 5.329  | 3.293  | 9.343  | 5.419  | 4.098  | 8.421  |

**Table S3.** LFT fit results for electronic absorption bands of  $CrL_4$  complexes. All energies in  $cm^{-1}$ .

| Complex                                | Dataset /<br>Model                     | Band assig                   | gnment in $T_d$ symi                               | metry from <sup>3</sup> A <sub>2</sub> (F      | F) ground state                                                                                                                      |  |  |
|----------------------------------------|----------------------------------------|------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Cr(Nor) <sub>4</sub>                   |                                        | $\rightarrow$ $^{3}T_{2}(F)$ | $\rightarrow$ $^{3}T_{1}(F)^{a}$                   | $\rightarrow$ $^{3}$ T <sub>1</sub> (P) $^{a}$ | $\rightarrow$ singlets $^b$                                                                                                          |  |  |
| . ,                                    | Expt. <sup>c</sup>                     | 16 130                       | 20 580                                             | (CT at 29 850. 34 010)                         | 18 730. 18 080                                                                                                                       |  |  |
|                                        | Crystal-<br>field,<br>AOM <sup>d</sup> | 16 130                       | 20 580                                             | 33 960                                         | 6590. 12 250. 22<br>660. 24 420                                                                                                      |  |  |
| Cr(NEt <sub>2</sub> ) <sub>4</sub>     |                                        |                              |                                                    |                                                |                                                                                                                                      |  |  |
|                                        | Expt. <sup>e</sup>                     | 13 700                       |                                                    | (CT at 25 000<br>- 50 000)                     |                                                                                                                                      |  |  |
|                                        | Crystal-<br>field,<br>AOM <sup>f</sup> | 13 700                       | 18 810                                             | 29 790                                         | 8000. 14 480. 21<br>600. 23 810                                                                                                      |  |  |
| $Cr(O^tBu)_4$                          |                                        |                              |                                                    |                                                |                                                                                                                                      |  |  |
|                                        | Expt.g                                 | 9100 (8700.<br>9500)         | 15 200                                             | 25 000<br>(CT at 37 000.<br>45 000)            |                                                                                                                                      |  |  |
|                                        | Crystal-<br>field <sup>h</sup>         | 9270 (9430)                  | 15 040 (15<br>200)                                 | 25 030 (25<br>000)                             | 12 850. 21 300.<br>21 790 (12 490.<br>20 820. 21610)                                                                                 |  |  |
|                                        | AOM i                                  | 9040. 9730<br>(9090. 10 160) | 14 990. 15 100<br>(15 230.<br>15 240)              | 24 960. 25 080<br>(24 940.<br>25 220)          | 12 840. 12 860.<br>21 300. 21 580.<br>22 180<br>(12 590 × 2,<br>21 000. 21 410.<br>22 360)                                           |  |  |
| $Cr(OSiMe^tBu_2)_4$<br>= $Cr(DTBMS)_4$ |                                        | $\rightarrow$ $^{3}T_{2}(F)$ | $\rightarrow {}^{3}\mathrm{T}_{1}(\mathrm{F})^{a}$ | $\rightarrow$ $^{3}$ T <sub>1</sub> (P) $^{a}$ | $\rightarrow$ singlets $^b$                                                                                                          |  |  |
|                                        | Expt. <sup>j</sup>                     | 8070                         | 12 500                                             | (CT at 36 000)                                 | 9600. 18 520                                                                                                                         |  |  |
|                                        | Crystal-<br>field <sup>k</sup>         | 8070<br>(7730)               | 12 500<br>(12 770)                                 | 19 670<br>(22 300)                             | 8127, 14 016,<br>16 020, 18 520<br>(12 400, 23 740)                                                                                  |  |  |
|                                        | AOM <sup>1</sup>                       | 8070. 8966<br>(8069, 9599)   | 12 500. 12 950<br>(12 499,<br>12 785)              | 19 442, 19 912<br>(19 084,<br>19 851)          | 8039, 8049,<br>13 795, 15 986,<br>16 820, 18 238,<br>19 092<br>(7645, 7703,<br>13 251, 15 668,<br>17 142, 17 968,<br>18 520, 24 867) |  |  |

<sup>&</sup>lt;sup>a</sup> The free-ion parentage of these terms is very mixed and the lower energy term can in some cases have a higher <sup>3</sup>P parentage, while the higher energy term correspondingly has a higher <sup>3</sup>F parentage, but we label

all of these respectively as from <sup>3</sup>F and <sup>3</sup>P to correspond with the traditional Tanabe-Sugano diagram (see Figures 5 and S1).

<sup>b</sup> The specific singlet excited states are defined in each case, where applicable. Only those below ~25 000 in energy ( $\lambda > 400$  nm) are given; more complete listings are given in Tables S4 – S5.

<sup>c</sup> Data taken from Abrahamson et al.<sup>18</sup> The strong bands in the UV were assigned to charge transfer (CT), but could include d-d transitions. The spin-forbidden transitions were assigned to  ${}^{3}A_{2}(F) \rightarrow {}^{1}E(D)$ , but this is calculated here to be much too low in energy (6950 cm<sup>-1</sup>) to be observable. We suggest that these shoulder features may be due in part to  ${}^{3}A_{2}(F) \rightarrow {}^{1}A_{1}(G)$  (calculated at 12 250 cm<sup>-1</sup>) and/or  ${}^{3}A_{2}(F) \rightarrow {}^{1}T_{2}(D)$  (calculated at 22 660 cm<sup>-1</sup>).

<sup>d</sup> The parameters (in cm<sup>-1</sup>) used in the crystal-field model are: Racah B = 410. C = 1685 (set at 4.11B), Dq = 1613. Those in the AOM are: Racah as with crystal-field,  $\varepsilon_{\sigma} = 12$  097.5, with AOM geometry (ideal tetrahedral; no structure is available):  $\theta = 54.736^{\circ}$  (× 2),  $125.264^{\circ}$  (× 2),  $\phi = 45^{\circ}$  and  $225^{\circ}$ ,  $135^{\circ}$  and  $315^{\circ}$ .

<sup>e</sup> Data taken from Basi et al.<sup>11</sup> Only one band was observed (at 730 nm).

<sup>f</sup> The parameters (in cm<sup>-1</sup>) used in the crystal-field model are: Racah B = 500. C = 2055 (set at 4.11B), Dq = 1370. Those used in the AOM are: Racah as with crystal-field,  $ε_σ = 10$  275.0. with AOM geometry (ideal tetrahedral since no structure is available):  $θ = 54.736^\circ$  (× 2),  $125.264^\circ$  (× 2),  $φ = 45^\circ$  and  $135^\circ$  and  $135^\circ$ . Alternate assignments of the single observed band gave less reasonable parameters. Moreover, the AOM parameters are consistent with those derived for the structurally characterized, ground state singlet molecule Mo(NMe<sub>2</sub>)<sub>4</sub> (see Table S4c).

<sup>g</sup> Data taken from Alyea et al.<sup>7</sup> For the lowest energy band, the center of gravity is used for crystal-field and initial AOM fitting, but two bands (given in parentheses) were observed, due to tetragonal distortion from tetrahedral symmetry.

<sup>h</sup> The parameters (in cm<sup>-1</sup>) used in the crystal-field model are in two sets; one is a consensus fit for all three bands, while the other (calculated band energies and parameters in parentheses), matches the two higher energy bands exactly but the lowest less well: Racah B = 816.4 (794), C = 3355.0 (3260; both set at 4.11B), Dq = 927.7 (943).

<sup>i</sup> The parameters (in cm<sup>-1</sup>) used in the AOM are in two sets; one with only σ-bonding, while the other (calculated band energies and parameters in parentheses) includes  $\pi$ -bonding: Racah B = 817.2 (800.6), C = 3360 (3290; both set at 4.11B),  $\varepsilon_{\sigma} = 6961.3$  (7185.7;  $\varepsilon_{\pi\text{-c}} = 139.3$ ), with AOM geometry based on the reported crystal structure for Cr(OCH'Bu<sub>2</sub>)<sub>4</sub>,<sup>29</sup> with idealized  $D_{2d}$  symmetry:  $\theta = 55.7^{\circ}$  (× 2), 124.3° (× 2),  $\phi = 45^{\circ}$  and 225°, 135° and 315°.

<sup>j</sup>Data taken from Marshak and Nocera. <sup>14</sup>

<sup>k</sup> The parameters (in cm<sup>-1</sup>) used in the crystal-field model are in two sets; one with no assumptions as to the  ${}^{3}\text{A}_{2} \rightarrow {}^{3}\text{T}_{1}(P)$  transition (i.e., that in the main text, see Figure 5), and one (calculated band energies and parameters in parentheses) where this transition is presumed to be at 22 700 cm<sup>-1</sup> (i.e., that described in SI, see Figure S1, which is disfavored due to inconsistency with the observed positive *D* value): Racah *B* = 530.7 (792.0), *C* = 2040.8 (*C/B* = 3.84) (3255; set at 4.11*B*), *Dq* = 807.0 (773.0).

The parameters (in cm<sup>-1</sup>) used in the AOM are in two sets; one with only σ-bonding, while the other (calculated band energies and parameters in parentheses) includes  $\pi$ -bonding: Racah B = 486.6 (427.5), C = 2157.4 = 4.43B (2206.0 = 5.16B),  $\varepsilon_{\sigma}$  = 6294.0 (6600.0;  $\varepsilon_{\pi\text{-c}}$  = 230.0), with AOM geometry based on the reported crystal structure, with idealized  $D_{2d}$  symmetry:  $\theta$  = 56.11° (× 2), 123.89° (× 2),  $\phi$  = 45° and 225°, 135° and 315°.

**Table S4.** LFT term relative energy level output for selected  $ML_4$  ( $M = Cr^{IV}$ ,  $Mo^{IV}$ ) complexes. All energies in  $cm^{-1}$ .

| Complex, model                        | Term        | Relative energy <sup>a</sup> | Description in $T_d$ (with free-           | Description                                    |
|---------------------------------------|-------------|------------------------------|--------------------------------------------|------------------------------------------------|
| used                                  | number      | Troidit ( e energy           | ion parentage) $^b$                        | $\int d^2 d^2 d^2 d^2 d^2 d^2 d^2 d^2 d^2 d^2$ |
| a) Cr(Nor) <sub>4</sub>               | 110/11/00/1 | <u> </u>                     |                                            | 111 2 Zu                                       |
| calculated using                      | 1 – 3       | 0.0                          | $^{3}$ A <sub>2</sub> (F)                  |                                                |
| crystal-field                         | 4 – 5       | 6588.4                       | <sup>1</sup> E (D 60%, G 40%)              |                                                |
| model with:                           | 6           | 12 248.8                     | <sup>1</sup> A <sub>1</sub> (G 75%, S 25%) |                                                |
| B = 410.                              | 7 – 15      | 16 130.0 (obs)               | $^{3}T_{2}(F)$                             |                                                |
| C = 1685,                             | 16 – 24     | 20 581.2 (obs)               | <sup>3</sup> T <sub>1</sub> (F 35%, P 65%) |                                                |
| Dq = 1613.                            | 25 – 27     | 22 658.9                     | <sup>1</sup> T <sub>2</sub> (D 65%, G 35%) |                                                |
|                                       | 28 - 30     | 24 420.0                     | $^{1}T_{1}(G)$                             |                                                |
|                                       | 31 – 39     | 33 958.8                     | <sup>3</sup> T <sub>1</sub> (F 65%, P 35%) |                                                |
|                                       | 40 – 41     | 39 381.6                     | <sup>1</sup> E (G 60%, D 40%)              |                                                |
|                                       | 42 – 44     | 39 441.1                     | <sup>1</sup> T <sub>2</sub> (G 65%, D 35%) |                                                |
|                                       | 45          | 49 116.2                     | <sup>1</sup> A <sub>1</sub> (S 75%, G 25%) |                                                |
| b) Cr(NEt <sub>2</sub> ) <sub>4</sub> |             |                              |                                            |                                                |
| calculated using                      | 1 – 3       | 0.0                          | $^{3}$ A <sub>2</sub> (F)                  |                                                |
| AOM with ideal                        | 4 – 5       | 8002.9                       | <sup>1</sup> E (D 60%, G 40%)              |                                                |
| Td geometry                           | 6 – 14      | 13 700.0 (obs)               | $^{3}T_{2}(F)$                             |                                                |
| with:                                 | 15          | 14 480.6                     | <sup>1</sup> A <sub>1</sub> (G 80%, S 20%) |                                                |
| B = 500.                              | 16 – 24     | 18 808.2                     | <sup>3</sup> T <sub>1</sub> (P 50%, F 50%) |                                                |
| C = 2055,                             | 25 – 27     | 21 601.8                     | <sup>1</sup> T <sub>2</sub> (D 70%, G 30%) |                                                |
| $\varepsilon_{\sigma} = 10 \ 275.$    | 28 – 30     | 23 810.0                     | $^{1}T_{1}(G)$                             |                                                |
|                                       | 31 – 39     | 29 791.8                     | <sup>3</sup> T <sub>1</sub> (F 50%, P 50%) |                                                |
|                                       | 40 – 41     | 36 117.1                     | <sup>1</sup> E (G 60%, D 40%)              |                                                |
|                                       | 42 – 44     | 36 218.2                     | <sup>1</sup> T <sub>2</sub> (G 70%, D 30%) |                                                |
|                                       | 45          | 48 414.4                     | ${}^{1}A_{1}(S 80\%, G 20\%)$              |                                                |
| c) Mo(NMe <sub>2</sub> ) <sub>4</sub> |             |                              |                                            |                                                |
| Complex, model                        | Term        | Relative energy <sup>a</sup> | Description in $T_d$ (with free-           | Description                                    |
| used                                  | number      |                              | ion parentage) <sup>b</sup>                | $\operatorname{in} D_{2d}$                     |
| calculated using                      | 1           | 0.0                          | <sup>1</sup> E (D 50%, G 40%, S 10%)       | $^{1}A_{1}$                                    |
| AOM with ideal                        | 2 – 4       | 2692.0                       | $^{3}$ A <sub>2</sub> (F)                  | $^{3}B_{1}$                                    |
| $D_{2d}$ geometry                     | 5 – 10      | 7039.7                       | $^{3}T_{2}(F)$                             | $^{3}E$                                        |
| with:                                 | 11          | 10 500.4 (obs)               | <sup>1</sup> E (D 65%, G 35%)              | $^{1}B_{1}$                                    |
| B = 484.4,                            | 12 – 13     | 14 300.0 (obs)               | <sup>1</sup> T <sub>2</sub> (D 50%, G 50%) | <sup>1</sup> E                                 |
| C = 2093.9,                           | 14 – 16     | 14 964.5                     | <sup>3</sup> T <sub>1</sub> (P 55%, F 45%) | $^{3}A_{2}$                                    |
| $\varepsilon_{\sigma} = 11 \ 876.4,$  | 17          | 19 999.6 (obs)               | $^{1}T_{1}(G)$                             | $^{1}A_{2}$                                    |
| $\varepsilon_{\pi\text{-c}} = 5162.2$ | 18 – 23     | 22 887.5                     | <sup>3</sup> T <sub>1</sub> (F 70%, P 30%) | $^{3}E$                                        |
|                                       | 24 – 26     | 23 680.1                     | $^{3}T_{2}(F)$                             | $^{3}B_{2}$                                    |
|                                       | 27 – 29     | 25 132.8                     | $^{3}T_{1}(F 55\%, P 45\%)$                | $^{3}A_{2}$                                    |

|                                 | 30                              | 26 746.2                      | $^{1}A_{1}(G 75\%, D 25\%)$                | $^{1}A_{1}$          |
|---------------------------------|---------------------------------|-------------------------------|--------------------------------------------|----------------------|
|                                 | 31 – 32                         | 28 837.0                      | <sup>1</sup> T <sub>1</sub> (G 80%, D 20%) | <sup>1</sup> E       |
|                                 | 33 – 38                         | 29 700.7                      | $^{3}T_{1}(P 60\%, F 40\%)$                | $^{3}E$              |
|                                 | 39                              | 29 818.3                      | $^{1}T_{2}(D)$                             | $^{1}\mathrm{B}_{2}$ |
|                                 | 40                              | 31 410.2                      | <sup>1</sup> E (G 65%, D 35%)              | ${}^{1}B_{1}$        |
|                                 | 41                              | 33 080.4                      | $^{1}T_{2}(G)$                             | $^{1}\mathrm{B}_{2}$ |
|                                 | 42                              | 35 567.8                      | <sup>1</sup> E (G 50%, D 40%, S 10%)       | ${}^{1}A_{1}$        |
|                                 | 43 – 44                         | 35 611.8                      | <sup>1</sup> T <sub>2</sub> (G 70%, D 30%) | <sup>1</sup> E       |
|                                 | 45                              | 48 238.4                      | $^{1}A_{1}(S 75\%, G 25\%)$                | ${}^{1}A_{1}$        |
| d) $Cr(O^tBu)_4$                |                                 |                               |                                            |                      |
| Complex, model                  | Term                            | Relative energy <sup>a</sup>  | Description in $T_d$ (with free-           | Description          |
| used                            | number                          |                               | ion parentage) <sup>b</sup>                | in $D_{2d}$          |
| calculated using                | 1 – 3                           | 0.0                           | $^{3}$ A <sub>2</sub> (F)                  | ${}^{3}B_{1}$        |
| AOM with ideal                  | 4 – 9                           | 9040.1                        | $^{3}T_{2}(F)$                             | $^{3}E$              |
| $D_{2d}$ geometry               |                                 | (obs 8700)                    |                                            |                      |
| with:                           | 10 – 12                         | 9726.1                        | $^{3}T_{2}(F)$                             | $^{3}\mathrm{B}_{2}$ |
| B = 817.2,                      |                                 | (obs 9500)                    |                                            |                      |
| C = 3360.0.                     | 13                              | 12 842.8                      | <sup>1</sup> E (D 70%, G 30%)              | ${}^{1}B_{1}$        |
| $\varepsilon_{\sigma} = 6961.3$ | 14                              | 12 860.5                      | <sup>1</sup> E (D 70%, G 30%)              | ${}^{1}A_{1}$        |
|                                 | 15 – 20                         | 14 990.9                      | <sup>3</sup> T <sub>1</sub> (F 80%, P 20%) | <sup>3</sup> E       |
|                                 | 21 – 23                         | 15 098.4                      | <sup>3</sup> T <sub>1</sub> (F 80%, P 20%) | ${}^{3}A_{2}$        |
|                                 |                                 | (obs 15 750)                  |                                            |                      |
|                                 | 24                              | 21 302.9                      | <sup>1</sup> A <sub>1</sub> (G 90%, S 10%) | ${}^{1}A_{1}$        |
|                                 | 25 – 26                         | 21 585.4                      | <sup>1</sup> T <sub>2</sub> (D 80%, G 20%) | <sup>1</sup> E       |
|                                 | 27                              | 22 180.9                      | <sup>1</sup> T <sub>2</sub> (D 80%, 20%)   | $^{1}\mathrm{B}_{2}$ |
|                                 | 28 - 30                         | 24 958.0 (obs)                | $^{3}T_{1}(P 85\%, F 15\%)$                | $^{3}A_{2}$          |
|                                 | 31 – 36                         | 25 077.2 (obs)                | $^{3}T_{1}(P 80\%, F 20\%)$                | $^{3}E$              |
|                                 | 37 – 38                         | 25 574.3                      | $^{1}T_{1}(G)$                             | <sup>1</sup> E       |
|                                 | 39                              | 26 236.9                      | $^{1}T_{1}(G)$                             | $^{1}A_{2}$          |
|                                 | 40                              | 32 577.5                      | <sup>1</sup> E (G 70%, D 30%)              | $^{1}B_{1}$          |
|                                 | 41                              | 32 965.6                      | <sup>1</sup> T <sub>2</sub> (G 80%, D 20%) | $^{1}\mathrm{B}_{2}$ |
|                                 | 42                              | 33 488.0                      | <sup>1</sup> E (G 70%, D 30%)              | ${}^{1}A_{1}$        |
|                                 | 43 – 44                         | 33 549.3                      | <sup>1</sup> T <sub>2</sub> (G 80%, D 20%) | <sup>1</sup> E       |
|                                 | 45                              | 55 270.3                      | <sup>1</sup> A <sub>1</sub> (S 90%, G 10%) | $^{1}A_{1}$          |
| e) Cr(OSiMe <sup>t</sup> Bu     | $_{2})_{4} = \overline{Cr(DT)}$ | BMS) <sub>4</sub> , preferred | d model (Figure 5)                         |                      |
| Complex, model                  | Term                            | Relative energy <sup>a</sup>  | Description in $T_d$ (with free-           | Description          |
| used                            | number                          |                               | ion parentage) <sup>b</sup>                | in $D_{2d}$          |
| calculated using                | 1 – 3                           | 0.0                           | $^{3}$ A <sub>2</sub> (F)                  | $^{3}B_{1}$          |
| AOM with ideal                  | 4                               | 7644.7                        | <sup>1</sup> E (D 64%, G 36%)              | ${}^{1}A_{1}$        |
| $D_{2d}$ geometry               | 5                               | 7703.3                        | <sup>1</sup> E (D 66%, G 34%)              | $^{1}B_{1}$          |
| with:                           | 6 – 11                          | 8069.2 (obs)                  | $^{3}T_{2}(F)$                             | $^{3}E$              |
| B = 427.5,                      | 12 – 14                         | 9598.8 (obs)                  | $^{3}T_{2}(F)$                             | $^{3}B_{2}$          |
|                                 | <del></del>                     |                               |                                            |                      |

| C = 2206.0.                              | 15 – 20              | 12 498.7 (obs)              | <sup>3</sup> T <sub>1</sub> (F 57%, P 43%)         | $^{3}E$               |
|------------------------------------------|----------------------|-----------------------------|----------------------------------------------------|-----------------------|
| $\varepsilon_{\sigma} = 6600.0.$         | 21 – 23              | 12 785.4                    | <sup>3</sup> T <sub>1</sub> (F 65%, P 35%)         | $^{3}$ A <sub>2</sub> |
| $\varepsilon_{\pi\text{-c}} = 230.0$     | 24                   | 13 251.4                    | <sup>1</sup> A <sub>1</sub> (G 87%, S 13%)         | $^{1}A_{1}$           |
|                                          | 25 – 26              | 15 667.5                    | <sup>1</sup> T <sub>2</sub> (D 70%, G 30%)         | <sup>1</sup> E        |
|                                          | 27                   | 17 142.1                    | <sup>1</sup> T <sub>2</sub> (D 75%, G 25%)         | $^{1}\mathrm{B}_{2}$  |
|                                          | 28 - 29              | 17 967.7                    | $^{1}T_{1}(G)$                                     | <sup>1</sup> E        |
|                                          | 30                   | 18 519.6 (obs)              | $^{1}T_{1}(G)$                                     | $^{1}A_{2}$           |
|                                          | 31 – 33              | 19 083.6                    | <sup>3</sup> T <sub>1</sub> (P 65%, F 35%)         | $^{3}A_{2}$           |
|                                          | 34 – 39              | 19 851.1 <sup>c</sup>       | <sup>3</sup> T <sub>1</sub> (P 56%, F 44%)         | $^{3}E$               |
|                                          | 40                   | 24 867.1                    | <sup>1</sup> E (G 66%, D 34%)                      | ${}^{1}B_{1}$         |
|                                          | 41                   | 25 027.0                    | <sup>1</sup> T <sub>2</sub> (G 75%, D 25%)         | $^{1}\mathrm{B}_{2}$  |
|                                          | 42 – 43              | 26 004.7                    | <sup>1</sup> T <sub>2</sub> (G 90%, D 10%)         | <sup>1</sup> E        |
|                                          | 44                   | 26 186.8                    | <sup>1</sup> E (G 65%, D 35%)                      | $^{1}A_{1}$           |
|                                          | 45                   | 38 452.8                    | <sup>1</sup> A <sub>1</sub> (S 87%, G 13%)         | ${}^{1}A_{1}$         |
| f) Cr(OSiMe <sup>t</sup> Bu <sub>2</sub> | $_{2})_{4} = Cr(DT)$ | BMS)4, disfavoi             | red model (Figure S1)                              |                       |
| calculated using                         | 1 – 3                | 0.0                         | $^{3}A_{2}(F)$                                     | $^{3}B_{1}$           |
| AOM with ideal                           | 4 – 6                | 5683.5                      | $^{3}T_{2}(F)$                                     | $^{3}\mathrm{B}_{2}$  |
| $D_{2d}$ geometry                        | 7 – 12               | 8053.7 (obs)                | $^{3}T_{2}(F)$                                     | $^{3}E$               |
| with:                                    | 13                   | 11 823.9                    | <sup>1</sup> E (D 65%, G 35%)                      | $^{1}A_{1}$           |
| B = 868.4,                               | 14 – 19              | 12 511.7 (obs)              | <sup>3</sup> T <sub>1</sub> (F 90%, P 10%)         | $^{3}E$               |
| C = 3352.5,                              | 20                   | 13 103.8                    | <sup>1</sup> E (D 75%, G 25%)                      | $^{1}B_{1}$           |
| $\varepsilon_{\sigma} = 6961.3,$         | 21 – 23              | 13 486.4                    | <sup>3</sup> T <sub>1</sub> (F 95%, P 5%)          | $^{3}A_{2}$           |
| $\varepsilon_{\pi\text{-s}} = 1403.5$    | 24                   | 18 519.5 (obs)              | <sup>1</sup> T <sub>2</sub> (D 80%, G 20%)         | $^{1}\mathrm{B}_{2}$  |
|                                          | 25 – 26              | 20 358.4                    | <sup>1</sup> T <sub>2</sub> (D 70%, G 30%)         | <sup>1</sup> E        |
|                                          | 27                   | 22 529.4                    | <sup>1</sup> A <sub>1</sub> (G 85%, D 10%, S 5%)   | ${}^{1}A_{1}$         |
|                                          | 28 - 33              | 22 692.7 (obs) <sup>c</sup> | $^{3}T_{1}(P 90\%, F 10\%)$                        | $^{3}E$               |
|                                          | 34 – 36              | 24 147.6                    | <sup>3</sup> T <sub>1</sub> (P 95%, F 5%)          | $^{3}A_{2}$           |
|                                          | 37 – 38              | 24 405.1                    | <sup>1</sup> T <sub>1</sub> (G 80%, D 20%)         | <sup>1</sup> E        |
|                                          | 39                   | 26 647.5                    | $^{1}T_{1}(G)$                                     | $^{1}A_{2}$           |
|                                          | 40                   | 30 155.3                    | <sup>1</sup> E (G 75%, D 25%)                      | $^{1}B_{1}$           |
|                                          | 41                   | 30 278.9                    | <sup>1</sup> E (G 75%, D 25%)                      | ${}^{1}A_{1}$         |
|                                          | 42                   | 30 423.1                    | <sup>1</sup> T <sub>2</sub> (D 80%, G 20%)         | $^{1}\mathrm{B}_{2}$  |
| į                                        | 1                    | 1                           | 1                                                  | 1                     |
|                                          | 43 - 44              | 30767.1                     | ${}^{1}\text{T}_{2}(\text{G }90\%, \text{D }10\%)$ | $^{1}E$               |

<sup>&</sup>lt;sup>a</sup> The observed bands are also indicated. If no value is given, then the match is exact within a few  $cm^{-1}$  (< 100 cm<sup>-1</sup>); otherwise, the observed value is given in parentheses.

<sup>&</sup>lt;sup>b</sup> If no percentage is given, then it is essentially 100% of that free-ion term. These values among all terms do not always add up to 100% for a given free-ion due to the extensive rounding used. This information is provided mainly as an indication of how mixed the free-ion terms in such a strong ligand field are.

<sup>&</sup>lt;sup>c</sup> Strong absorption bands begin at roughly 22 200 cm<sup>-1</sup> ( $\lambda \ge 450$  nm), but may be primarily the tail of CT band(s) that extend well into the UV region.

**Table S5**. Edited LFT output using the program Ligfield to show the effect of SOC on the energy levels of selected CrL<sub>4</sub> complexes.

### a) Cr(Nor)<sub>4</sub>

These matrices were generated from the following terms:  ${}^3P$   ${}^3F$   ${}^1S$   ${}^1D$   ${}^1G$  of  $d^2$  in  $SLM_SM_L$ -basis. One electron parametrization was taken from: AOM. The AOM-matrices were not barycentered.

| Ligator  | Theta    | Phi           | Psi P      | arametei       | · Va           | lue (cm <sup>-1</sup> ) | Paramete    | r          | Value (cm | ·1)       |
|----------|----------|---------------|------------|----------------|----------------|-------------------------|-------------|------------|-----------|-----------|
| C1       | 54.7356  | 45            | 0          | 8              | σ              | 12097.5                 | Racah B     |            | 409       | .87       |
| C2       | 125.2644 | 135           | 0          | 8              | εσ             | 12097.5                 | Racah C     |            | 1684      | .60       |
| C1'      | 54.7356  | 225           | 0          | 8              | εσ             | 12097.5                 | Spin-orbi   | t coupling | 180       | .00       |
| C2'      | 125.2644 | -45           | 0          | 8              | εσ             | 12097.5                 |             |            |           |           |
|          |          |               | •          | metry o        |                | Orbital                 | populations |            |           |           |
|          | _        |               | _          | nfunctio       |                | theta                   | ksi         | eta        | zeta      | epsilon   |
| Function | Energy   | 2 <i>S</i> +1 | <i>O</i> * | $D_4$ *        | $D_2^*$        | $z^2$                   | yz          | XZ         | xy        | $x^2-y^2$ |
| 1        | 0.00     | 2.99987       | $T_2$      |                |                | 0.999827                | 0.000105    | 0.000126   | 0.000085  | 0.999858  |
| 2        | 0.00     | 2.99987       | $T_2$      |                |                | 0.999858                | 0.000126    | 0.000064   | 0.000126  | 0.999827  |
| 3        | 0.00     | 2.99987       | $T_2$      |                |                | 0.999842                | 0.000085    | 0.000126   | 0.000105  | 0.999843  |
|          |          |               |            |                |                |                         |             |            |           |           |
| 4        | 6583.10  | 1.00163       | E          | $\mathbf{B}_1$ | $A_1$          | 0.997714                | 0.002115    | 0.002115   | 0.000364  | 0.997691  |
| 5        | 6583.10  | 1.00163       | E          | $\mathbf{A}_1$ | $A_1$          | 0.997691                | 0.000948    | 0.000948   | 0.002699  | 0.997714  |
| 6        | 12242.49 | 1.00207       | $A_1$      | $A_1$          | $A_1$          | 0.971072                | 0.019285    | 0.019285   | 0.019285  | 0.971072  |
|          |          |               |            |                |                |                         |             |            |           |           |
| 7        | 16045.47 | 3.00000       | $A_2$      | $\mathbf{B}_1$ | $A_1$          | 0.5                     | 0.333333    | 0.333333   | 0.333333  | 0.5       |
| 8        | 16087.99 | 2.99954       | $T_2$      |                |                | 0.270939                | 0.451501    | 0.499819   | 0.048681  | 0.729060  |
| 9        | 16087.99 | 2.99954       | $T_2$      |                |                | 0.633911                | 0.496995    | 0.003260   | 0.499745  | 0.366088  |
| 10       | 16087.99 | 2.99954       |            |                |                | 0.595148                | 0.051505    | 0.496922   | 0.451574  | 0.404851  |
| 11       | 16174.99 | 2.99886       |            | $\mathbf{A}_1$ | $A_1$          | 0.268901                | 0.499403    | 0.499403   | 0.001074  | 0.731219  |
| 12       | 16174.99 | 2.99886       |            | $\mathbf{B}_1$ | $A_1$          | 0.731219                | 0.167184    | 0.167183   | 0.665513  | 0.268901  |
| 13       | 16175.50 | 2.99966       |            |                |                | 0.303516                | 0.450189    | 0.499833   | 0.050118  | 0.696345  |
| 14       | 16175.50 | 2.99966       |            |                |                | 0.615281                | 0.499780    | 0.000626   | 0.499734  | 0.384580  |
| 15       | 16175.50 | 2.99966       |            |                |                | 0.580994                | 0.050171    | 0.499681   | 0.450287  | 0.418866  |
| 16       | 20573.90 | 2.99777       |            | $A_1$          | $A_1$          | 0.485728                | 0.342848    | 0.342848   | 0.342848  | 0.485728  |
| 17       | 20577.86 | 2.99895       | -          |                |                | 0.692517                | 0.481447    | 0.499731   | 0.050881  | 0.275424  |
| 18       | 20577.86 | 2.99895       |            |                |                | 0.374351                | 0.454208    | 0.079747   | 0.498104  | 0.593590  |
| 19       | 20577.86 | 2.99895       |            |                |                | 0.385043                | 0.096404    | 0.452581   | 0.483074  | 0.582897  |
| 20       | 20591.02 | 2.99730       |            |                |                | 0.725236                | 0.480654    | 0.499351   | 0.483074  | 0.237062  |
| 20       | 20591.02 | 2.99730       |            |                |                | 0.723230                | 0.470577    | 0.069452   | 0.037697  | 0.237002  |
|          |          |               |            |                |                | 0.365602                |             |            |           |           |
| 22       | 20591.02 | 2.99730       |            | <br>D          | <br>A          |                         | 0.086472    | 0.468899   | 0.482332  | 0.596696  |
| 23       | 20599.16 | 2.99911       |            | $\mathbf{B}_1$ | $\mathbf{A}_1$ | 0.741697                | 0.499398    | 0.499398   | 0.038883  | 0.220624  |
| 24       | 20599.16 | 2.99911       | E          | $A_1$          | $\mathbf{A}_1$ | 0.220624                | 0.192388    | 0.192388   | 0.652903  | 0.741697  |

| 25 | 22662.27 | 1.00404 | $T_2$ |                |                | 0.250326 | 0.700458 | 0.296323 | 0.011140 | 0.741753 |
|----|----------|---------|-------|----------------|----------------|----------|----------|----------|----------|----------|
| 26 | 22662.27 | 1.00404 | $T_2$ |                |                | 0.248880 | 0.295239 | 0.703452 | 0.009229 | 0.743199 |
| 27 | 22662.27 | 1.00404 | $T_2$ |                |                | 0.988912 | 0.012223 | 0.008146 | 0.987552 | 0.003167 |
| 28 | 24425.15 | 1.00167 | $T_1$ |                |                | 0.744874 | 0.762213 | 0.230800 | 0.007049 | 0.255065 |
| 29 | 24425.15 | 1.00167 | $T_1$ |                |                | 0.748548 | 0.22907  | 0.768837 | 0.002154 | 0.251391 |
| 30 | 24425.15 | 1.00167 | $T_1$ |                |                | 0.006486 | 0.008778 | 0.000424 | 0.990859 | 0.993452 |
|    |          |         |       |                |                |          |          |          |          |          |
| 31 | 33914.44 | 2.99960 | E     | $A_1$          | $A_1$          | 0.010886 | 0.807769 | 0.807769 | 0.346174 | 0.027403 |
| 32 | 33914.44 | 2.99960 | E     | $\mathbf{B}_1$ | $A_1$          | 0.027403 | 0.500039 | 0.500039 | 0.961633 | 0.010886 |
| 33 | 33915.89 | 2.99796 | $T_2$ |                |                | 0.015162 | 0.844677 | 0.614397 | 0.502294 | 0.023469 |
| 34 | 33915.89 | 2.99796 | $T_2$ |                |                | 0.015116 | 0.613721 | 0.847035 | 0.500613 | 0.023515 |
| 35 | 33915.89 | 2.99796 | $T_2$ |                |                | 0.027669 | 0.502971 | 0.499936 | 0.958462 | 0.010962 |
| 36 | 34019.07 | 2.99971 | $T_1$ |                |                | 0.011635 | 0.859936 | 0.605140 | 0.502665 | 0.020625 |
| 37 | 34019.07 | 2.99971 | $T_1$ |                |                | 0.011583 | 0.604187 | 0.862666 | 0.500888 | 0.020677 |
| 38 | 34019.07 | 2.99971 | $T_1$ |                |                | 0.025171 | 0.503618 | 0.499935 | 0.964188 | 0.007088 |
| 39 | 34065.46 | 2.99921 | $A_1$ | $A_1$          | $\mathbf{A}_1$ | 0.014616 | 0.656923 | 0.656923 | 0.656923 | 0.014616 |
|    |          |         |       |                |                |          |          |          |          |          |
| 40 | 39389.91 | 1.00079 | E     | $\mathbf{B}_1$ | $A_1$          | 0.001967 | 0.997930 | 0.997930 | 0.000274 | 0.001898 |
| 41 | 39389.91 | 1.00079 | E     | $A_1$          | $A_1$          | 0.001898 | 0.332826 | 0.332826 | 1.330483 | 0.001967 |
| 42 | 39449.90 | 1.00128 | $T_2$ |                |                | 0.007171 | 0.969520 | 0.992530 | 0.030642 | 0.000138 |
| 43 | 39449.90 | 1.00128 | $T_2$ |                |                | 0.001848 | 0.860023 | 0.142926 | 0.989742 | 0.005461 |
| 44 | 39449.90 | 1.00128 | $T_2$ |                |                | 0.001945 | 0.163148 | 0.857236 | 0.972307 | 0.005364 |
| 45 | 49125.06 | 1.00095 | $A_1$ | $A_1$          | $\mathbf{A}_1$ | 0.028584 | 0.647611 | 0.647611 | 0.647611 | 0.028584 |

# b) $Cr(OSiMe^tBu_2)_4 = Cr(DTBMS)_4$ (favored model; Figure 5)

These matrices were generated from the following terms:  ${}^3P$   ${}^3F$   ${}^1S$   ${}^1D$   ${}^1G$  of  $d^2$  in  $SLM_SM_L$ -basis. One electron parametrization was taken from: AOM. The AOM-matrices were not barycentered.

| Ligator | Theta  | Phi | Psi Par | ameter Va | lue (cm <sup>-1</sup> ) | Parameter | Value (cm <sup>-1</sup> ) |
|---------|--------|-----|---------|-----------|-------------------------|-----------|---------------------------|
| O1      | 56.11  | 45  | 0       | εσ        | 6600.0                  | επ-с      | 230.0                     |
| O2      | 123.89 | 135 | 0       | εσ        | 6600.0                  | επ-с      | 230.0                     |
| O1'     | 56.11  | 225 | 0       | εσ        | 6600.0                  | επ-с      | 230.0                     |
| O2'     | 123.89 | -45 | 0       | εσ        | 6600.0                  | επ-с      | 230.0                     |

Parameter Value (cm $^{-1}$ )
Racah B 427.50
Racah C 2206.00

| Spin-orbit coupling 198 |          | 198.0   | 00                 |       |                |                |          |             |          |          |           |
|-------------------------|----------|---------|--------------------|-------|----------------|----------------|----------|-------------|----------|----------|-----------|
|                         |          |         |                    |       | metry of       |                | Orbital  | populations |          |          |           |
|                         | _        |         |                    | _     | nfunction      |                | theta    | ksi         | eta      | zeta     | epsilon   |
| Function                | Energy   | 2S+1    | $M_S$              | $O^*$ | $D_4$ *        | $D_2$ *        | $z^2$    | уz          | XZ       | xy       | $x^2-y^2$ |
| 1                       | 0        | 2.99973 | 0                  | $T_2$ | $B_2$          | $\mathbf{B}_1$ | 0.999054 | 0.000613    | 0.000613 | 0.000134 | 0.999586  |
| 2,3 (2)                 | 0.565    | 2.99968 | ±0.99923           |       | E              |                | 0.999410 | 0.000386    | 0.000386 | 0.000434 | 0.999384  |
|                         | (D =     | +0.565  | cm <sup>-1</sup> ) |       |                |                |          |             |          |          |           |
| 4                       | 7542.37  | 1.30224 | 0                  |       | $\mathbf{A}_1$ | $A_1$          | 0.707961 | 0.079020    | 0.079020 | 0.006497 | 1.127502  |
| 5                       | 7619.83  | 1.29059 | 0                  |       | $\mathbf{B}_1$ | $A_1$          | 0.868843 | 0.075458    | 0.075458 | 0.008253 | 0.971988  |
|                         |          |         |                    |       |                |                |          |             |          |          |           |
| 6                       | 8017.50  | 2.99940 | 0                  | $T_2$ | $\mathbf{B}_2$ | $\mathbf{B}_1$ | 0.184683 | 0.499457    | 0.499457 | 0.001396 | 0.815007  |
| 7                       | 8069.88  | 2.73948 | 0                  |       | $\mathbf{B}_1$ | $A_1$          | 0.310207 | 0.432614    | 0.432614 | 0.007085 | 0.817480  |
| 8,9 (2)                 | 8076.24  | 2.99949 | $\pm 0.00017$      |       | E              |                | 0.205172 | 0.499340    | 0.499340 | 0.001488 | 0.794660  |
| 10                      | 8137.22  | 2.99972 | 0                  | $T_1$ | $A_2$          | $\mathbf{B}_1$ | 0.224158 | 0.499931    | 0.499931 | 0.000215 | 0.775764  |
| 11                      | 8228.32  | 2.70233 | 0                  |       | $A_1$          | $\mathbf{A}_1$ | 0.297607 | 0.426670    | 0.426670 | 0.000999 | 0.848055  |
| 12,13 (2)               | 9603.96  | 2.99939 | $\pm 0.99637$      |       | E              |                | 0.997175 | 0.001817    | 0.001817 | 0.997019 | 0.002172  |
| 14                      | 9618.86  | 2.97433 | 0                  |       | $\mathbf{B}_1$ | $\mathbf{A}_1$ | 0.994513 | 0.003210    | 0.003210 | 0.982780 | 0.016288  |
| 15                      | 12468.06 | 2.87606 | 0                  |       | $\mathbf{A}_1$ | $A_1$          | 0.671814 | 0.470734    | 0.470734 | 0.133900 | 0.252818  |
| 16                      | 12488.17 | 2.99975 | 0                  | $T_2$ | $\mathbf{B}_2$ | $\mathbf{B}_1$ | 0.702388 | 0.500010    | 0.500010 | 0.151306 | 0.146287  |
| 17,18 (2)               | 12502.46 | 2.99959 | $\pm 0.03550$      |       | E              |                | 0.656174 | 0.490857    | 0.490857 | 0.166517 | 0.195594  |
| 19                      | 12507.92 | 2.99460 | 0                  |       | $\mathbf{B}_1$ | $A_1$          | 0.704313 | 0.496619    | 0.496619 | 0.154605 | 0.147843  |
| 20                      | 12535.65 | 2.99929 | 0                  | $T_1$ | $A_2$          | $\mathbf{B}_1$ | 0.672099 | 0.499823    | 0.499823 | 0.130691 | 0.197564  |
| 21                      | 12773.74 | 2.84999 | 0                  |       | $A_1$          | $A_1$          | 0.106497 | 0.199198    | 0.199198 | 0.731361 | 0.763747  |
| 22,23 (2)               | 12810.15 | 2.99912 | ±0.96074           |       | E              |                | 0.032774 | 0.217881    | 0.217881 | 0.765790 | 0.765674  |
|                         |          |         |                    |       |                |                |          |             |          |          |           |
| 24                      | 13361.02 | 1.26845 | 0                  |       | $A_1$          | $\mathbf{A}_1$ | 1.007093 | 0.108054    | 0.108054 | 0.111701 | 0.665098  |
| 25,26 (2)               | 15661.32 | 1.01261 | ±0.00307           |       | E              |                | 0.152978 | 0.500988    | 0.500988 | 0.023668 | 0.821378  |
| 27                      | 17124.97 | 1.02465 | 0                  | $T_2$ | $\mathrm{B}_2$ | $\mathbf{B}_1$ | 0.951716 | 0.042788    | 0.042788 | 0.961744 | 0.000965  |

Supporting Information for "HFEPR Investigation of CrL4..."

| 28, 29 (2) | 17975.57 | 1.01610 | $\pm 0.00678$ |       | E              |                | 0.832294 | 0.500674 | 0.500674 | 0.003700 | 0.162658 |
|------------|----------|---------|---------------|-------|----------------|----------------|----------|----------|----------|----------|----------|
| 30         | 18526.72 | 1.01359 | 0             | $T_1$ | $A_2$          | $\mathbf{B}_1$ | 0.001253 | 0.003398 | 0.003398 | 0.997746 | 0.994204 |
|            |          |         |               |       |                |                |          |          |          |          |          |
| 31         | 19100.40 | 2.99955 | 0             |       | $\mathbf{A}_1$ | $A_1$          | 0.000786 | 0.790488 | 0.790488 | 0.209296 | 0.208942 |
| 32, 33 (2) | 19116.43 | 2.97980 | $\pm 0.98923$ |       | E              |                | 0.009915 | 0.788382 | 0.788382 | 0.206628 | 0.206694 |
| 34         | 19858.97 | 2.99981 | 0             |       | $\mathbf{B}_1$ | $A_1$          | 0.114367 | 0.499842 | 0.499842 | 0.847071 | 0.038878 |
| 35         | 19877.13 | 2.99940 | 0             |       | $A_1$          | $A_1$          | 0.103158 | 0.499674 | 0.499674 | 0.869991 | 0.027503 |
| 36,37 (2)  | 19877.63 | 2.99288 | $\pm 0.00029$ |       | E              |                | 0.108149 | 0.499705 | 0.499705 | 0.855988 | 0.036453 |
| 38         | 19885.26 | 2.97481 | 0             | $T_2$ | $\mathbf{B}_2$ | $\mathbf{B}_1$ | 0.125600 | 0.493714 | 0.493714 | 0.848836 | 0.038136 |
| 39         | 19886.41 | 2.98739 | 0             | $T_1$ | $A_2$          | $\mathbf{B}_1$ | 0.102490 | 0.496847 | 0.496847 | 0.871348 | 0.032468 |
|            |          |         |               |       |                |                |          |          |          |          |          |
| 40         | 24886.24 | 1.00118 | 0             | E     | $\mathbf{B}_1$ | $A_1$          | 0.007757 | 0.992257 | 0.992257 | 0.000206 | 0.007522 |
| 41         | 25045.79 | 1.00166 | 0             | $T_2$ | $\mathrm{B}_2$ | $B_1$          | 0.036560 | 0.963419 | 0.963419 | 0.036584 | 0.000019 |
| 42, 43 (2) | 26023.38 | 1.00136 | ±0.00014      |       | E              |                | 0.005959 | 0.499970 | 0.499970 | 0.978768 | 0.015333 |
| 44         | 26205.44 | 1.00097 | 0             |       | $A_1$          | $A_1$          | 0.001336 | 0.395371 | 0.395371 | 1.192814 | 0.015107 |
| 45         | 38475.12 | 1.00102 | 0             |       | $\mathbf{A}_1$ | $A_1$          | 0.103748 | 0.530791 | 0.530791 | 0.743441 | 0.091228 |

#### III. QCT Calculations of CrL4 complexes: QTAIM analysis.

Quantum Theory of Atoms-in-Molecules (QTAIM)<sup>40</sup> topological analysis of electron density is a powerful tool for chemical bonding and structure analysis in molecules and crystals. The first derivative (gradient) of the electron density vanishes at its "critical points" (CP) such as maxima, minima, and saddle points.

Atom positions are determined by electron density maxima. QTAIM atomic charges and volumes are obtained using the electron density integrated over atomic basins (up to 0.001 e/Bohr<sup>3</sup> level).

In an equilibrium geometry, a pair of bonded atoms are linked by a line, i.e., a bond path, along which the electron density is maximally concentrated ("ridges" of electron density). The presence of a bond path between two atoms is the necessary condition for the presence of a chemical bond. The set of bond paths for a given molecule, the molecular graph, faithfully recovers the network of chemical bonds that are assigned on the basis of chemical considerations. The saddle point of electron density at the bond path is a bond critical point (BCP; also called a line critical point, LCP). QTAIM bond characteristics are evaluated in terms of electron density,  $\rho$ , its Laplacian,  $\nabla^2 \rho$ , given by Eqn S1:

$$\nabla^2 \rho = \lambda_1 + \lambda_2 + \lambda_3 \tag{S1}$$

and the bond ellipticity,  $\varepsilon$ , given by Eqn S2:

$$\varepsilon = \frac{\lambda_1}{\lambda_2} - 1 \tag{S2}$$

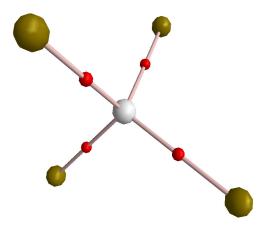
each calculated at BCPs, which are defined by the  $\lambda_i$  eigenvalues of the Hessian of the BCP electron density,  $\lambda_1 < \lambda_2 < 0 < \lambda_3$ . The BCP electron density,  $\rho_{BCP}$ , is proportional to the bond strength; the value and sign of its BCP Laplacian,  $\nabla^2 \rho_{BCP}$ , describes the relative electron density

contribution of the bonded atoms to the bond (covalent vs. dative bonding) and its magnitude is a measure of an electron density transfer between bonded atoms; its BCP bond ellipticity,  $\varepsilon_{BCP}$ , describes its deviation from cylindrical symmetry (such as in ideal single or triple bonds) due to its double-bond character, mechanical strain, and other perturbations. The electron delocalization index, DI(A,B), is the average number of electrons delocalized (shared) between atoms A and B. For atoms A and B that are connected by a bond path it corresponds to a bond index (order).

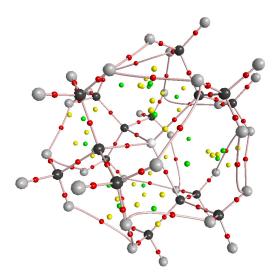
Ring critical points (RCP) are located inside cyclic structures with two positive and one negative eigenvalues of the Hessian of the RCP electron density. Local minima of electron density are known as cage critical points (CCP) with three positive eigenvalues of the Hessian of the CCP electron density. QTAIM analysis was performed in the AIMAII package<sup>41</sup> using the wave function from the Gaussian09 wfn file.

Positive Cr charges decrease in the sequence fluoride > siloxides > alkoxides > amides > alkyls, see Table S6. Alkyls have the greatest atomic volumes, followed by the amides see Table S6. These trends indicate higher stability of siloxides in comparison with alkoxides. The highest α-spin populations at Cr atoms may be ascribed to alkyls and Cr(NMeCH'Bu<sub>2</sub>)<sub>4</sub> (over two electrons) whereas the lowest ones to siloxides and CrF<sub>4</sub>, see Table S6. This implies relevant negative spin density at alkyl and NMeCH'Bu<sub>2</sub> ligands and relevant positive spin density at fluorido, alkoxido, and siloxido ligands.

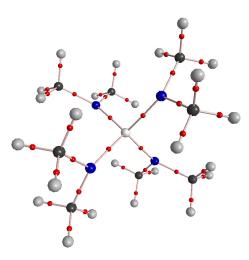
**Table S6.** QTAIM electron densities,  $\rho_{BCP}$ , their Laplacians,  $\nabla^2 \rho_{BCP}$ , (both in [e/bohr³]) and bond ellipticities,  $\epsilon_{BCP}$ , at bond critical points, BCP, and delocalization indices, DI, of Cr-X bonds in the UB3LYP/6-311G\* optimized tetracoordinated neutral Cr<sup>IV</sup> complexes in triplet spin states.


| Compound                                             | X | $\rho_{BCP}(Cr-X)$ | $\nabla^2 \rho_{BCP}(Cr-X)$ | $\varepsilon_{BCP}(Cr-X)$ | DI(Cr,X) |
|------------------------------------------------------|---|--------------------|-----------------------------|---------------------------|----------|
| CrF <sub>4</sub>                                     | F | 0.1673             | 0.8735                      | 0.001                     | 0.948    |
| ·                                                    |   | 0.1673             | 0.8735                      | 0.001                     | 0.948    |
|                                                      |   | 0.1673             | 0.8733                      | 0.001                     | 0.948    |
|                                                      |   | 0.1673             | 0.8735                      | 0.001                     | 0.948    |
| CrF <sub>4</sub>                                     | F | 0.1738             | 0.9155                      | 0.000                     | 0.946    |
| (Evaluated in 6-                                     |   | 0.1737             | 0.9150                      | 0.000                     | 0.946    |
| 311+G* basis set)                                    |   | 0.1735             | 0.9138                      | 0.001                     | 0.945    |
|                                                      |   | 0.1740             | 0.9164                      | 0.001                     | 0.946    |
|                                                      |   |                    | complexes                   |                           |          |
| Cr(CH <sub>2</sub> SiMe <sub>3</sub> ) <sub>4</sub>  | С | 0.1192             | 0.0850                      | 0.025                     | 0.885    |
|                                                      |   | 0.1187             | 0.0858                      | 0.023                     | 0.883    |
|                                                      |   | 0.1186             | 0.0886                      | 0.025                     | 0.883    |
|                                                      |   | 0.1188             | 0.0884                      | 0.026                     | 0.884    |
| Cr <sup>t</sup> Bu <sub>4</sub>                      | С | 0.1013             | 0.0602                      | 0.001                     | 0.765    |
|                                                      |   | 0.1014             | 0.0602                      | 0.001                     | 0.766    |
|                                                      |   | 0.1013             | 0.0602                      | 0.002                     | 0.766    |
|                                                      |   | 0.1012             | 0.0602                      | 0.000                     | 0.766    |
|                                                      |   |                    | o complexes                 | 31333                     | 31, 55   |
| Cr(NMeCH <sup>t</sup> Bu <sub>2</sub> ) <sub>4</sub> | N | 0.1064             | 0.3535                      | 0.132                     | 0.796    |
| 2).                                                  |   | 0.1089             | 0.3677                      | 0.140                     | 0.819    |
|                                                      |   | 0.1118             | 0.3649                      | 0.144                     | 0.835    |
|                                                      |   | 0.1127             | 0.3669                      | 0.143                     | 0.837    |
| Cr(NMe <sub>2</sub> ) <sub>4</sub>                   | N | 0.1426             | 0.4134                      | 0.161                     | 0.921    |
|                                                      |   | 0.1424             | 0.4137                      | 0.163                     | 0.920    |
|                                                      |   | 0.1425             | 0.4120                      | 0.162                     | 0.920    |
|                                                      |   | 0.1425             | 0.4122                      | 0.162                     | 0.921    |
|                                                      |   | Alkoxid            | do complexes                |                           |          |
| $Cr(OCH^tBu_2)_4$                                    | О | 0.1482             | 0.6661                      | 0.008                     | 0.904    |
|                                                      |   | 0.1482             | 0.6660                      | 0.008                     | 0.904    |
|                                                      |   | 0.1482             | 0.6661                      | 0.008                     | 0.904    |
|                                                      |   | 0.1482             | 0.6660                      | 0.008                     | 0.904    |
| $Cr(O^tBu)_4$                                        | О | 0.1565             | 0.6526                      | 0.069                     | 0.922    |
| , ,                                                  |   | 0.1565             | 0.6528                      | 0.069                     | 0.922    |
|                                                      |   | 0.1564             | 0.6525                      | 0.069                     | 0.922    |
|                                                      |   | 0.1564             | 0.6524                      | 0.069                     | 0.922    |
|                                                      |   |                    |                             |                           |          |
|                                                      |   |                    |                             |                           |          |
|                                                      |   |                    |                             |                           |          |

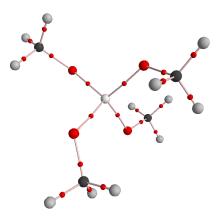
| Cr(OMe) <sub>4</sub>                 | О                  | 0.1661 | 0.6487 | 0.055 | 0.960 |  |  |  |
|--------------------------------------|--------------------|--------|--------|-------|-------|--|--|--|
|                                      |                    | 0.1620 | 0.6481 | 0.040 | 0.938 |  |  |  |
|                                      |                    | 0.1622 | 0.6554 | 0.077 | 0.921 |  |  |  |
|                                      |                    | 0.1576 | 0.6433 | 0.086 | 0.931 |  |  |  |
|                                      | Siloxido complexes |        |        |       |       |  |  |  |
| Cr(DTBMS) <sub>4</sub>               | О                  | 0.1516 | 0.6784 | 0.021 | 0.917 |  |  |  |
|                                      |                    | 0.1515 | 0.6783 | 0.021 | 0.913 |  |  |  |
|                                      |                    | 0.1516 | 0.6779 | 0.021 | 0.916 |  |  |  |
|                                      |                    | 0.1515 | 0.6774 | 0.021 | 0.916 |  |  |  |
| Cr(OSiMe <sub>3</sub> ) <sub>4</sub> | О                  | 0.1586 | 0.6860 | 0.027 | 0.932 |  |  |  |
|                                      |                    | 0.1586 | 0.6859 | 0.027 | 0.932 |  |  |  |
|                                      |                    | 0.1586 | 0.6860 | 0.027 | 0.932 |  |  |  |
|                                      |                    | 0.1586 | 0.6859 | 0.027 | 0.932 |  |  |  |


**Table S7.** QTAIM atomic charges, q, atomic volumes, V, and excess  $\alpha$ -spin populations,  $N_{\alpha}$  of Cr atoms in the UB3LYP/6-311G\* optimized neutral tetracoordinated Cr<sup>IV</sup> complexes in triplet spin state.

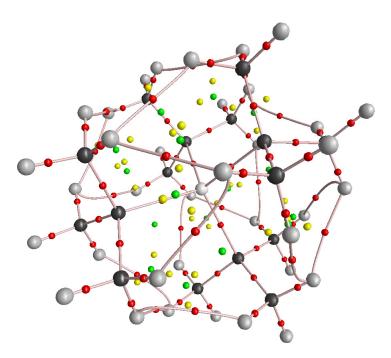
| Compound                                             | q(Cr)           | V(Cr)              | $N_{\alpha}(Cr)$ | CSD or local code |  |  |  |
|------------------------------------------------------|-----------------|--------------------|------------------|-------------------|--|--|--|
|                                                      |                 | [bohr <sup>3</sup> |                  |                   |  |  |  |
| CrF <sub>4</sub>                                     | 2.09            | 59.0               | 1.79             |                   |  |  |  |
| CrF <sub>4</sub> <sup>a</sup>                        | 2.09            | 63.3               | 1.80             |                   |  |  |  |
| Alkyl complexes                                      |                 |                    |                  |                   |  |  |  |
| Cr(CH <sub>2</sub> SiMe <sub>3</sub> ) <sub>4</sub>  | 1.44            | 73.3               | 2.29             | CrCH2SiMe34       |  |  |  |
| Cr <sup>t</sup> Bu <sub>4</sub>                      | 1.33            | 80.8               | 2.66             | CrCMe34           |  |  |  |
| Amido complexes                                      | Amido complexes |                    |                  |                   |  |  |  |
| Cr(NMeCH <sup>t</sup> Bu <sub>2</sub> ) <sub>4</sub> | 1.67            | 68.4               | 2.44             | NMeLIBCRB         |  |  |  |
| Cr(NMe <sub>2</sub> ) <sub>4</sub>                   | 1.71            | 64.9               | 1.93             | CrNMe24           |  |  |  |
| Alkoxido complexes                                   | 3               |                    |                  |                   |  |  |  |
| Cr(OCH <sup>t</sup> Bu <sub>2</sub> ) <sub>4</sub>   | 1.93            | 62.6               | 1.84             | LIBCRB            |  |  |  |
| $Cr(O^tBu)_4$                                        | 1.91            | 60.2               | 1.84             | MetALUHOF         |  |  |  |
| Cr(OMe) <sub>4</sub>                                 | 1.90            | 62.9               | 1.85             | CrOMe4            |  |  |  |
| Siloxido complexes                                   |                 |                    |                  |                   |  |  |  |
| Cr(OSiMe <sup>t</sup> Bu <sub>2</sub> ) <sub>4</sub> | 2.02            | 62.3               | 1.77             | SESROZ            |  |  |  |
| Cr(OSiMe <sub>3</sub> ) <sub>4</sub>                 | 2.00            | 61.1               | 1.78             | Met SESROZ        |  |  |  |


<sup>&</sup>lt;sup>a</sup> Evaluated in 6-311+G\* basis.

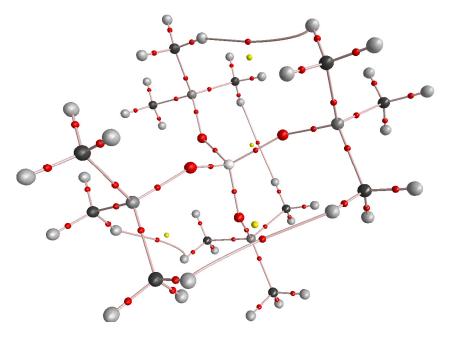



**Figure S2.** QTAIM molecular graph of CrF<sub>4</sub> in triplet spin state (white – Cr, dark yellow – F, red – bond critical point (BCP)).




**Figure S3.** QTAIM molecular graph of Cr'Bu<sub>4</sub> in triplet spin state (white – Cr, black – C, gray - H, red – bond critical point, yellow – ring critical point (RCP), green – cage critical point (CCP)).




**Figure S4.** QTAIM molecular graph of  $Cr(NMe_2)_4$  in triplet spin state (white – Cr, black – C, gray - H, blue – N, red – bond critical point).



**Figure S5.** QTAIM molecular graph of  $Cr(OMe)_4$  in triplet spin state (white – Cr, black – C, gray - H, large red – O, small red – bond critical point).



**Figure S6.** QTAIM molecular graph of Cr(O'Bu)<sub>4</sub> in triplet spin state (white – Cr, black – C, gray - H, large red – O, small red – bond critical point, yellow – ring critical point (RCP), green – cage critical point (CCP)).



**Figure S7.** QTAIM molecular graph of Cr(OSiMe<sub>3</sub>)<sub>4</sub> in triplet spin state (white – Cr, black – C, gray - H, dark gray – Si, big red – O, small red – bond critical point (BCP), yellow – ring critical point (RCP)).

## IV. QCT Calculations of CrL4 complexes: Energetics and electronic structure

**Table S8**. Spin squares ( $\langle S^2 \rangle$ ), DFT energies ( $E_{DFT}$ ) and Gibbs free energies (energies in hartree) at 298 K ( $G_{298}$ ) of B3LYP/6-311G\* optimized structures of neutral CrL<sub>4</sub> complexes in singlet and triplet spin states (preferred state in bold). The structural provenance (CSD code) is given where applicable.

| Compound                                                                                  | $M_S$ | Formalism                                                                              | $\langle S^2 \rangle$                               | $E_{ m DFT}$                                                                          | $G_{298}$                                                                            |
|-------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| CrF <sub>4</sub> <sup>b</sup>                                                             | 1     |                                                                                        | 1.001                                               | -1444.06708                                                                           | -1444.08821                                                                          |
|                                                                                           | 1     | unrestricted                                                                           | 1.001                                               |                                                                                       |                                                                                      |
| (6-311+G* basis set)                                                                      | 2     | restricted                                                                             | -                                                   | -1444.06638                                                                           | -1444.08804                                                                          |
|                                                                                           | 3     | unrestricted                                                                           | 2.012                                               | -1444.12961                                                                           | -1444.15198                                                                          |
| Alkyls                                                                                    |       |                                                                                        | 1                                                   |                                                                                       |                                                                                      |
| Cr(CH <sub>2</sub> SiMe <sub>3</sub> ) <sub>4</sub>                                       | 1     | unrestricted                                                                           | 1.002                                               | -2838.98488                                                                           | -2838.50891                                                                          |
| (from SESROZ)                                                                             |       | restricted                                                                             | -                                                   | -2838.94263                                                                           | -2838.46745                                                                          |
|                                                                                           | 3     | unrestricted                                                                           | 2.109                                               | -2839.01052                                                                           | -2838.53780                                                                          |
| Cr <sup>t</sup> Bu <sub>4</sub>                                                           | 1     | unrestricted                                                                           | 1.004                                               | -1675.89103                                                                           | -1675.45349                                                                          |
|                                                                                           |       | restricted                                                                             | -                                                   | -1675.84652                                                                           | -1675.41164                                                                          |
|                                                                                           | 3     | unrestricted                                                                           | 2.292                                               | -1675.91943                                                                           | -1675.48448                                                                          |
| Amidos                                                                                    |       |                                                                                        |                                                     |                                                                                       |                                                                                      |
| $Cr(NMeCH^{t}Bu_{2})_{4}$                                                                 | 1     | unrestricted                                                                           | 0.711                                               | -2840.96526                                                                           | -2839.80630                                                                          |
| (from LIBCRB)                                                                             |       | restricted                                                                             | -                                                   | -2840.95924                                                                           | -2839.80031                                                                          |
|                                                                                           | 3     | unrestricted                                                                           | 2.254                                               | -2840.98112                                                                           | -2839.82681                                                                          |
| $Cr(N^tBu_2)_4$                                                                           | 1     | unrestricted                                                                           |                                                     | unstable                                                                              |                                                                                      |
|                                                                                           |       | restricted                                                                             | -                                                   | -2526.22706                                                                           | -2525.27862                                                                          |
|                                                                                           | 3     | unrestricted                                                                           |                                                     | unstable                                                                              |                                                                                      |
| Cr(NMe <sub>2</sub> ) <sub>4</sub>                                                        | 1     | unrestricted                                                                           | 0.439                                               | -1582.89494                                                                           | -1582.61308                                                                          |
|                                                                                           |       | restricted                                                                             | -                                                   | -1582.89280                                                                           | -1582.61007                                                                          |
|                                                                                           | 3     | unrestricted                                                                           | 2.036                                               | -1582.90292                                                                           | -1582.62516                                                                          |
| Alkoxides                                                                                 |       |                                                                                        |                                                     |                                                                                       | 1                                                                                    |
| $Cr(OCH^tBu_2)_4$                                                                         | 1     | unrestricted                                                                           | 1.002                                               | -2763.42081                                                                           | -2762.42982                                                                          |
| (from LIBCRB)                                                                             |       | restricted                                                                             | -                                                   | -2763.39720                                                                           | -2762.40375                                                                          |
| ,                                                                                         | 3     | unrestricted                                                                           | 2.023                                               | -2763.44028                                                                           | -2762.45322                                                                          |
| $Cr(O^tBu)_4$                                                                             | 1     | unrestricted                                                                           | 0.940                                               | -1977.09553                                                                           | -1976.65369                                                                          |
| (from ALUHOF)                                                                             |       | restricted                                                                             | -                                                   | -1977.07454                                                                           | -1976.63166                                                                          |
| ,                                                                                         | 3     | unrestricted                                                                           | 2.021                                               | -1977.11353                                                                           | -1976.66890                                                                          |
| Cr(OMe) <sub>4</sub>                                                                      | 1     | unrestricted                                                                           | 0.904                                               | -1505.17886                                                                           | -1505.05608                                                                          |
| ()1                                                                                       |       | restricted                                                                             | -                                                   | -1505.16142                                                                           | -1505.03616                                                                          |
|                                                                                           | 3     |                                                                                        |                                                     |                                                                                       |                                                                                      |
| Siloxides                                                                                 |       |                                                                                        |                                                     | 1200000                                                                               | 10000,01                                                                             |
|                                                                                           | 1     | unrestricted                                                                           | 1.001                                               | -3926.65542                                                                           | -3925.60410                                                                          |
| ` '                                                                                       | _     |                                                                                        |                                                     |                                                                                       |                                                                                      |
| ` ,                                                                                       | 3     |                                                                                        |                                                     |                                                                                       |                                                                                      |
|                                                                                           |       |                                                                                        |                                                     |                                                                                       |                                                                                      |
| ,                                                                                         | 1     | -                                                                                      | -                                                   |                                                                                       |                                                                                      |
| (HOIII DEDICOL)                                                                           | 3     | -                                                                                      | 2.014                                               |                                                                                       |                                                                                      |
| Siloxides $Cr(OSiMe^tBu_2)_4$ $= Cr(DTBMS)_4$ (from SESROZ) $Cr(OSiMe_3)_4$ (from SESROZ) | 3 1 3 | unrestricted restricted unrestricted unrestricted unrestricted restricted unrestricted | 2.022<br>1.001<br>-<br>2.003<br>0.997<br>-<br>2.014 | -3926.65542<br>-3926.61813<br>-3926.67493<br>-2983.04109<br>-2983.0669<br>-2983.06077 | -3925.60410<br>-3925.56840<br>-3925.62382<br>-2982.6568<br>-2982.61882<br>-2982.6812 |

**Table S9.** BLYP/6-311G\* d-orbital and localized orbital populations of Cr-L bonds for the central Cr atom.

|                    | <sup>3</sup> [Cr <sup>t</sup> Bu <sub>4</sub> ]             | $^{3}$ [Cr(NMe <sub>2</sub> ) <sub>4</sub> ]             | $^{1}$ [Cr(NMe <sub>2</sub> ) <sub>4</sub> ]             | $^{3}[Cr(OMe)_{4}]$                                                  | <sup>3</sup> [CrF <sub>4</sub> ]                                     |
|--------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| $d_{z2}(\alpha)$   | 0.948                                                       | 0.837                                                    | 0.348                                                    | 0.906                                                                | 1.012                                                                |
| $d_{xz}(\alpha)$   | 0.484                                                       | 0.359                                                    | 0.322                                                    | 0.435                                                                | 0.310                                                                |
| $d_{yz}(\alpha)$   | 0.484                                                       | 0.564                                                    | 0.323                                                    | 0.374                                                                | 0.310                                                                |
| $d_{x2y2}(\alpha)$ | 0.948                                                       | 0.908                                                    | 0.915                                                    | 0.956                                                                | 1.012                                                                |
| $d_{xy}(\alpha)$   | 0.484                                                       | 0.366                                                    | 0.258                                                    | 0.345                                                                | 0.310                                                                |
| $d_{z2}(\beta)$    | 0.017                                                       | 0.196                                                    | 0.347                                                    | 0.197                                                                | 0.182                                                                |
| $d_{xz}(\beta)$    | 0.305                                                       | 0.292                                                    | 0.322                                                    | 0.254                                                                | 0.265                                                                |
| $d_{yz}(\beta)$    | 0.305                                                       | 0.231                                                    | 0.323                                                    | 0.275                                                                | 0.265                                                                |
| $d_{x2y2}(\beta)$  | 0.017                                                       | 0.172                                                    | 0.915                                                    | 0.176                                                                | 0.182                                                                |
| $d_{xy}(\beta)$    | 0.305                                                       | 0.290                                                    | 0.258                                                    | 0.282                                                                | 0.265                                                                |
| LOCσ(Cr-L)         | 0.628                                                       | 0.359                                                    | 0.435                                                    | 0.421                                                                | 0.409                                                                |
| LOCπ(Cr-L)         |                                                             | 0.240                                                    | 0.202                                                    | 0.146                                                                | 0.075                                                                |
|                    | $^{3}$ [Cr(O $^{t}$ Bu) <sub>4</sub> ]                      | <sup>3</sup> [Cr(OSiMe <sub>3</sub> ) <sub>4</sub> ]     |                                                          | <sup>3</sup> [Cr(NMeCH <sup>t</sup> Bu <sub>2</sub> ) <sub>4</sub> ] | <sup>3</sup> [Cr(NMeCH <sup>t</sup> Bu <sub>2</sub> ) <sub>4</sub> ] |
| $d_{z2}(\alpha)$   | 0.994                                                       | 0.980                                                    |                                                          | 0.949                                                                | 0.832                                                                |
| $d_{xz}(\alpha)$   | 0.335                                                       | 0.313                                                    |                                                          | 0.377                                                                | 0.288                                                                |
| $d_{yz}(\alpha)$   | 0.335                                                       | 0.340                                                    |                                                          | 0.386                                                                | 0.278                                                                |
| $d_{x2y2}(\alpha)$ | 0.920                                                       | 0.991                                                    |                                                          | 0.945                                                                | 0.385                                                                |
| $d_{xy}(\alpha)$   | 0.410                                                       | 0.313                                                    |                                                          | 0.525                                                                | 0.353                                                                |
| $d_{z2}(\beta)$    | 0.206                                                       | 0.180                                                    |                                                          | 0.049                                                                | 0.775                                                                |
| $d_{xz}(\beta)$    | 0.273                                                       | 0.263                                                    |                                                          | 0.266                                                                | 0.292                                                                |
| $d_{yz}(\beta)$    | 0.273                                                       | 0.263                                                    |                                                          | 0.269                                                                | 0.277                                                                |
| $d_{x2y2}(\beta)$  | 0.162                                                       | 0.188                                                    |                                                          | 0.133                                                                | 0.441                                                                |
| $d_{xy}(\beta)$    | 0.261                                                       | 0.263                                                    |                                                          | 0.262                                                                | 0.332                                                                |
| LOCσ(Cr-L)         | 0.385                                                       | 0.360                                                    |                                                          | 0.320                                                                | 0.325                                                                |
| LOCπ(Cr-L)         | 0.140                                                       | 0.117                                                    |                                                          | 0.225                                                                | 0.250                                                                |
|                    | $^{3}$ [Cr(OCH $^{\prime}$ Bu <sub>2</sub> ) <sub>4</sub> ] | $^{3}$ [Cr(OSiMe $^{t}$ Bu <sub>2</sub> ) <sub>4</sub> ] | $^{3}$ [Cr(OSiMe $^{t}$ Bu <sub>2</sub> ) <sub>4</sub> ] | $^{3}$ [Cr(CH <sub>2</sub> SiMe <sub>3</sub> ) <sub>4</sub> ]        |                                                                      |
|                    |                                                             | ExpGeom                                                  | OptGeom                                                  |                                                                      |                                                                      |
| $d_{z2}(\alpha)$   | 0.990                                                       | 0.980                                                    | 0.980                                                    | 0.953                                                                |                                                                      |
| $d_{xz}(\alpha)$   | 0.348                                                       | 0.328                                                    | 0.328                                                    | 0.436                                                                |                                                                      |
| $d_{yz}(\alpha)$   | 0.348                                                       | 0.310                                                    | 0.310                                                    | 0.438                                                                |                                                                      |
| $d_{x2y2}(\alpha)$ | 0.799                                                       | 0.991                                                    | 0.991                                                    | 0.952                                                                |                                                                      |
| $d_{xy}(\alpha)$   | 0.498                                                       | 0.310                                                    | 0.310                                                    | 0.441                                                                |                                                                      |
| $d_{z2}(\beta)$    | 0.185                                                       | 0.187                                                    | 0.187                                                    | 0.032                                                                |                                                                      |
| $d_{xz}(\beta)$    | 0.283                                                       | 0.253                                                    | 0.253                                                    | 0.313                                                                |                                                                      |
| $d_{yz}(\beta)$    | 0.283                                                       | 0.259                                                    | 0.259                                                    | 0.316                                                                |                                                                      |
| $d_{x2y2}(\beta)$  | 0.219                                                       | 0.191                                                    | 0.191                                                    | 0.050                                                                |                                                                      |
| $d_{xy}(\beta)$    | 0.192                                                       | 0.259                                                    | 0.259                                                    | 0.316                                                                |                                                                      |
| $LOC\sigma(Cr-L)$  | 0.343                                                       | 0.330                                                    | 0.295                                                    | 0.600                                                                |                                                                      |
| LOCπ(Cr-L)         | 0.158                                                       | 0.117                                                    | 0.119                                                    |                                                                      |                                                                      |

**Table S10.** Total energies (in hartree; calculated using 6-311G\* basis set) from BLYP and state averaged CASSCF(2,5) calculations of triplet and singlet states of selected neutral CrL<sub>4</sub> complexes, using the particular B3LYP/6-311G\* optimized structures (the preferred state is given in **bold**).

|                                                      | BLYP             |            | CASSCF(2,5)      |            |
|------------------------------------------------------|------------------|------------|------------------|------------|
|                                                      | triplet          | singlet    | triplet          | singlet    |
| Cr <sup>t</sup> Bu <sub>4</sub>                      | -1675.5237       | -1675.4554 | -1669.8820       | -1669.8160 |
| $Cr(NMe_2)_4$                                        | -1582.3542       | -1582.6681 | -1577.7837       | -1577.7811 |
|                                                      | $(-1582.6575)^a$ |            | $(-1577.8298)^a$ |            |
| Cr(OMe) <sub>4</sub>                                 | -1505.1045       | -1505.0911 | -1501.1342       | -1501.0702 |
|                                                      |                  |            |                  |            |
| Cr(OSiMe <sub>3</sub> ) <sub>4</sub>                 | -2982.6251       | -2982.6022 | -2974.3038       | -2974.2349 |
| $Cr(O^tBu)_4$                                        | -1976.6968       | -1976.6811 | -1969.6874       | -1969.6225 |
| Cr(NMeCH <sup>t</sup> Bu <sub>2</sub> ) <sub>4</sub> | -2839.8686       | -2839.8551 | -2826.8839       | -2826.8254 |

<sup>&</sup>lt;sup>a</sup> C<sub>2</sub> symmetry restricted geometry.

**Table S11.** Energies (in hartree; calculated using 6-311G\* basis set) of lowest triplet and singlet state roots of selected CrL<sub>4</sub> complexes from CASSCF(2,5) and NEVPT2 calculations based on either triplet or singlet reference state, where rootT and rootS denote the lowest triplet and singlet state, respectively (the preferred state is given in **bold**).

|              | Cr <sup>t</sup> Bu <sub>4</sub> |            | Cr(NMe <sub>2</sub> ) <sub>4</sub> |            | Cr(OMe) <sub>4</sub> |            |
|--------------|---------------------------------|------------|------------------------------------|------------|----------------------|------------|
|              | triplet                         | singlet    | triplet                            | singlet    | triplet              | singlet    |
| CASSSF-rootT | -1669.9705                      | -1669.9667 | -1577.9325                         | -1577.9290 | -1501.2243           | -1501.2237 |
|              |                                 |            | $(-1577.9121)^a$                   |            |                      |            |
| CASSSF-rootS | -1669.8991                      | -1669.8991 | -1577.8712                         | -1577.8911 | -1501.1576           | -1501.1643 |
|              |                                 |            | $(-1577.8691)^a$                   |            |                      |            |
| NEVPT2-rootT | -1672.8736                      | -1672.8920 | 1580.2964                          | -1580.2861 | -1503.0429           | -1503.0598 |
|              |                                 |            | $(-1580.2544)^a$                   |            |                      |            |
| NEVPT2-rootS | -1672.8156                      | -1672.8362 | -1580.2426                         | -1580.3001 | -1502.9872           | -1503.0199 |
|              |                                 |            | $(-1580.2391)^a$                   |            |                      |            |

 $<sup>\</sup>overline{{}^{a}C_{2}}$  symmetry restricted geometry.

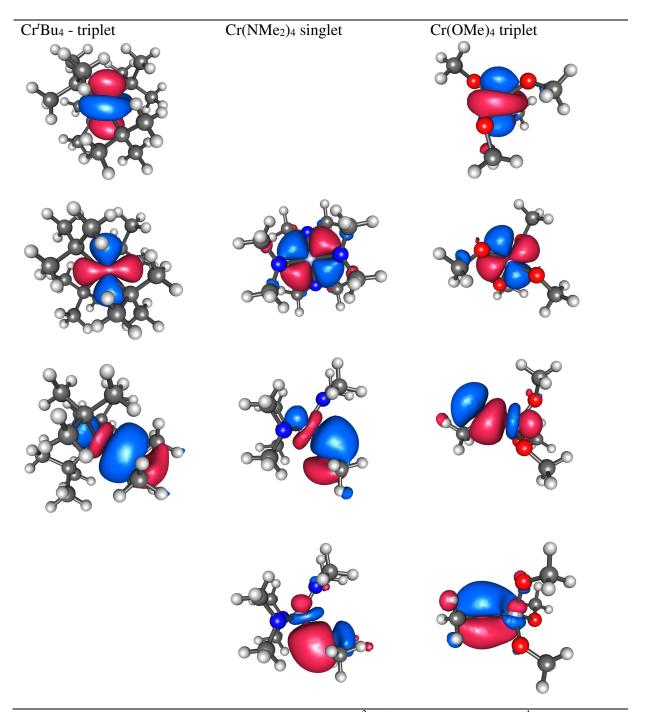
**Table S12.** CASSCF(2,5)/6-311G\* and NEVPT2/6-311G\* electronic d-d triplet transitions in the active space for selected  $CrL_4$  complexes (all values in  $cm^{-1}$ ).

| CASSCI           | 7                             |                                 |                                    |                      |            |
|------------------|-------------------------------|---------------------------------|------------------------------------|----------------------|------------|
| CrF <sub>4</sub> | CrF <sub>4</sub> <sup>a</sup> | Cr <sup>t</sup> Bu <sub>4</sub> | Cr(NMe <sub>2</sub> ) <sub>4</sub> | Cr(OMe) <sub>4</sub> | Cr(DTBMS)4 |
| 11 842           | 11 596                        | 12 653                          | 11115                              | 11 583               | 9 998      |
| 11 860           | 11 613                        | 12 657                          | 15044                              | 13 612               | 10 148     |
| 11 865           | 11 619                        | 12 675                          | 15060                              | 13 892               | 11 590     |
| 18 757           | 18 467                        | 19 770                          | 19726                              | 18 218               | 17 006     |
| 18 798           | 18 506                        | 19 774                          | 21256                              | 21 004               | 17 075     |
| 18 834           | 18 541                        | 19 798                          | 21274                              | 22 185               | 17 154     |
| 31 006           | 30 691                        | 32 281                          | 32233                              | 29 561               | 28 380     |
| 31 029           | 30 714                        | 32 299                          | 32249                              | 32 772               | 28 638     |
| 31 053           | 30 737                        | 32 323                          | 34437                              | 35 005               | 28 890     |
| NEVPT2           | 2                             |                                 |                                    |                      |            |
|                  | CrF <sub>4</sub> <sup>a</sup> |                                 |                                    | Cr(OMe) <sub>4</sub> |            |
|                  | 13 466                        |                                 |                                    | 13 963               |            |
|                  | 13 532                        |                                 |                                    | 16 879               |            |
|                  | 13 543                        |                                 |                                    | 17 327               |            |
|                  | 20 515                        |                                 |                                    | 20 998               |            |
|                  | 20 595                        |                                 |                                    | 24 216               |            |
|                  | 20 605                        |                                 |                                    | 25 453               |            |
|                  | 30 415                        |                                 |                                    | 31 078               |            |
|                  | 30 455                        |                                 |                                    | 35 182               |            |
|                  | 30 496                        |                                 |                                    | 37 053               |            |

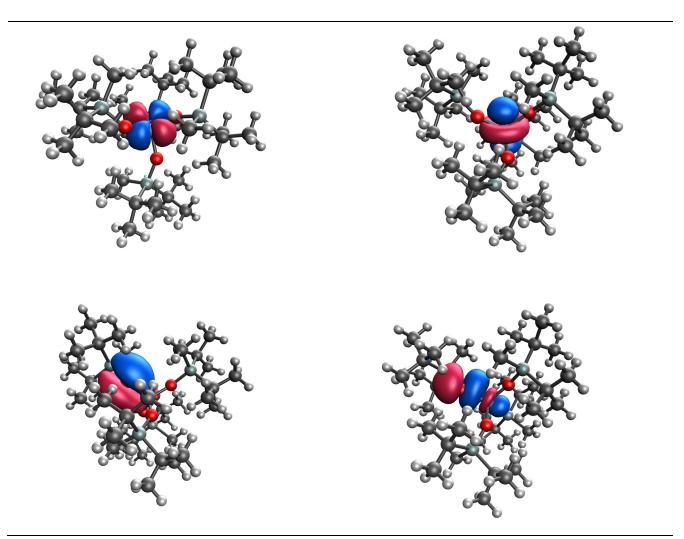
<sup>&</sup>lt;sup>a</sup> 6-311+G\* basis set.

**Table S13a.** BLYP/6-311G\* UNOs occupation numbers (occ), including MO eigenvalues (eval), showing the metal and ligand percentage of each orbital and the  $T_d$  -like symmetry label for  ${}^{3}$ [Cr(DTBMS)<sub>4</sub>],  ${}^{3}$ [Cr ${}^{4}$ Bu<sub>4</sub>], and  ${}^{3}$ [CrF<sub>4</sub>].

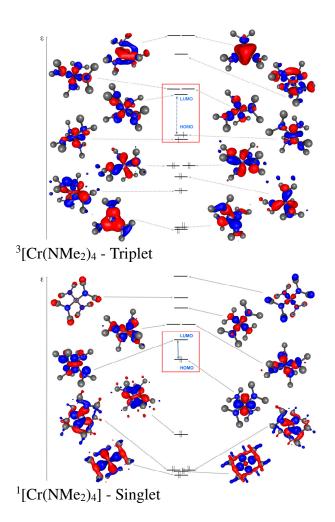
|            | , , , ,                                |         | <b>.</b> | _      |                      |                      |                      |                        |                      |                |                |                |                |                |
|------------|----------------------------------------|---------|----------|--------|----------------------|----------------------|----------------------|------------------------|----------------------|----------------|----------------|----------------|----------------|----------------|
| #          | <sup>3</sup> [Cr(DTBMS) <sub>4</sub> ] | eval    | occ      | Cr(4s) | Cr(d <sub>z2</sub> ) | $Cr(d_{xz})$         | Cr(d <sub>yz</sub> ) | $Cr(d_{x2y2})$         | Cr(d <sub>xy</sub> ) | $O_1$          | $O_2$          | $O_3$          | $O_4$          | $T_d$          |
| 199        | HOMO-7                                 | -0.2319 | 1.9999   | 14.9   | 0.5                  | 0                    | 0                    | 0                      | 0                    | 18.9           | 18.6           | 18.9           | 18.6           | $A_1$          |
| 200        | HOMO-6                                 | -0.2316 | 1.9999   | 0      | 0.1                  | 0                    | 0                    | 14.6                   | 1.9                  | 18.8           | 16.4           | 18.7           | 16.4           | E              |
| 201        | HOMO-5                                 | -0.2191 | 1.9999   | 0.3    | 18.3                 | 0                    | 0                    | 0.1                    | 0                    | 17.0           | 17.2           | 17.0           | 17.2           | E              |
| 202        | HOMO-4                                 | -0.2160 | 1.9982   | 0      | 0                    | 0                    | 0                    | 3                      | 22.9                 | 12.1           | 12.1           | 12.1           | 12.1           | $T_2$          |
| 203        | HOMO-3                                 | -0.2139 | 1.9980   | 0      | 0                    | 9.7                  | 14.8                 | 0                      | 0                    | 5.0            | 20.0           | 4.9            | 20.0           | $T_2$          |
| 204        | HOMO-2                                 | -0.2128 | 1.9980   | 0      | 0                    | 14.9                 | 9.9                  | 0                      | 0                    | 20.7           | 4.6            | 20.7           | 4.6            | $T_2$          |
| 205        | HOMO-1                                 | -0.1712 | 1.0000   | 0      | 77.5                 | 0                    | 0                    | 3.2                    | 0.1                  | 3.8            | 3.6            | 3.8            | 3.7            | E              |
| 206        | HOMO                                   | -0.1656 | 1.0000   | 0      | 3.2                  | 0                    | 0                    | 76                     | 2.9                  | 3.3            | 3.2            | 3.3            | 3.2            | E              |
| 207        | LUMO                                   | -0.1095 | 0.0020   | 0      | 0                    | 43.3                 | 29.7                 | 0                      | 0                    | 8.7            | 2.1            | 8.8            | 2.1            | $T_2$          |
| 208        | LUMO+1                                 | -0.1088 | 0.0020   | 0      | 0                    | 29.8                 | 43.4                 | 0                      | 0                    | 2.0            | 8.6            | 2.0            | 8.6            | $T_2$          |
| 209        | LUMO+2                                 | -0.1042 | 0.0018   | 0      | 0                    | 0                    | 0                    | 2.6                    | 70.3                 | 5.1            | 5.0            | 5.2            | 5.0            | $T_2$          |
| 210        | LUMO+3                                 | -0.0027 | 0.0001   | 2.6    | 49.3                 | 0                    | 0                    | 0.1                    | 0                    | 2.4            | 2.4            | 2.4            | 2.4            | Ē              |
| 211        | LUMO+4                                 | 0.0121  | 0.0001   | 0.2    | 0.1                  | 0                    | 0                    | 40.2                   | 2.6                  | 4.0            | 3.5            | 4.0            | 3.5            | Е              |
| 212        | LUMO+5                                 | 0.0181  | 0.0001   | 87.2   | 1.8                  | 0                    | 0                    | 0                      | 0                    | -3             | -3.3           | -2.9           | -3.2           | $A_1$          |
| #          | <sup>3</sup> [Cr'Bu <sub>4</sub> ]     | eval    | occ      | Cr(4s) | Cr(d <sub>z2</sub> ) | Cr(d <sub>xz</sub> ) | Cr(d <sub>vz</sub> ) | Cr(d <sub>x2y2</sub> ) | Cr(d <sub>xv</sub> ) | C <sub>1</sub> | $C_2$          | C <sub>3</sub> | $C_4$          | $T_d$          |
| 73         | HOMO-5                                 | -0.2071 | 1.9992   | 20.5   | 0                    | 0                    | 0                    | 0                      | 0                    | 16.0           | 16.0           | 16.1           | 16.2           | A <sub>1</sub> |
| 74         | HOMO-4                                 | -0.2025 | 1.9823   | 0      | 0                    | 1                    | 31.3                 | 0                      | 7.3                  | 4.1            | 22.9           | 14             | 1.0            | $T_2$          |
| 75         | НОМО-3                                 | -0.2025 | 1.9822   | 0      | 0                    | 38.3                 | 0.5                  | 0                      | 0.9                  | 11             | 5.6            | 16             | 9,4            | $T_2$          |
| 76         | HOMO-2                                 | -0.2025 | 1.9822   | 0      | 0                    | 0.3                  | 7.8                  | 0                      | 31.5                 | 16.5           | 3.0            | 1.4            | 21.2           | $T_2$          |
| 77         | HOMO-1                                 | -0.1659 | 1.0000   | 0      | 57.7                 | 0                    | 0                    | 36.3                   | 0                    | 0.2            | 0.2            | 0.2            | 0.2            | E              |
| 78         | НОМО                                   | -0.1659 | 1.0000   | 0      | 36.3                 | 0                    | 0                    | 57.7                   | 0                    | 0.2            | 0.2            | 0.2            | 0.2            | E              |
| 79         | LUMO                                   | -0.0737 |          | 0      | 0                    | 0.4                  | 11.8                 | 0                      | 47.3                 | 11             | 2.1            | 1.1            | 14.2           | $T_2$          |
| 80         | LUMO+1                                 | -0.0737 | 0.0178   | 0      | 0                    | 57.6                 | 0.7                  | 0                      | 1.3                  | 7.4            | 3.8            | 10.8           | 6.4            | $T_2$          |
| 81         | LUMO+2                                 | -0.0736 | 0.0178   | 0      | 0                    | 1.5                  | 47                   | 0                      | 10.9                 | 2.9            | 15.4           | 9.4            | 0.8            | $T_2$          |
| 82         | LUMO+3                                 | 0.0126  | 0.0008   | 46.4   | 0                    | 0                    | 0                    | 0                      | 0                    | 11.9           | 11.9           | 11.9           | 11.9           | E              |
| #          | <sup>3</sup> [CrF <sub>4</sub> ]       | eval    | occ      | Cr(4s) | Cr(d <sub>z2</sub> ) |                      |                      | $Cr(d_{x2y2})$         |                      | F <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> | F <sub>4</sub> | $T_d$          |
| 23*        | HOMO-7                                 | -0.3887 | 2.0000   | 0      | 14.8                 | 0                    | 0                    | 3.3                    | 0                    | 20.4           | 20.5           | 20.6           | 20.4           | E              |
| 23*<br>24* | HOMO-6                                 | -0.3886 | 2.0000   | 0      | 3.3                  | 0                    | 0                    | 14.8                   | 0                    | 20.4           | 20.5           | 20.4           | 20.4           | E              |
| 25*        | HOMO-5                                 | -0.3886 | 1.9999   | 15.8   | 0                    | 0                    | 0                    | 0                      | 0                    | 21             | 20.9           | 20.4           | 20.3           | $A_1$          |
| 26*        | HOMO-4                                 | -0.3653 | 1.9987   | 0      | 0                    | 4.9                  | 5.7                  | 0                      | 16.3                 | 4.6            | 42.5           | 13.4           | 11.9           | $T_2$          |
| 20*        | HOMO-4<br>HOMO-3                       | -0.3653 | 1.9987   | 0      | 0                    | 21.3                 | 3.7                  | 0                      | 1.9                  | 12.9           | 5.8            | 36.5           | 18.1           | $T_2$          |
| 28*        | HOMO-3<br>HOMO-2                       | -0.3652 | 1.9987   | 0      | 0                    | 0.7                  | 17.5                 | 0                      | 8.7                  | 37.1           | 6.7            | 4.6            | 24.4           | $T_2$          |
| 29<br>29   | HOMO-2<br>HOMO-1                       | -0.3032 | 1.0000   | 0      | 51.8                 | 0.7                  | 0                    | 31.4                   | 0.7                  | 4.2            | 4.2            | 4.0            | 4.2            | E<br>E         |
| 29<br>30   | HOMO-1                                 | -0.2417 | 1.0000   | 0      | 31.4                 | 0                    | 0                    | 51.4                   | 0                    | 4.2            | 4.2            | 4.2            | 4.2            | E              |
|            | LUMO                                   | -0.2417 |          |        |                      | 2                    | 48.9                 |                        |                      |                | 2.9            | 2.2            | 4.2<br>8       |                |
| 31         |                                        |         | 0.0014   | 0      | 0                    |                      |                      | 0                      | 24.2                 | 11.8           |                |                |                | $T_2$          |
| 32         | LUMO+1                                 | -0.1690 | 0.0013   | 0      | 0                    | 59.6                 | 10.3                 | 0                      | 5.4                  | 4.7            | 2.5            | 11.7           | 6.1            | $T_2$          |
| 33         | LUMO+2                                 | -0.1689 | 0.0013   | 0      | 0                    | 13.6                 | 16                   | 0                      | 45.6                 | 2.2            | 13.4           | 4.9            | 4.4            | $T_2$          |
| 34         | LUMO+3                                 | -0.0227 | 0.0001   | 101.3  | 0                    | 0                    | 0                    | 0                      | 0                    | -0.4           | -2.1           | -0.4           | -0.4           | $A_1$          |
| 35*        | LUMO+4                                 | 0.1783  | 0.0001   | 0      | 13                   | 0                    | 0                    | 58.8                   | 0                    | 6.7            | 6.7            | 6.7            | 6.7            | Е              |
| 36*        | LUMO+5                                 | 0.5546  | 0.0001   | 0      | 58.8                 | 0                    | 0                    | 13                     | 0                    | 6.6            | 6.7            | 6.7            | 6.6            | Е              |


<sup>\*</sup>UNOs not shown in Figure 6 (lower right).

**Table S13b.** BLYP/6-311G\* UNOs occupation numbers (occ), including MO eigenvalues (eval), showing the metal and ligand percentage of each orbital and the  $T_d$ -like symmetry label for  ${}^3[Cr(NMe_2)_4]$ ,  ${}^1[Cr(NMe_2)_4]$ , and  ${}^3[Cr(OMe)_4]$ .


| 55   HOMO-7   -0.2742   1.9999   18.0   0.1   0   0   0.3   0.19.2   23.5   18.8   19.3   A.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ ` | , 1,                    | L (     | / 1/     |        | `            | / -          |                      |                 |                      |       |       |       |       |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------|---------|----------|--------|--------------|--------------|----------------------|-----------------|----------------------|-------|-------|-------|-------|--------|
| 56   HOMO-6   -0.2706   1.9998   0   3.3   0   7.5   1.0   0   17.9   21.1   18.0   17.3   17.2   15.8   HOMO-5   -0.2124   1.9997   0.7   3.7   0   0   0   11.1   0.2   17.2   16.8   17.2   17.0   17.5   17.0   17.5   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0    | # 3 | $[Cr(NMe_2)_4]$         | eval    | l occup  | Cr(4s) | $Cr(d_{z2})$ | $Cr(d_{xz})$ | Cr(d <sub>yz</sub> ) | $Cr(d_{x2-y2})$ | Cr(d <sub>xy</sub> ) | $N_1$ | $N_2$ | $N_3$ | $N_4$ | $T_d$  |
| 58   HOMO-4   -0.1891   1.9997   0.7   3.7   0   0   0.11.1   0.2   0.72   16.8   17.2   17.0   E8   17.5   17.0   18.5   18.5   17.0   17.5   18.5   18.5   17.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   | 55  | НОМО-7                  | -0.2742 | 2 1.9999 | 18.0   | 0.1          | 0            | 0                    | 0.3             | 0                    | 19.2  | 23.5  | 18.8  | 19.3  | A1     |
| 58   HOMO-4   -0.1891   1.9997   0.7   3.7   0   0   0.11.1   0.2   0.72   16.8   17.2   17.0   E8   17.5   17.0   18.5   18.5   17.0   17.5   18.5   18.5   17.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   18.5   | 56  | HOMO-6                  | -0.2706 | 6 1.9998 | 0      | 3.3          | 0            | 7.5                  | 1.0             | 0                    | 17.9  | 21.1  | 18.0  | 17.3  | T2 / E |
| 59   HOMO-3   -0.1713   1.9970   0   0   27.2   0.1   0   0.4   9.0   19.0   18.5   8.8   TZ   17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57  | HOMO-5                  |         |          | 0.7    | 3.7          | 0            | 0                    |                 |                      | 17.2  | 16.8  | 17.2  | 17.0  | Е      |
| 59   HOMO-3   -0.1713   1.9970   0   0   27.2   0.1   0   0.4   9.0   19.0   18.5   8.8   TZ   17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 60   HOMO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59  | HOMO-3                  | -0.1713 | 3 1.9970 | 0      | 0            | 27.2         | 0.1                  | 0               | 0.4                  | 9.0   | 19.0  |       | 8.8   | T2     |
| 61   HOMO-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60  |                         |         |          | 0      | 13.3         | 0.1          |                      | 4.4             | 0.1                  |       | 12.4  |       | 12.2  | T2 / E |
| 63   LUMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                         |         |          | 0      |              |              |                      |                 |                      |       |       |       |       | T2 / E |
| 63 LUMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | E      |
| 64 LUMO+1 -0.0470 0.0030 0 0 0.66.6 0.2 0 0.7 5.3 8.6 7.3 5.2 T. 65 LUMO+2 -0.0470 0.0030 0 0 0.8 0 1.0 65.9 7.1 6.5 5.3 7.2 T. 66 LUMO+3 0.0101 0.0003 25.1 4.5 0 0 13.5 0.2 7.5 7.7 7.5 7.5 7.5 7.7 17 6 LUMO+4 0.0398 0.0002 0 6.3 0 13.2 2.0 0 8.5 9.2 8.4 8.5 T2/F 6 LUMO+5 0.0399 0.0001 111.6 0.2 0 0 0 0.6 0 4.3 6.2 4.3 4.3 4.3 A1  # ' Cr(NNe₂)₁ * eval occup Cr(4s) Cr(4s) Cr(4s) Cr(4s) Cr(4s₂) Cr(4s₂) Cr(4s₂) Cr(4s₂) N₁ N₂ N₃ N₂ N₃ N₃ N₃ T₂/F 1 HOMO-40 -0.7903 2 6.1 0 0 0 0 0 0 0 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 10.5 10.3 1  |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
| 65   LUMO+2   -0.0470   0.0030   0   0   0.8   0   1.0   65.9   7.1   6.5   5.3   7.2   T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 66   LUMO+3   0.0101   0.0003   25.1   4.5   0   0   13.5   0.2   7.5   7.7   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5    |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 68   LUMO+5   0.0398   0.0002   0   6.3   0   13.2   2.0   0   8.5   9.2   8.4   8.5   T2 / F   68   LUMO+5   0.0399   0.0001   111.6   0.2   0   0   0   0.6   0   4.3   -6.2   -4.3   -4.3   Al   #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
| *21 HOMO-40 -0.7903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
| 53   HOMO-8   -0.2765   2   0   0   0   0   0   0   22.3   10.4   10.3   10.4   10.3   TZ   54   HOMO-7   -0.2702   2   7.4   0.2   0   0   0   0   0   11.8   11.1   11.1   A1   55   HOMO-6   -0.2678   2   0   0   10.1   10.0   0   0   10.0   10.1   10.0   10.1   56   HOMO-5   -0.2677   2   0   0   10   10.1   10   0   0   9.8   10.4   9.8   10.4   57   HOMO-4   -0.2105   2   0.1   34.9   0   0   0   0   0   10.8   10.8   10.8   10.8   58   HOMO-3   -0.1761   2   0   0   3.6   3.7   0   0   17.1   17.0   17.1   17.0   17.2   59   HOMO-2   -0.1624   2   0   0   3.6   3.7   0   0   17.1   17.0   17.1   17.0   17.2   50   HOMO-1   -0.1624   2   0   0   3.7   3.6   0   0   16.3   17.0   16.3   17.0   16.3   51   HOMO   -0.0892   2   0   0   0   0   0   89.3   0   0   10   10.1   10.1   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                         |         |          |        |              |              | . , .                | . , , .         |                      |       |       |       |       |        |
| 54   HOMO-7   -0.2702   2   7.4   0.2   0   0   0   0   11.8   11.1   11.8   11.1   AI   55   HOMO-6   -0.2678   2   0   0   10.1   10.0   0   0   10.0   10.1   10.0   10.1   T2   10.0   10.1   T2   10.0   10.1   T3   T4   T5   HOMO-6   -0.2678   2   0   0   10   10.1   10.0   0   0   0   10.8   10.8   10.8   10.8   10.8   55   HOMO-4   -0.2105   2   0.1   34.9   0   0   0   0   0   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8   10.8     |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
| 55   HOMO-6   -0.2678   2   0   0   10.1   10.0   0   0   10.0   10.1   10.0   10.1   TZ   56   HOMO-5   -0.2677   2   0   0   10   10.1   0   0   9.8   10.4   9.8   10.4   TZ   57   HOMO-4   -0.2105   2   0.1   34.9   0   0   0   0   0   0   10.8   10.8   10.8   10.8   *** **S8   HOMO-3   -0.1761   2   0   0   0   0   0   0   0   0   2.2   17.3   16.7   17.3   16.7   TZ   *** **59   HOMO-2   -0.1624   2   0   0   3.6   3.7   0   0   17.1   17.0   17.1   17.0   TZ   *** **60   HOMO-1   -0.1624   2   0   0   3.7   3.6   0   0   16.3   17.0   16.3   17.0   TZ   16.5   17.0   16.3   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17.0   17   |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
| 56   HOMO-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
| \$\frac{857}{858}\$ HOMO-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
| *58 HOMO-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| *59 HOMO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | Е      |
| *60 HOMO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 61 HOMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 62 LUMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 63 LUMO+1 -0.0331 0 0 0 28.2 28.7 0 0 5.7 5.8 5.7 5.8 TZ 64 LUMO+2 -0.0330 0 0 0 0 28.6 28.2 0 0 5.8 5.7 5.8 5.7 TZ 65 LUMO+3 -0.0065 0 0 0 0 0 0 0 0 50.9 3.0 3.0 3.0 3.0 3.0 TZ 66 LUMO+4 0.0102 0 10.9 1.1 0 0 0 0 0 1.2 1.2 1.2 1.2 1.2 1.2 AI 67 LUMO+5 0.0447 0 0 0 0 0 0 0 15.4 1.4 1.4 1.4 1.4 1.4 1.4 TZ 68 LUMO+6 0.0453 0 0 0 0 1.5 1.7 0 0 0.9 1.0 0.9 1.0 TZ 69 LUMO+7 0.0453 0 0 0 0 1.7 1.5 0 0 1.0 1.0 1.0 1.0 1.0 TZ  # 3[Cr(OMe)4] eval occup Cr(4s) Cr(d <sub>x2</sub> ) Cr(d <sub>xx</sub> ) Cr(d <sub>xx</sub> ) Cr(d <sub>xx</sub> ) Cr(d <sub>xxy</sub> ) O <sub>1</sub> O <sub>2</sub> O <sub>3</sub> O <sub>4</sub> T <sub>4</sub> 39 HOMO-7 -0.2671 1.9999 12 0.1 0.1 0.1 0.1 1.6 0 11.7 27.2 16.5 22.7 AI 40 HOMO-6 -0.2531 1.9999 2.2 0.7 1.3 0.7 10.5 0 27.1 10.3 20.7 15.1 E 41 HOMO-5 -0.2455 1.9999 0 12.3 2.3 0.1 2.4 0.2 5.9 13.0 9.9 42.4 E 42 HOMO-4 -0.2370 1.9980 0.1 3.0 13.2 0.3 1.9 11.6 3.9 11.1 9.0 31.8 TZ 43 HOMO-3 -0.2293 1.9976 0 2.4 4.7 9.6 0.8 13 13.5 10.6 27.6 4.5 TZ 44 HOMO-2 -0.2293 1.9976 0 2.4 4.7 9.6 0.8 13 13.5 10.6 27.6 4.5 TZ 44 HOMO-1 -0.1540 1.0000 0.1 5.5 4.3 3.3 69.7 0.1 3.9 2.8 2.8 2.6 E 46 HOMO -0.1439 1.0000 0.6 63.9 8.9 0.5 7.4 0.4 1.7 3.1 2.8 6.6 E 47 LUMO -0.0801 0.0027 0 2.8 12.7 43.9 1.3 9.0 12.6 8.0 3.1 1.4 TZ 48 LUMO+1 -0.0722 0.0024 0 2.7 11.9 21.2 1.4 32.1 5.9 5.7 11.6 2.4 TZ 49 LUMO+2 -0.0691 0.0020 0 4.5 34.1 1.1 1.5 28.4 1.9 5.6 3.8 13.3 TZ 50 LUMO+3 0.0067 0.0001 0 24.4 5.0 0.5 4.1 0.1 4.6 1.2 1.8 9.4 E 51 LUMO+4 0.0394 0.0001 9.2 2.0 2.0 2.8 23.2 0.1 3.1 5.0 4.8 5.0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61  | HOMO                    |         |          | 0      | 0            |              | 0                    | 89.3            | 0                    | 0.1   | 0.1   | 0.1   | 0.1   | E      |
| 64 LUMO+2 -0.0330 0 0 0 28.6 28.2 0 0 5.8 5.7 5.8 5.7 TZ 65 LUMO+3 -0.0065 0 0 0 0 0 0 0 0 50.9 3.0 3.0 3.0 3.0 3.0 TZ 66 LUMO+4 0.0102 0 10.9 1.1 0 0 0 0 0 1.2 1.2 1.2 1.2 1.2 1.2 AI 67 LUMO+5 0.0447 0 0 0 0 0 0 0 15.4 1.4 1.4 1.4 1.4 1.4 TZ 68 LUMO+6 0.0453 0 0 0 0 1.5 1.7 0 0 0 .9 1.0 0.9 1.0 TZ 69 LUMO+7 0.0453 0 0 0 0 1.7 1.5 0 0 1.0 1.0 1.0 1.0 1.0 TZ  # 3 [Cr(OMe)4] eval occup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | E      |
| 65 LUMO+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63  | LUMO+1                  |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 66 LUMO+4 0.0102 0 10.9 1.1 0 0 0 0 1.2 1.2 1.2 1.2 1.2 1.2 A1 67 LUMO+5 0.0447 0 0 0 0 0 0 0 15.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.5 68 LUMO+6 0.0453 0 0 0 0 1.5 1.7 0 0 0 0.9 1.0 0.9 1.0 0.9 1.0 T2 69 LUMO+7 0.0453 0 0 0 0 1.7 1.5 0 0 1.0 1.0 1.0 1.0 1.0 1.0 T2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 69 LUMO+7 0.0453 0 0 0 0 1.7 1.5 0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 67 LUMO+5 0.0447 0 0 0 0 0 0 0 15.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.5 68 LUMO+6 0.0453 0 0 0 1.5 1.7 0 0 0 0.9 1.0 0.9 1.0 0.9 1.0 TZ 69 LUMO+7 0.0453 0 0 0 1.7 1.5 0 0 1.0 1.0 1.0 1.0 1.0 TZ 72 # ³[Cr(OMe)4] eval occup Cr(4s) Cr(dz2) Cr(dz | 65  |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 68 LUMO+6 0.0453 0 0 0 1.5 1.7 0 0 0 0.9 1.0 0.9 1.0 0.9 1.0 TZ 69 LUMO+7 0.0453 0 0 0 1.7 1.5 0 0 1.0 1.0 1.0 1.0 1.0 TZ # \$^3[Cr(OMe)_4]\$ eval occup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66  | LUMO+4                  | 0.0102  | 2 0      | 10.9   | 1.1          | 0            | 0                    | 0               | 0                    | 1.2   | 1.2   | 1.2   | 1.2   | A1     |
| 69         LUMO+7         0.0453         0         0         0         1.7         1.5         0         0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         TZ           # ³[Cr(OMe)₄]         eval         occup         Cr(d₃z)         Cr(d₂z)         Cr(d₃z)         Cr(d₃z₂y²)         Cr(d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67  | LUMO+5                  | 0.0447  | 7 0      | 0      | 0            | 0            | 0                    | 0               | 15.4                 | 1.4   | 1.4   | 1.4   | 1.4   | T2     |
| # <sup>3</sup> [Cr(OMe) <sub>4</sub> ] eval occup Cr(4s) Cr(d <sub>x2</sub> ) Cr(d <sub>xz</sub> ) Cr(d <sub>yz</sub> ) Cr(d <sub>x2-y2</sub> ) Cr(d <sub>xy</sub> ) O <sub>1</sub> O <sub>2</sub> O <sub>3</sub> O <sub>4</sub> T <sub>d</sub> 39 HOMO-7 -0.2671 1.9999 12 0.1 0.1 0.1 1.6 0 11.7 27.2 16.5 22.7 A1 40 HOMO-6 -0.2531 1.9999 2.2 0.7 1.3 0.7 10.5 0 27.1 10.3 20.7 15.1 E 41 HOMO-5 -0.2455 1.9999 0 12.3 2.3 0.1 2.4 0.2 5.9 13.0 9.9 42.4 E 42 HOMO-4 -0.2370 1.9980 0.1 3.0 13.2 0.3 1.9 11.6 3.9 11.1 9.0 31.8 T2 43 HOMO-3 -0.2293 1.9976 0 2.4 4.7 9.6 0.8 13 13.5 10.6 27.6 4.5 T2 44 HOMO-2 -0.2229 1.9973 0.1 2.4 4.5 17.5 1.2 3.4 30.2 19.9 5.8 1.4 T2 45 HOMO-1 -0.1540 1.0000 0.1 5.5 4.3 3.3 69.7 0.1 3.9 2.8 2.8 2.6 E 46 HOMO -0.1439 1.0000 0 63.9 8.9 0.5 7.4 0.4 1.7 3.1 2.8 6.6 E 47 LUMO -0.0801 0.0027 0 2.8 12.7 43.9 1.3 9.0 12.6 8.0 3.1 1.4 T2 48 LUMO+1 -0.0722 0.0024 0 2.7 11.9 21.2 1.4 32.1 5.9 5.7 11.6 2.4 T2 49 LUMO+2 -0.0691 0.0020 0 4.5 34.1 1.1 1.5 28.4 1.9 5.6 3.8 13.3 T2 50 LUMO+3 0.0067 0.0001 0 24.4 5.0 0.5 4.1 0.1 4.6 1.2 1.8 9.4 E 51 LUMO+4 0.0394 0.0001 9.2 2.0 2.0 2.8 23.2 0.1 3.1 5.0 4.8 5.0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68  | LUMO+6                  | 0.0453  | 3 0      | 0      | 0            | 1.5          | 1.7                  | 0               | 0                    | 0.9   | 1.0   | 0.9   | 1.0   | T2     |
| 39 HOMO-7 -0.2671 1.9999 12 0.1 0.1 0.1 1.6 0 11.7 27.2 16.5 22.7 A1 40 HOMO-6 -0.2531 1.9999 2.2 0.7 1.3 0.7 10.5 0 27.1 10.3 20.7 15.1 E1 41 HOMO-5 -0.2455 1.9999 0 12.3 2.3 0.1 2.4 0.2 5.9 13.0 9.9 42.4 E1 42 HOMO-4 -0.2370 1.9980 0.1 3.0 13.2 0.3 1.9 11.6 3.9 11.1 9.0 31.8 T2 43 HOMO-3 -0.2293 1.9976 0 2.4 4.7 9.6 0.8 13 13.5 10.6 27.6 4.5 T2 44 HOMO-2 -0.2229 1.9973 0.1 2.4 4.5 17.5 1.2 3.4 30.2 19.9 5.8 1.4 T2 45 HOMO-1 -0.1540 1.0000 0.1 5.5 4.3 3.3 69.7 0.1 3.9 2.8 2.8 2.6 E1 46 HOMO -0.1439 1.0000 0 63.9 8.9 0.5 7.4 0.4 1.7 3.1 2.8 6.6 E1 47 LUMO -0.0801 0.0027 0 2.8 12.7 43.9 1.3 9.0 12.6 8.0 3.1 1.4 T2 48 LUMO+1 -0.0722 0.0024 0 2.7 11.9 21.2 1.4 32.1 5.9 5.7 11.6 2.4 T2 49 LUMO+2 -0.0691 0.0020 0 4.5 34.1 1.1 1.5 28.4 1.9 5.6 3.8 13.3 T2 50 LUMO+3 0.0067 0.0001 0 24.4 5.0 0.5 4.1 0.1 4.6 1.2 1.8 9.4 E1 LUMO+4 0.0394 0.0001 9.2 2.0 2.0 2.8 23.2 0.1 3.1 5.0 4.8 5.0 E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69  | LUMO+7                  | 0.0453  | 3 0      | 0      | 0            | 1.7          | 1.5                  | 0               | 0                    | 1.0   | 1.0   | 1.0   | 1.0   | T2     |
| 39 HOMO-7 -0.2671 1.9999 12 0.1 0.1 0.1 1.6 0 11.7 27.2 16.5 22.7 AI 40 HOMO-6 -0.2531 1.9999 2.2 0.7 1.3 0.7 10.5 0 27.1 10.3 20.7 15.1 E 41 HOMO-5 -0.2455 1.9999 0 12.3 2.3 0.1 2.4 0.2 5.9 13.0 9.9 42.4 E 42 HOMO-4 -0.2370 1.9980 0.1 3.0 13.2 0.3 1.9 11.6 3.9 11.1 9.0 31.8 T2 43 HOMO-3 -0.2293 1.9976 0 2.4 4.7 9.6 0.8 13 13.5 10.6 27.6 4.5 T2 44 HOMO-2 -0.2229 1.9973 0.1 2.4 4.5 17.5 1.2 3.4 30.2 19.9 5.8 1.4 T2 45 HOMO-1 -0.1540 1.0000 0.1 5.5 4.3 3.3 69.7 0.1 3.9 2.8 2.8 2.6 E 46 HOMO -0.1439 1.0000 0 63.9 8.9 0.5 7.4 0.4 1.7 3.1 2.8 6.6 E 47 LUMO -0.0801 0.0027 0 2.8 12.7 43.9 1.3 9.0 12.6 8.0 3.1 1.4 T2 48 LUMO+1 -0.0722 0.0024 0 2.7 11.9 21.2 1.4 32.1 5.9 5.7 11.6 2.4 T2 49 LUMO+2 -0.0691 0.0020 0 4.5 34.1 1.1 1.5 28.4 1.9 5.6 3.8 13.3 T2 50 LUMO+3 0.0067 0.0001 0 24.4 5.0 0.5 4.1 0.1 4.6 1.2 1.8 9.4 E 51 LUMO+4 0.0394 0.0001 9.2 2.0 2.0 2.8 23.2 0.1 3.1 5.0 4.8 5.0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # 3 | [Cr(OMe) <sub>4</sub> ] | eval    | occup    | Cr(4s) | $Cr(d_{z2})$ | $Cr(d_{xz})$ | Cr(d <sub>yz</sub> ) | $Cr(d_{x2-y2})$ | $Cr(d_{xy})$         | $O_1$ | $O_2$ | $O_3$ | $O_4$ | $T_d$  |
| 40         HOMO-6         -0.2531         1.9999         2.2         0.7         1.3         0.7         10.5         0         27.1         10.3         20.7         15.1         E           41         HOMO-5         -0.2455         1.9999         0         12.3         2.3         0.1         2.4         0.2         5.9         13.0         9.9         42.4         E           42         HOMO-4         -0.2370         1.9980         0.1         3.0         13.2         0.3         1.9         11.6         3.9         11.1         9.0         31.8         TZ           43         HOMO-3         -0.2293         1.9976         0         2.4         4.7         9.6         0.8         13         13.5         10.6         27.6         4.5         TZ           44         HOMO-2         -0.2229         1.9973         0.1         2.4         4.5         17.5         1.2         3.4         30.2         19.9         5.8         1.4         TZ           45         HOMO-1         -0.1540         1.0000         0.1         5.5         4.3         3.3         69.7         0.1         3.9         2.8         2.8         2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39  | HOMO-7                  | -0.267  | 1 1.9999 | 12     | 0.1          | 0.1          | 0.1                  |                 |                      | 11.7  | 27.2  | 16.5  | 22.7  | A1     |
| 41       HOMO-5       -0.2455       1.9999       0       12.3       2.3       0.1       2.4       0.2       5.9       13.0       9.9       42.4       E         42       HOMO-4       -0.2370       1.9980       0.1       3.0       13.2       0.3       1.9       11.6       3.9       11.1       9.0       31.8       TZ         43       HOMO-3       -0.2293       1.9976       0       2.4       4.7       9.6       0.8       13       13.5       10.6       27.6       4.5       TZ         44       HOMO-2       -0.2229       1.9973       0.1       2.4       4.5       17.5       1.2       3.4       30.2       19.9       5.8       1.4       TZ         45       HOMO-1       -0.1540       1.0000       0.1       5.5       4.3       3.3       69.7       0.1       3.9       2.8       2.8       2.6       E         46       HOMO       -0.1439       1.0000       0       63.9       8.9       0.5       7.4       0.4       1.7       3.1       2.8       6.6       E         47       LUMO       -0.0801       0.0027       0       2.8       12.7       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | Е      |
| 42       HOMO-4       -0.2370       1.9980       0.1       3.0       13.2       0.3       1.9       11.6       3.9       11.1       9.0       31.8       TZ         43       HOMO-3       -0.2293       1.9976       0       2.4       4.7       9.6       0.8       13       13.5       10.6       27.6       4.5       TZ         44       HOMO-2       -0.2229       1.9973       0.1       2.4       4.5       17.5       1.2       3.4       30.2       19.9       5.8       1.4       TZ         45       HOMO-1       -0.1540       1.0000       0.1       5.5       4.3       3.3       69.7       0.1       3.9       2.8       2.8       2.6       E         46       HOMO       -0.1439       1.0000       0       63.9       8.9       0.5       7.4       0.4       1.7       3.1       2.8       6.6       E         47       LUMO       -0.0801       0.0027       0       2.8       12.7       43.9       1.3       9.0       12.6       8.0       3.1       1.4       TZ         48       LUMO+1       -0.0722       0.0024       0       2.7       11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | E      |
| 43       HOMO-3       -0.2293       1.9976       0       2.4       4.7       9.6       0.8       13       13.5       10.6       27.6       4.5       TZ         44       HOMO-2       -0.2229       1.9973       0.1       2.4       4.5       17.5       1.2       3.4       30.2       19.9       5.8       1.4       TZ         45       HOMO-1       -0.1540       1.0000       0.1       5.5       4.3       3.3       69.7       0.1       3.9       2.8       2.8       2.6       E         46       HOMO       -0.1439       1.0000       0       63.9       8.9       0.5       7.4       0.4       1.7       3.1       2.8       6.6       E         47       LUMO       -0.0801       0.0027       0       2.8       12.7       43.9       1.3       9.0       12.6       8.0       3.1       1.4       TZ         48       LUMO+1       -0.0722       0.0024       0       2.7       11.9       21.2       1.4       32.1       5.9       5.7       11.6       2.4       TZ         49       LUMO+2       -0.0691       0.0020       0       4.5       34.1       1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 44       HOMO-2       -0.2229       1.9973       0.1       2.4       4.5       17.5       1.2       3.4       30.2       19.9       5.8       1.4       TZ         45       HOMO-1       -0.1540       1.0000       0.1       5.5       4.3       3.3       69.7       0.1       3.9       2.8       2.8       2.6       E         46       HOMO       -0.1439       1.0000       0       63.9       8.9       0.5       7.4       0.4       1.7       3.1       2.8       6.6       E         47       LUMO       -0.0801       0.0027       0       2.8       12.7       43.9       1.3       9.0       12.6       8.0       3.1       1.4       TZ         48       LUMO+1       -0.0722       0.0024       0       2.7       11.9       21.2       1.4       32.1       5.9       5.7       11.6       2.4       TZ         49       LUMO+2       -0.0691       0.0020       0       4.5       34.1       1.1       1.5       28.4       1.9       5.6       3.8       13.3       TZ         50       LUMO+3       0.0067       0.0001       0       24.4       5.0       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 45 HOMO-1 -0.1540 1.0000 0.1 5.5 4.3 3.3 69.7 0.1 3.9 2.8 2.8 2.6 E   46 HOMO -0.1439 1.0000 0 63.9 8.9 0.5 7.4 0.4 1.7 3.1 2.8 6.6 E   47 LUMO -0.0801 0.0027 0 2.8 12.7 43.9 1.3 9.0 12.6 8.0 3.1 1.4 T2   48 LUMO+1 -0.0722 0.0024 0 2.7 11.9 21.2 1.4 32.1 5.9 5.7 11.6 2.4 T2   49 LUMO+2 -0.0691 0.0020 0 4.5 34.1 1.1 1.5 28.4 1.9 5.6 3.8 13.3 T2   50 LUMO+3 0.0067 0.0001 0 24.4 5.0 0.5 4.1 0.1 4.6 1.2 1.8 9.4 E   51 LUMO+4 0.0394 0.0001 9.2 2.0 2.0 2.8 23.2 0.1 3.1 5.0 4.8 5.0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 46       HOMO       -0.1439       1.0000       0       63.9       8.9       0.5       7.4       0.4       1.7       3.1       2.8       6.6       E         47       LUMO       -0.0801       0.0027       0       2.8       12.7       43.9       1.3       9.0       12.6       8.0       3.1       1.4       T2         48       LUMO+1       -0.0722       0.0024       0       2.7       11.9       21.2       1.4       32.1       5.9       5.7       11.6       2.4       T2         49       LUMO+2       -0.0691       0.0020       0       4.5       34.1       1.1       1.5       28.4       1.9       5.6       3.8       13.3       T2         50       LUMO+3       0.0067       0.0001       0       24.4       5.0       0.5       4.1       0.1       4.6       1.2       1.8       9.4       E         51       LUMO+4       0.0394       0.0001       9.2       2.0       2.0       2.8       23.2       0.1       3.1       5.0       4.8       5.0       E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | E      |
| 47     LUMO     -0.0801     0.0027     0     2.8     12.7     43.9     1.3     9.0     12.6     8.0     3.1     1.4     T2       48     LUMO+1     -0.0722     0.0024     0     2.7     11.9     21.2     1.4     32.1     5.9     5.7     11.6     2.4     T2       49     LUMO+2     -0.0691     0.0020     0     4.5     34.1     1.1     1.5     28.4     1.9     5.6     3.8     13.3     T2       50     LUMO+3     0.0067     0.0001     0     24.4     5.0     0.5     4.1     0.1     4.6     1.2     1.8     9.4     E       51     LUMO+4     0.0394     0.0001     9.2     2.0     2.0     2.8     23.2     0.1     3.1     5.0     4.8     5.0     E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | E      |
| 48 LUMO+1 -0.0722 0.0024 0 2.7 11.9 21.2 1.4 32.1 5.9 5.7 11.6 2.4 T2 49 LUMO+2 -0.0691 0.0020 0 4.5 34.1 1.1 1.5 28.4 1.9 5.6 3.8 13.3 T2 50 LUMO+3 0.0067 0.0001 0 24.4 5.0 0.5 4.1 0.1 4.6 1.2 1.8 9.4 E 51 LUMO+4 0.0394 0.0001 9.2 2.0 2.0 2.8 23.2 0.1 3.1 5.0 4.8 5.0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 49     LUMO+2     -0.0691     0.0020     0     4.5     34.1     1.1     1.5     28.4     1.9     5.6     3.8     13.3     T2       50     LUMO+3     0.0067     0.0001     0     24.4     5.0     0.5     4.1     0.1     4.6     1.2     1.8     9.4     E       51     LUMO+4     0.0394     0.0001     9.2     2.0     2.0     2.8     23.2     0.1     3.1     5.0     4.8     5.0     E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | T2     |
| 50 LUMO+3 0.0067 0.0001 0 24.4 5.0 0.5 4.1 0.1 4.6 1.2 1.8 9.4 E 51 LUMO+4 0.0394 0.0001 9.2 2.0 2.0 2.8 23.2 0.1 3.1 5.0 4.8 5.0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
| 51 LUMO+4 0.0394 0.0001 9.2 2.0 2.0 2.8 23.2 0.1 3.1 5.0 4.8 5.0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       | E      |
| 32 LUIVIC+3 U.0436 U.0001 47.6 U.1 U U 4.3 U.1 0.8 9.3 0.3 8.6 Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                         |         |          |        |              |              |                      |                 |                      |       |       |       |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32  | LUMU+3                  | 0.0438  | 0.0001   | 47.8   | 0.1          | 0            | 0                    | 4.5             | 0.1                  | 6.8   | 9.5   | 0.5   | 8.6   | A1     |

<sup>\*</sup>UNOs not shown in Figure S10.


<sup>&</sup>lt;sup>a</sup> In the case of <sup>1</sup>[Cr(NMe<sub>2</sub>)<sub>4</sub>] MOs are presented.



**Figure S8**. Localized BLYP/6-311G\* orbitals for <sup>3</sup>[Cr'Bu<sub>4</sub>] (left column), <sup>1</sup>[Cr(NMe<sub>2</sub>)<sub>4</sub>] (middle column), <sup>3</sup>[Cr(OMe)<sub>4</sub>] (right column). Population of the Cr-X bonding orbitals on the central Cr atom are given in Table S7. Color scheme: H - white, C - grey, N - blue, O - red, Cr - light blue.



**Figure S9.** Localized BLYP/6-311G\* orbitals of Cr(DTBMS)<sub>4</sub>. Population of the Cr-X bonding orbitals on the central Cr atom are given in Table S7. Color scheme: H - white, C - grey, O - red, Si - light grey, Cr - light blue.



**Figure S10.** BLYP/6-311G\* UNOs of <sup>3</sup>[Cr(NMe<sub>2</sub>)<sub>4</sub>] (triplet ground state, top) and FMOs of <sup>1</sup>[Cr(NMe<sub>2</sub>)<sub>4</sub>] (singlet ground state, bottom). It can be seen that HOMO eigenvalue in Cr(NMe<sub>2</sub>)<sub>4</sub> raise for the singlet comparing to triplet state, while the lower occupied frontier orbitals become stabilized in the case of singlet states.

## V. Spin Hamiltonian parameters: Excited state SOC contributions to zfs

As discussed in the main text, there are only a few excited states that contribute significantly to zfs via SOC, while spin-spin coupling (SSC) contributions are negligible (compare CASSCF and MRCI<sub>MIN</sub> results in Table S14 or Table 4 main text). This is evident in Table S15, where we focus on the sole complex for which the zfs has been definitively determined, and is the largest, namely Cr(DTBMS)<sub>4</sub>. Roots 1, 2, and 3 of block 0 in Table S15a correspond to the  ${}^{3}T_{2}$  excited state (in  $T_{d}$ ), which spits into three roots, two of which correspond to  ${}^{3}E$  (in  $D_{2d}$ ) and one to  ${}^{3}B_{2}$ . The former contribute positively to  $D^{SOC}$ , while the latter contributes negatively, as given by Eqn 4. As expected from the relatively modest distortion of Cr(DTBMS)4 from ideal tetrahedral geometry, the magnitude of these two counteracting contributions is relatively close (+6.7 versus -5.9 cm<sup>-1</sup>, respectively). The actual geometry is not  $D_{2d}$ , so the <sup>3</sup>E state orbital degeneracy is removed with its components contributing oppositely to give  $E^{SOC}$  (roots 1 and 2 of block 0 in Table S13b nearly cancel out). Roots 2, 3, and 5 of block 1 (Table S15a) correspond to the <sup>1</sup>T<sub>2</sub>(D) excited state, which behaves exactly as in Eqn 4, wherein the contributions to  $D^{SOC}$  from <sup>1</sup>E are negative, while those from <sup>1</sup>B<sub>2</sub> are positive (respectively -2.6 and +2.4 cm<sup>-1</sup>). Roots 2 and 3 of block 1 in Table S13b are the nearly cancelling contributions to  $E^{SOC}$  from the lower symmetry splitting of  ${}^{1}E({}^{1}T_{1}(D))$ . Last and least come roots 11, 12, and 13 of block 1, which correspond to the contributions to  $D^{SOC}$  from the  ${}^{1}T_{2}(G)$  excited state, behaving exactly as  ${}^{1}T_{2}(D)$  does, except with smaller magnitudes as it is much higher in energy (see Figures 5 and S1). Roots 12 and 13 of block 1 in Table S15b are the corresponding contributions to  $E^{SOC}$ . The sum of contributions to  $D^{SOC}$  from these three  $T_2$  excited states equals +0.682 cm<sup>-1</sup>, while that from the remaining excited states is a negligible +0.01 cm<sup>-1</sup>, a value that is less than the precision of the HFEPR experiment. The situation for  $E^{SOC}$  is similar: +0.069 cm<sup>-1</sup> from these three out of a total of 0.070 cm<sup>-1</sup>. Thus, the classical perturbation theory

Supporting Information for "HFEPR Investigation of CrL4..."

expression in Eqn 4 is more than sufficient for calculating zfs in such systems – provided the excited state energies are known, which is far from routine. The paradox, so to speak, is that the zfs depends on the relative energies of the  $^{1,3}T_2$  excited states, but the energy of  $^3T_1(F)$  excited state is the only one readily obtained from electronic absorption spectra of CrL<sub>4</sub> complexes. The ability in Cr(DTBMS)<sub>4</sub> to assign bands due to  $^3T_2$  and  $^1T_1(G)$  is crucial in being able to analyze the electronic structure of this complex successfully.

**Table S14**. Calculated spin Hamiltonian (zfs and **g**-tensor) parameters in the 6-311G\* basis set. (In parentheses are shown the results of the CASSCF state averaged calculations, taking the singlet state as a reference for the amidos under investigation). Relevant experimental data are also given.

|              | D (cm <sup>-1</sup> )                                                                                                                                                | E (cm <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $g_{xx}$ | $g_{yy}$ | $g_{zz}$ | $g_{ m iso}$ |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|--------------|
| BLYP         | -0.011                                                                                                                                                               | -0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.977    | 1.977    | 1.977    | 1.977        |
| CASSCF       | -0.016                                                                                                                                                               | -0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.926    | 1.926    | 1.926    | 1.926        |
| $MRCI_{MIN}$ | -0.019                                                                                                                                                               | -0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |              |
| NEVPT2       | -0.022                                                                                                                                                               | -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.936    | 1.936    | 1.937    | 1.936        |
|              | Alkyl                                                                                                                                                                | Complexes                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |          |              |
| expt. I      | 0.027                                                                                                                                                                | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          | (1.9905)     |
| expt. II     | 0.023                                                                                                                                                                | 0.0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |              |
| expt. III    | 0.013                                                                                                                                                                | 0.0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |              |
| expt. IV     | 0.012                                                                                                                                                                | 0.0029                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |              |
| BLYP         | -0.058                                                                                                                                                               | -0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.991    | 1.992    | 1.992    | 1.992        |
| CASSCF       | +0.092                                                                                                                                                               | +0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.950    | 1.951    | 1.952    | 1.951        |
| $MRCI_{MIN}$ | +0.097                                                                                                                                                               | +0.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |              |
| BLYP         | +0.001                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.993    | 1.993    | 1.993    | 1.993        |
| CASSCF       | +0.005                                                                                                                                                               | +0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.947    | 1.948    | 1.948    | 1.948        |
| MRCI         | +0.005                                                                                                                                                               | +0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |              |
|              | Amido                                                                                                                                                                | Complexes                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |          |              |
| BLYP         | +1.459                                                                                                                                                               | +0.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.975    | 1.982    | 1.987    | 1.981        |
| CASSCF       | -62.730                                                                                                                                                              | -0.663                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.191    | 1.862    | 1.882    | 1.645        |
|              | (-7.733)                                                                                                                                                             | (-1.141)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1.835)  | (1.916)  | (1.953)  | (1.901)      |
| $MRCI_{MIN}$ | -63.321                                                                                                                                                              | -0.777                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |              |
| NEVPT2       | -9.776                                                                                                                                                               | -0.420                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.802    | 1.953    | 1.963    | 1.906        |
| BLYP         | -0.042                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.985    | 1.987    | 1.987    | 1.987        |
| CASSCF       | -0.935                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.938    | 1.954    | 1.954    | 1.949        |
| MRCI         | -0.992                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |              |
| BLYP         | -1.827                                                                                                                                                               | -0.204                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.971    | 1.985    | 1.994    | 1.983        |
| CASSCF       | -154.369                                                                                                                                                             | -0.882                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.625    | 1.604    | 1.619    | 1.283        |
|              | (+2.407)                                                                                                                                                             | (+0.005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1.928)  | (1.929)  | (1.962)  | (1.940)      |
| MRCI         | -155.346                                                                                                                                                             | -0.877                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |              |
| NEVPT2       | -1.953                                                                                                                                                               | -0.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.820    | 1.953    | 1.973    | 1.915        |
|              | Alkoxid                                                                                                                                                              | o Complexes                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |          |              |
| BLYP         | -0.564                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.968    | 1.978    | 1.978    | 1.975        |
|              | $-0.589^{b}$                                                                                                                                                         | $0.000^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |          |              |
| CASSCF       |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.896    | 1.927    | 1.927    | 1.917        |
|              |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | .,       | , _ ,    |              |
| MRCIMIN      |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |          |              |
| IVII CINIIN  |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |          |              |
|              | 2,230                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |              |
|              | expt. I expt. II expt. III expt. III expt. IV BLYP CASSCF MRCI MRCI BLYP CASSCF | BLYP -0.011 CASSCF -0.016 MRCI <sub>MIN</sub> -0.019 NEVPT2 -0.022  Alkyl expt. I 0.027 expt. III 0.023 expt. IV 0.012 BLYP -0.058 CASSCF +0.092 MRCI <sub>MIN</sub> +0.097 BLYP +0.001 CASSCF +0.005 MRCI +0.005  MRCI +0.005  Amido BLYP -1.459 CASSCF -62.730 (-7.733) MRCI <sub>MIN</sub> -63.321 NEVPT2 -9.776 BLYP -0.042 CASSCF -0.935 MRCI -0.992 BLYP -1.827 CASSCF -154.369 (+2.407) MRCI -155.346 NEVPT2 -1.953  Alkoxid BLYP -0.564 -0.589 b CASSCF -2.045 -2.193 b | BLYP     | BLYP     | BLYP     | BLYP         |

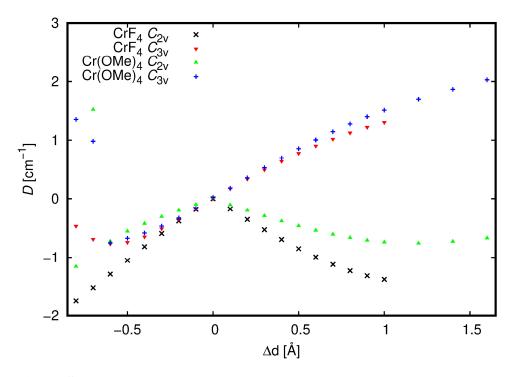
| $Cr(O^tBu)_4^b$                      | BLYP               | +0.868              | 0.000       | 1.974  | 1.974  | 1.984  | 1.977  |
|--------------------------------------|--------------------|---------------------|-------------|--------|--------|--------|--------|
|                                      |                    | +0.915 <sup>b</sup> | $0.000^{b}$ |        |        |        |        |
|                                      | CASSCF             | +1.772              | 0.000       | 1.920  | 1.920  | 1.947  | 1.929  |
|                                      |                    | +1.828 <sup>b</sup> | $0.000^{b}$ |        |        |        |        |
|                                      | $MRCI_{MIN}$       | +1.780              | 0.000       |        |        |        |        |
|                                      |                    | +1.867 <sup>b</sup> | $0.000^{b}$ |        |        |        |        |
|                                      | expt. <sup>c</sup> | (< 0.3)             |             |        |        |        | 1.962  |
| $Cr(OMe)_4$                          | BLYP               | +1.249              | +0.172      | 1.980  | 1.982  | 1.985  | 1.982  |
|                                      | CASSCF             | +1.173              | +0.084      | 1.931  | 1.935  | 1.952  | 1.939  |
|                                      | $MRCI_{MIN}$       | +1.492              | +0.084      |        |        |        |        |
|                                      | NEVPT2             | +0.905              | +0.046      | 1.943  | 1.948  | 1.961  | 1.951  |
|                                      |                    | Siloxido            | Complexes   |        |        |        |        |
| Cr(OSiMe <sub>3</sub> ) <sub>4</sub> | BLYP               | 0.352               | 0.000       | 1.972  | 1.972  | 1.976  | 1.974  |
|                                      | CASSCF             | +0.789              | 0.000       | 1.920  | 1.920  | 1.931  | 1.923  |
|                                      | $MRCI_{MIN}$       | +0.804              | 0.000       |        |        |        |        |
|                                      | NEVPT2             | +0.748              | 0.000       | 1.929  | 1.929  | 1.941  | 1.933  |
| $Cr(DTBMS)_4$                        | BLYP               | +0.287              | +0.028      | 1.972  | 1.972  | 1.975  | 1.973  |
| Experimental geometry                | CASSCF             | +0.704              | +0.072      | 1.915  | 1.918  | 1.927  | 1.920  |
|                                      | $MRCI_{MIN}$       | +0.719              | +0.080      |        |        |        |        |
| Cr(DTBMS) <sub>4</sub>               | BLYP               | +0.098              | +0.002      | 1.9702 | 1.9702 | 1.9721 | 1.9708 |
| Optimized geometry                   | CASSCF             | +0.425              | +0.006      | 1.9127 | 1.9128 | 1.9185 | 1.9146 |
|                                      | $MRCI_{MIN}$       | +0.432              | +0.006      |        |        |        |        |
|                                      | expt.d             | +0.556              | 0.0         | 1.935  | 1.935  | 1.9    | 1.92   |

<sup>&</sup>lt;sup>a</sup> Taken from Ward et al.<sup>1</sup> Four conformations were identified (denoted I - IV) for  $Cr(Nor)_4$  in frozen isooctane solution at 93 K and the zfs parameters for each is given (no sign determination was possible, hence no sign is provided). The g value given is from a single crystal measurement at room temperature and thus does not directly correspond to the frozen solution data.

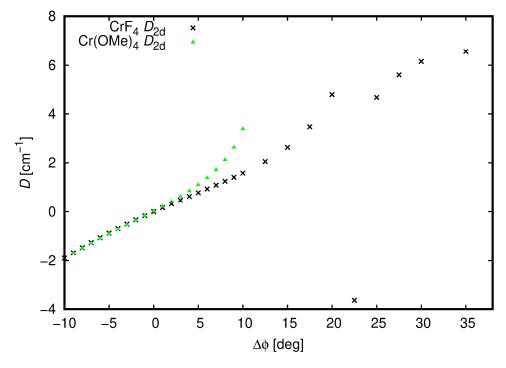
<sup>&</sup>lt;sup>b</sup> The second set of zfs parameters given for each theory model corresponds to use of the optimized structure for each of Cr(OCH'Bu<sub>2</sub>)<sub>4</sub> and Cr(O'Bu)<sub>4</sub>, but then with the substituents converted to simply methyl groups, allowing direct comparison with "authentic" Cr(OMe)<sub>4</sub>.

<sup>&</sup>lt;sup>c</sup> Taken from Alyea et al.<sup>7</sup> There was evidence for small magnitude zfs, but its value was not determined. Its magnitude must be smaller than the X-band microwave quantum energy, hence the upper limit provided.

<sup>&</sup>lt;sup>d</sup> The experimental value for only species B (the major one) is given here; see Table 1 for the full dataset.


**Table S15.** CASSCF/6-311G\* and NEVPT2/6-311G\* zfs contributions for selected CrL<sub>4</sub> complexes: **a)** D and, **b)** E parameters; all values in cm<sup>-1</sup>.

|                     |        | , b and, | D) E para                     | incters, ar                     | C + CCCT                           |          |            |                               |               |                      |
|---------------------|--------|----------|-------------------------------|---------------------------------|------------------------------------|----------|------------|-------------------------------|---------------|----------------------|
| <b>a</b> ) <i>D</i> |        |          |                               |                                 | CASSCF                             |          |            |                               | NEVPT2        |                      |
| Block               |        | Root     | CrF <sub>4</sub> <sup>a</sup> | Cr <sup>t</sup> Bu <sub>4</sub> | Cr(NMe <sub>2</sub> ) <sub>4</sub> | Cr(OMe)4 | Cr(DTBMS)4 | CrF <sub>4</sub> <sup>a</sup> | $Cr(NMe_2)_4$ | Cr(OMe) <sub>4</sub> |
| 0                   | 3      | 0        | 0                             | 0                               | 0                                  | 0        | 0          | 0                             | -14.148       | 0                    |
| 0                   | 3      | 1        | -2.357                        | 1.935                           | -158.773                           | 1.92     | 3.382      | -4.586                        | 0             | 1.438                |
| 0                   | 3      | 2        | 2.812                         | 1.941                           | 1.711                              | 2.306    | 3.315      | 2.46                          | 0.707         | 1.876                |
| 0                   | 3      | 3        | -0.475                        | -3.869                          | 0.001                              | -2.815   | -5.885     | 2.098                         | 0.621         | -2.138               |
| 0                   | 3      | 4        | 0                             | 0                               | -0.295                             | 0.037    | 0.001      | 0                             | 0             | 0.033                |
| 0                   | 3      | 5        | 0                             | 0                               | 0.24                               | 0.008    | 0          | 0                             | 0.828         | 0.007                |
| 0                   | 3      | 6        | 0                             | 0                               | 1.66                               | -0.002   | 0.001      | 0                             | 0.005         | -0.002               |
| 0                   | 3      | 7        | 0                             | 0                               | 0                                  | -0.001   | 0          | 0                             | 0.185         | -0.001               |
| 0                   | 3      | 8        | 0                             | 0                               | 0.057                              | 0        | 0          | 0                             | 0.016         | 0                    |
| 0                   | 3      | 9        | 0                             | 0                               | -0.004                             | 0        | 0          | 0                             | 0             | 0                    |
| 1                   | 1      | 0        | 0                             | 0                               | 0                                  | 0.002    | 0.001      | 0                             | 8.81          | 0.004                |
| 1                   | 1      | 1        | 0                             | 0                               | 3.46                               | 0.001    | 0          | 0                             | 0.002         | 0.001                |
| 1                   | 1      | 2        | -0.001                        | -0.973                          | 0.002                              | -0.34    | -1.309     | -0.002                        | 2.13          | -0.27                |
| 1                   | 1      | 3        | 2.15                          | -0.933                          | -0.007                             | -0.379   | -1.296     | 2.432                         | -0.151        | -0.418               |
| 1                   | 1      | 4        | -1.061                        | 1.904                           | 0                                  | -1.096   | 0.011      | -1.24                         | 0.347         | -1.062               |
| 1                   | 1      | 5        | -1.084                        | 0                               | 0.398                              | 1.555    | 2.425      | -1.183                        | 0             | 1.47                 |
| 1                   | 1      | 6        | 0                             | 0                               | -0.782                             | -0.019   | -0.003     | 0                             | -0.487        | -0.018               |
| 1                   | 1      | 7        | 0                             | 0                               | 0                                  | 0.007    | -0.002     | 0                             | 0.01          | 0.008                |
| 1                   | 1      | 8        | 0                             | 0                               | -0.831                             | -0.016   | 0          | 0                             | -0.145        | -0.017               |
| 1                   | 1      | 9        | 0                             | 0                               | -0.086                             | -0.002   | 0          | 0                             | -0.437        | -0.002               |
| 1                   | 1      | 10       | 0                             | 0                               | -0.136                             | 0.013    | 0.001      | 0                             | -0.246        | 0.011                |
| 1                   | 1      | 11       | -0.018                        | 0.02                            | -0.154                             | 0.033    | 0.151      | -0.05                         | -0.043        | 0.031                |
| 1                   | 1      | 12       | -0.049                        | -0.01                           | 0                                  | -0.036   | -0.051     | -0.05                         | 0.001         | -0.035               |
| 1                   | 1      | 13       | 0.067                         | -0.011                          | 0.015                              | -0.028   | -0.050     | 0.099                         | 0             | -0.026               |
| 1                   | 1      | 14       | 0                             | 0                               | 0                                  | 0.001    | 0          | 0                             | 0.025         | 0.001                |
|                     | Totals |          | -0.016                        | +0.004                          | -153.5                             | +1.149   | +0.692     | -0.022                        | -1.970        | +0.891               |


Supporting Information for "HFEPR Investigation of CrL4..."

| <b>b</b> ) <i>E</i> |        |      |                               |                | CASSCF                             |                      |                        |                               | NEVPT2                             |                      |
|---------------------|--------|------|-------------------------------|----------------|------------------------------------|----------------------|------------------------|-------------------------------|------------------------------------|----------------------|
| Block               | Mult   | Root | CrF <sub>4</sub> <sup>a</sup> | $Cr^{t}Bu_{4}$ | Cr(NMe <sub>2</sub> ) <sub>4</sub> | Cr(OMe) <sub>4</sub> | Cr(DTBMS) <sub>4</sub> | CrF <sub>4</sub> <sup>a</sup> | Cr(NMe <sub>2</sub> ) <sub>4</sub> | Cr(OMe) <sub>4</sub> |
| 0                   | 3      | 0    | 0                             | 0              | 0                                  | 0                    | 0                      | 0                             | 0                                  | 0                    |
| 0                   | 3      | 1    | 0.667                         | 1.936          | 0                                  | 1.708                | 2.761                  | 0.088                         | 0                                  | -0.251               |
| 0                   | 3      | 2    | -0.761                        | -1.937         | -1.711                             | -1.468               | -2.679                 | 0.728                         | -0.707                             | 0.572                |
| 0                   | 3      | 3    | 0.088                         | 0.002          | 0.001                              | -0.152               | 0                      | -0.819                        | 0.621                              | -0.34                |
| 0                   | 3      | 4    | 0                             | 0              | 0                                  | 0.033                | 0.001                  | 0                             | 0                                  | 0.031                |
| 0                   | 3      | 5    | 0                             | 0              | -0.24                              | -0.012               | 0                      | 0                             | -0.828                             | -0.001               |
| 0                   | 3      | 6    | 0                             | 0              | 1.66                               | -0.001               | -0.001                 | 0                             | 0.005                              | 0                    |
| 0                   | 3      | 7    | 0                             | 0              | 0                                  | 0                    | 0                      | 0                             | 0.185                              | 0                    |
| 0                   | 3      | 8    | 0                             | 0              | -0.057                             | 0                    | 0                      | 0                             | -0.016                             | 0                    |
| 0                   | 3      | 9    | 0                             | 0              | 0                                  | 0                    | 0                      | 0                             | 0                                  | 0                    |
| 1                   | 1      | 0    | 0                             | 0              | 0                                  | -0.002               | 0                      | 0                             | 0                                  | 0.004                |
| 1                   | 1      | 1    | 0                             | 0              | 0                                  | 0                    | 0                      | 0                             | 0                                  | 0                    |
| 1                   | 1      | 2    | 0.001                         | -0.86          | 0                                  | -0.565               | -1.222                 | 0.001                         | 0                                  | 0                    |
| 1                   | 1      | 3    | -0.002                        | 0.846          | -0.007                             | -0.34                | 1.208                  | -0.013                        | -0.151                             | 0.013                |
| 1                   | 1      | 4    | 1.17                          | 0.014          | 0                                  | 0.887                | 0                      | 1.176                         | 0                                  | 0.021                |
| 1                   | 1      | 5    | -1.168                        | 0              | 0                                  | -0.027               | 0                      | -1.163                        | 0                                  | 0.015                |
| 1                   | 1      | 6    | 0                             | 0              | 0.782                              | 0.006                | 0.001                  | 0                             | 0.487                              | 0.02                 |
| 1                   | 1      | 7    | 0                             | 0              | 0                                  | 0.025                | 0                      | 0                             | 0                                  | -0.012               |
| 1                   | 1      | 8    | 0                             | 0              | -0.831                             | -0.013               | 0                      | 0                             | -0.145                             | -0.028               |
| 1                   | 1      | 9    | 0                             | 0              | 0.086                              | -0.002               | 0                      | 0                             | 0.437                              | 0                    |
| 1                   | 1      | 10   | 0                             | 0              | -0.136                             | -0.003               | 0                      | 0                             | -0.246                             | -0.002               |
| 1                   | 1      | 11   | -0.029                        | 0              | 0.154                              | 0                    | 0                      | -0.015                        | 0.043                              | -0.001               |
| 1                   | 1      | 12   | 0.033                         | 0.01           | 0                                  | 0.035                | 0.050                  | 0.016                         | 0                                  | 0.029                |
| 1                   | 1      | 13   | -0.004                        | -0.01          | 0                                  | -0.023               | -0.049                 | 0                             | 0                                  | -0.025               |
| 1                   | 1      | 14   | 0                             | 0              | 0                                  | 0                    | 0                      | 0                             | 0                                  | 0                    |
|                     | Totals |      | -0.005                        | +0.001         | -0.299                             | +0.086               | +0.070                 | -0.001                        | -0.315                             | +0.045               |

<sup>&</sup>lt;sup>a</sup> 6-311+G\* basis set



**Figure S11.** BLYP/6-311G\* D parameter dependence upon geometrical distortion of bond lengths for  $Cr(OMe)_4$  and  $CrF_4$  taking the  $T_d$  geometry as reference. Positive change means bond shortening.



**Figure S12.** BLYP/6-311G\* D parameter dependence upon geometrical distortion of bond angles for  $Cr(OMe)_4$  and  $CrF_4$ . Positive change means angle opening.

## VI. Discussion of electronic absorption spectra of CrL<sub>4</sub> complexes.

Cr'Bu<sub>4</sub> exhibits calculated bands at ~12 660 and 19 800 cm<sup>-1</sup>, the latter of which is quite close to those reported for several CrR<sub>4</sub> complexes,<sup>3</sup> as described above. The former calculated band (at 790 nm) might not be observable. For the alkoxides, the results are reasonable in that for Cr(OMe)<sub>4</sub>, the main visible band is calculated at ~13 700 or ~17 000 cm<sup>-1</sup>, respectively using CASSCF and NEVPT2 levels of theory, versus 15 200 cm<sup>-1</sup> experimentally for Cr(O'Bu)<sub>4</sub>. A calculated spectrum for Cr(O'Bu)<sub>4</sub> is shown in Figure S24. A NIR band is also calculated (11 580 cm<sup>-1</sup> by CASSCF), although substantially blue shifted from experiment (9100 cm<sup>-1</sup>). The amido complex Cr(NMe<sub>2</sub>)<sub>4</sub> in the triplet ground state exhibits a calculated band at ~650 nm (Figure S16) that is in the range of that observed experimentally (730 nm, 13 700 cm<sup>-1</sup>), regardless of R group. 11 The band calculated for Cr(NMeCH'Bu<sub>2</sub>)<sub>4</sub> is more red-shifted (Figure S22), in closer agreement to experiment. However, calculated bands in the region of 18 000 cm<sup>-1</sup> are not observed, which is essentially the problem originally pointed out by Basi et al. 11 The electronic absorption spectra of tetraamido complexes of Cr<sup>IV</sup> thus remain mysterious. Lastly, the siloxide complex Cr(DTBMS)<sub>4</sub>, which could be calculated only using CASSCF, gave reasonable correspondence with experiment. In addition to the CT bands above 28 000 cm<sup>-1</sup>, there are calculated bands at ~17 000, ~11 600, and ~10 000 cm<sup>-1</sup> (Table S12; see also Figure S28), which correspond roughly to the observed bands at 18 520, 12 500, and 9600 – 8700 cm<sup>-1</sup>. As seen in the alkoxide Cr(O'Bu)<sub>4</sub>, CASSCF-calculated bands are generally red shifted from experiment, so this correspondence is acceptable.

## VII. Discussion of vibrational spectra of CrL<sub>4</sub> complexes.

Vibrational, as well as electronic, transitions of the systems under study are presented in Figures S13 – S28. As their analysis is a complicated task, we will restrict our discussion to the vibrations of the central CrX<sub>4</sub> (X = F, O, N, or C) part of simple triplet state complexes, namely Cr(ER<sub>n</sub>)<sub>4</sub>, E = F, OR, NR<sub>2</sub>, CR<sub>3</sub>, R = Me, n = 0 - 3, as in larger molecules (i.e., more complex R groups) the central part vibrations (v(Cr-X)) of interest become hardly distinguishable from the primarily ligand ones (v(C-O, C-N, C-C), etc.).

The optimized geometry of  ${}^{3}$ [CrF<sub>4</sub>] ${}^{0}$  is nearly of  $T_d$  symmetry. The lowest two scissoring vibrations (calculated at 189 and 191 cm ${}^{-1}$ ) of low intensity originate in IR forbidden E( $T_d$ ) vibrations ( $v_2$ ). The next three higher wagging vibrations (199, 202, and 202 cm ${}^{-1}$ ) of medium intensity, and the highest three asymmetric stretching vibrations (772, 773, and 776 cm ${}^{-1}$ ) of high intensity correspond to the IR allowed  $T_2(T_d)$  ones, respectively  $v_4$  and  $v_3$ . The unobserved symmetric stretching vibration at 703 cm ${}^{-1}$  corresponds to the IR forbidden  $A_1(T_d)$  one ( $v_1$ ). These results are in good agreement with Schlöder et al., who calculated  $v_3$  at 783.5 cm ${}^{-1}$  and  $v_1$  at 713.9 cm ${}^{-1}$  (using B3LYP basis set; respectively at 799.7 cm ${}^{-1}$  and 722.1 cm ${}^{-1}$  using CCSD(T)), ${}^{42}$  and with their experiment, which gave  $v_3$  at 784.3 cm ${}^{-1}$  in an Ar matrix (790.2 cm ${}^{-1}$  in a Ne matrix). It can be expected that only the analogs of both these  $T_2(T_d)$  vibration types corresponding to the central CrE<sub>4</sub> part of the studied complexes might be observed in calculated IR spectra.

Concerning the alkyl complex,  ${}^{3}$ [Cr ${}^{\prime}$ Bu<sub>4</sub>] ${}^{0}$ . we found only three medium intense vibrations (at 1161, 1162, and 1163 cm ${}^{-1}$ ) of the CrC<sub>4</sub> core. The IR forbidden Cr-C symmetric stretching vibrations were at 227 and 1187 cm ${}^{-1}$ . In  ${}^{3}$ [Cr(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>4</sub>] ${}^{0}$ . we identified two weak (at 542 and 544 cm ${}^{-1}$ ), a single weak, higher (at 563 cm ${}^{-1}$ ), three medium intense (at 711, 711, and 712 cm ${}^{-1}$ ), and

four medium intense, higher (at 982, 985, 990. and 992 cm<sup>-1</sup>) vibrations. For the amido complex,  ${}^{3}$ [Cr(NMe<sub>2</sub>)<sub>4</sub>]<sup>0</sup> we found three intense (at 587, 595, and 608 cm<sup>-1</sup>), three very intense (at 960. 963, and 963 cm<sup>-1</sup>), three less intense (at 1175, 1176, and 1186 cm<sup>-1</sup>), and again three less intense (1279, 1279, and 1282 cm<sup>-1</sup>) CrN<sub>4</sub> vibrations. The IR forbidden Cr-N symmetric stretch was calculated at 978 cm<sup>-1</sup>.

In the alkoxide complex,  ${}^{3}$ [Cr(OMe)<sub>4</sub>]<sup>0</sup>, we identified three medium intense vibrations (at 653, 685, and 687 cm<sup>-1</sup>), two very intense (1065 and 1970 cm<sup>-1</sup>) and again two medium intense (1977 and 1096 cm<sup>-1</sup>) vibrations of the CrO<sub>4</sub> core. The IR forbidden Cr-O symmetric stretch was at 601 cm<sup>-1</sup>. Nevertheless, in the larger complex,  ${}^{3}$ [Cr(O'Bu)<sub>4</sub>]<sup>0</sup>, we may see three medium intense (at 625, 634, and 634 cm<sup>-1</sup>) and three very intense (942, 944, and 944 cm<sup>-1</sup>) core vibrations in agreement with the above CrF<sub>4</sub> scheme. The IR forbidden Cr-O symmetric stretch was again at 601 cm<sup>-1</sup>. The red shifted, very intense vibrations in  ${}^{3}$ [Cr(O'Bu)<sub>4</sub>]<sup>0</sup> relative to  ${}^{3}$ [Cr(OMe)<sub>4</sub>]<sup>0</sup> might be explained by Cr-O bond weakening due to the bulky  ${}^{-}$ O'Bu ligands.

In the smaller siloxide complex,  ${}^{3}$ [Cr(OSiMe<sub>3</sub>)<sub>4</sub>] ${}^{0}$ , we were able to identify only three very intense vibrations (at 911, 915, and 915 cm<sup>-1</sup>). The IR forbidden Cr-O symmetric stretch was calculated at 1036 cm<sup>-1</sup>. In the larger one,  ${}^{3}$ [Cr(OSiMe'Bu<sub>2</sub>)<sub>4</sub>] ${}^{0}$  (Cr(DTBMS)<sub>4</sub>), we found only three very intense vibrations at 868 cm<sup>-1</sup>. The red shifted very intense vibrations in the larger siloxide complex relative to the smaller one might be again explained by Cr-O bond weakening due to the bulkier ligand.

Finally, it may be concluded that some CrX<sub>4</sub> skeleton features derived from CrF<sub>4</sub> might be observed in all complexes under study. Mixing of CrX<sub>4</sub> and ligand vibrations (especially for bulky ligands) makes their resolution problematic and is the source of the qualitative differences among the studied molecules.

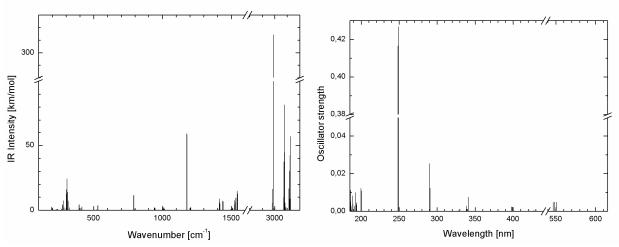



Figure S13.  ${}^{1}[Cr'Bu_{4}]^{0} = {}^{1}[Cr(CMe_{3})_{4}]^{0}$  (UB3LYP/6-311G\*)

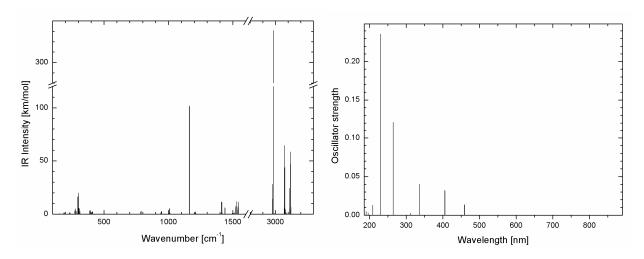



Figure S14.  ${}^{3}[Cr^{t}Bu_{4}]^{0} = {}^{3}[Cr(CMe_{3})_{4}]^{0}$ 

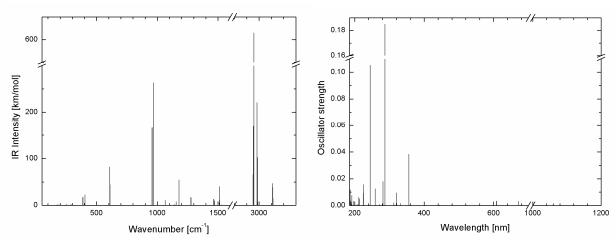



Figure S15. <sup>1</sup>[Cr(NMet<sub>2</sub>)<sub>4</sub>]<sup>0</sup> (UB3LYP/6-311G\*)

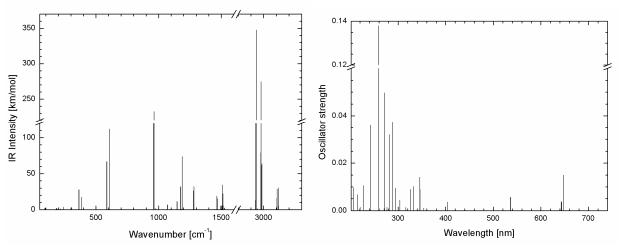



Figure S16. <sup>3</sup>[Cr(NMe<sub>2</sub>)<sub>4</sub>]<sup>0</sup>

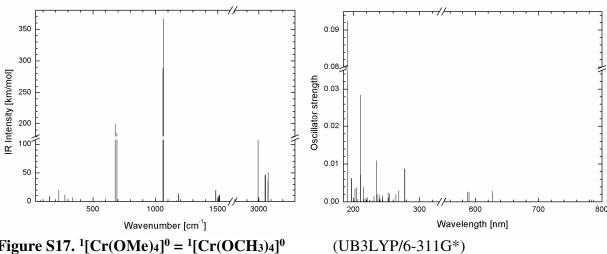



Figure S17.  ${}^{1}[Cr(OMe)_{4}]^{0} = {}^{1}[Cr(OCH_{3})_{4}]^{0}$ 

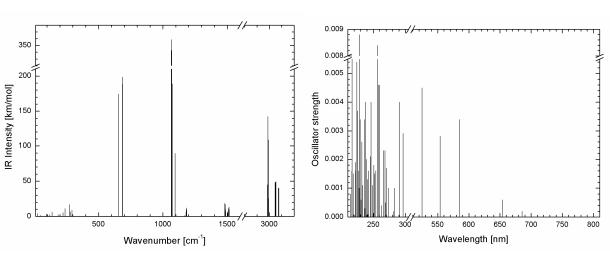
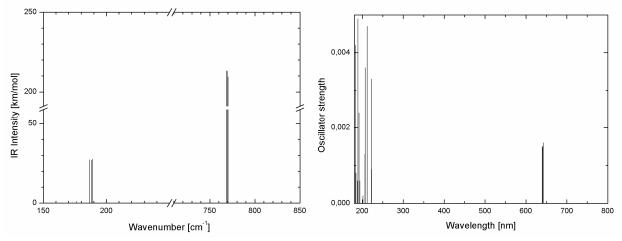




Figure S18.  ${}^{3}[Cr(OMe_{4})]^{0} = {}^{3}[Cr(OCH_{3})_{4}]^{0}$ 



**Figure S19.** <sup>1</sup>[CrF<sub>4</sub>]<sup>0</sup> (UB3LYP/6-311+G\*)

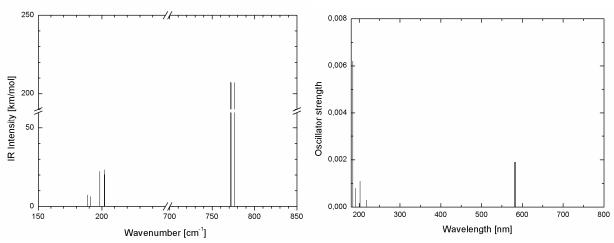
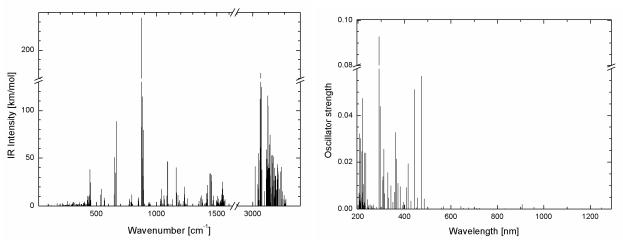




Figure S20. <sup>3</sup>[CrF<sub>4</sub>]<sup>0</sup>



**Figure S21.** <sup>1</sup>[Cr(NMeCH'Bu<sub>2</sub>)<sub>4</sub>]<sup>0</sup> (UB3LYP/6-311G\*)

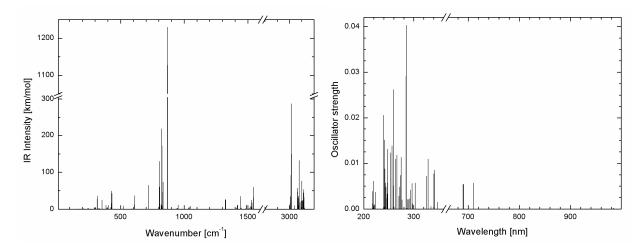



Figure S22. <sup>3</sup>[Cr(NMeCH<sup>t</sup>Bu<sub>2</sub>)<sub>4</sub>]<sup>0</sup>

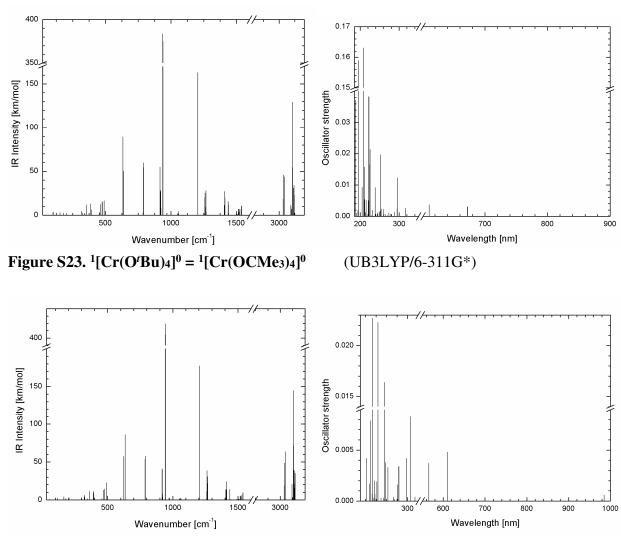
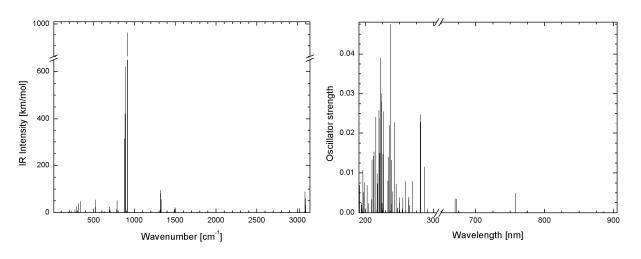




Figure S24.  ${}^{3}[Cr(O'Bu)_{4}]^{0} = {}^{3}[Cr(OCMe_{3})_{4}]^{0}$ 



**Figure S25.** <sup>1</sup>[Cr(OSiMe<sub>3</sub>)<sub>4</sub>]<sup>0</sup> (UB3LYP/6-311G\*)

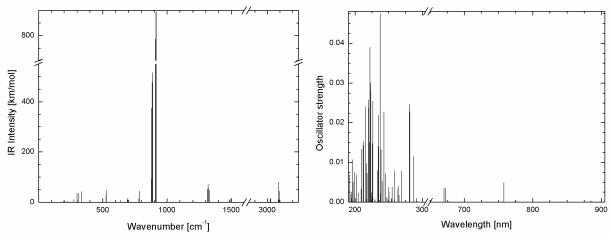



Figure S26. <sup>3</sup>[Cr(OSiMe<sub>3</sub>)<sub>4</sub>]<sup>0</sup>

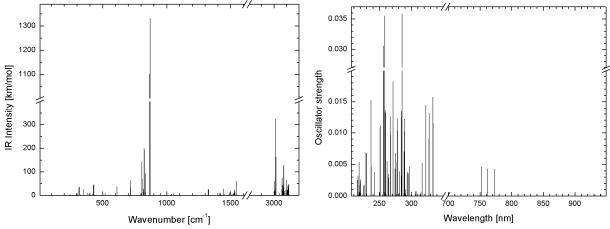



Figure S27.  ${}^{1}[Cr(OSiMe^{t}Bu_{2})_{4}]^{0} = {}^{1}[Cr(DTBMS)_{4}]^{0}$ 

(UB3LYP/6-311G\*)

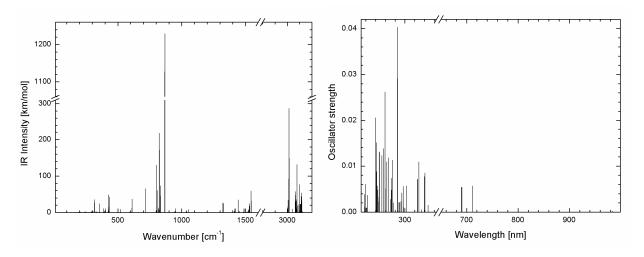



Figure S28.  ${}^{3}[Cr(OSiMe^{t}Bu_{2})_{4}]^{0} = {}^{3}[Cr(DTBMS)_{4}]^{0}$ 

## References

- 1. Ward, G. A.; Bower, B. K.; Findlay, M.; Chien, J. C. W., Electron paramagnetic resonance of tetrakis(1-norbonyl)chromium. *Inorg. Chem.* **1974**, *13*, 614-617.
- 2. Mowat, W.; Shortland, A.; Yagupsky, G.; Hill, N. J.; Yagupsky, M.; Wilkinson, G., Elimination stabilized alkyls. Part I. Chromium, molybdenum, tungsten, and vanadium. *J. Chem. Soc.*, *Dalton Trans.* **1972**, 533-542.
- 3. Mowat, W.; Shortland, A. J.; Hill, N. J.; Wilkinson, G., Elimination stabilized alkyls. Part II. Neopentyl and related alkyls of chromium(IV). *J. Chem. Soc., Dalton Trans.* **1973**, 770-778.
- 4. Ward, G. A.; Kruse, W.; Bower, B. K.; Chien, J. C. W., EPR spectra of chromium(IV) in tetrakis-alkyl chromium compounds. *J. Organomet. Chem.* **1972**, *42*, C43-C46.
- 5. Alonso, P. J.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Menjón, B.; Rillo, C., Synthesis and characterization of new paramagnetic tetraaryl derivatives of chromium and molybdenum. *J. Organomet. Chem.* **2007**, *692*, 3236-3247.
- 6. Alonso, P. J.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Menjón, B.; Rillo, C., A New Series of Homoleptic, Paramagnetic Organochromium Derivatives: Synthesis, Characterization, and Study of Their Magnetic Properties. *Chem. Eur. J.* **2002**, *8*, 4056–4065.
- 7. Alyea, E. C.; Basi, J. S.; Bradley, D. C.; Chisholm, M. H., Covalent compounds of quadrivalent transition metals. Part II. Chromium(IV) tertiary alkoxides and triethylsilyloxide. *J. Chem. Soc. A* **1971**, 772-776.
- 8. van Dam, P. J.; Klaassen, A. A. K.; Reijerse, E. J.; Hagen, W. R., Application of high frequency EPR to integer spin systems: Unusual behavior of the double-quantum line. *J. Magn. Reson.* **1998**, *130*, 140-144.
- 9. Wasserman, E.; Snyder, L. C.; Yager, W. A., ESR of the Triplet States of Randomly Oriented Molecules. *J. Chem. Phys.* **1964**, *41*, 1763-1772.
- 10. Weil, J. A.; Bolton, J. R., *Electron Paramagnetic Resonance: Elementary Theory and Practical Applications*. 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2007.
- 11. Basi, J. S.; Bradley, D. C.; Chisholm, M. H., Covalent compounds of quadrivalent transition metals. Part III. Chromium(IV) dialkylamides. *J. Chem. Soc. A* **1971**, 1433-1436.
- 12. Alonso, P. J.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Menjón, B., The first structurally characterised homoleptic organovanadium(III) compound. *Chem. Commun.* **2001**, 2138-2139.
- 13. Alonso, P. J.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Menjón, B., New Homoleptic Organometallic Derivatives of Vanadium(III) and Vanadium(IV): Synthesis, Characterization, and Study of Their Electrochemical Behaviour. *Chem. Eur. J.* **2005**, *11*, 4713-4724.
- 14. Marshak, M. P.; Nocera, D. G., Chromium(IV) Siloxide. *Inorg. Chem.* **2013**, *52*, 1173–1175.
- 15. Tregenna-Piggott, P. L. W.; Weihe, H.; Barra, A.-L., High-field, multifrequency EPR study of the  $[Mn(OH_2)_6]^{3+}$  cation: influence of  $\pi$ -bonding on the ground state zero-field-splitting parameters. *Inorg. Chem.* **2003**, *42*, 8504-8508.
- 16. Tregenna-Piggott, P. L. W.; Spichiger, D.; Carver, G.; Frey, B.; Meier, R.; Weihe, H.; Cowan, J. A.; McIntyre, G. J.; Zahn, G.; Barra, A.-L., Structure and bonding of the vanadium(III) hexa-aqua cation. 1. Experimental characterization and ligand-field analysis. *Inorg. Chem.* **2004**, *43*, 8049-8060.
- 17. Van Stappen, C.; Maganas, D.; DeBeer, S.; Bill, E.; Neese, F., Investigations of the Magnetic and Spectroscopic Properties of V(III) and V(IV) Complexes. *Inorg. Chem.* **2018**, *57*, 6421-6438.

- 18. Abrahamson, H. B.; Brandenburg, K. L.; Lucero, B.; Martin, M. E.; Dennis, E., Spectroscopy and photochemistry of the tetranorbornyl complexes of titanium and chromium. *Organometallics* **1984,** *3*, 1379-1386.
- 19. Distortion from tetrahedral geometry and mixing of the states derived from <sup>3</sup>F and <sup>3</sup>P free-ion terms (as well as from singlet terms via spin-orbit coupling (SOC) and from ligand 2p AO contributions) make the other two potentially observable, along with possible spin-forbidden transitions.
- 20. Brorson, M.; Schäffer, C. E., Orthonormal interelectronic repulsion operators in the parametrical d<sup>q</sup> model. Application of the model to gaseous ions. *Inorg. Chem.* **1988**, 27, 2522-2530.
- 21. Ballhausen, C. J., *Introduction to Ligand Field Theory*. McGraw-Hill: New York, 1962.
- 22. Schäffer, C. E., A Perturbation Representation of Weak Covalent Bonding. *Struct. Bonding* **1968,** *5*, 68-95.
- 23. Bendix, J.; Brorson, M.; Schäffer, C. E., Accurate empirical spin orbit coupling parameters  $\zeta_{nd}$  for gaseous  $nd^q$  transition metal ions. The parametrical multiplet term model. *Inorg. Chem.* **1993,** *32*, 2838-2849.
- 24. Bendix, J., Ligfield. In *Comprehensive Coordination Chemistry II, Volume 2: Fundamentals: Physical Methods, Theoretical Analysis, and Case Studies*, Lever, A. B. P., Ed. Elsevier: Amsterdam, 2003; Vol. 2, pp 673-676.
- 25. Chisholm, M. H.; Cotton, F. A.; Extine, M. W., Molecular and electronic structure of tetrakis(dimethylamido)molybdenum(IV). *Inorg. Chem.* **1978**, *17*, 1329-1332.
- 26. Reader, J.; Tauheed, A., Spectrum and energy levels of quadruply-ionized molybdenum (Mo V). *Journal of Physics B: Atomic, Molecular and Optical Physics* **2015**, *48*, 144001.
- 27. Ralchenko, Y.; Kramida, A. E.; Reader, J.; NIST ASD Team, NIST Atomic Spectra Database (ver. 5.5.6). National Institute of Standards and Technology: Gaithersburg, MD, 2018.
- 28. Use of  $B = 794 \text{ cm}^{-1}$ ,  $Dq = 943 \text{ cm}^{-1}$  matches the two higher energy bands exactly, as reported by Alyea et al., but the lowest energy band is calculated 330 cm<sup>-1</sup> too high.
- 29. Bochmann, M.; Wilkinson, G.; Young, G. B.; Hursthouse, M. B.; Malik, K. M. A., Synthesis and properties of bis(*t*-butyl)methoxides of chromium(III,IV), manganese(II), iron(III), cobalt(II), and copper(I). The crystal and molecular structures of lithium tetrakis[bis(*t*-butyl)methoxo]chromate(III)-tetrahydrofuran (1/1), tetrakis[bis(*t*-butyl)methoxo]chromium(IV), and lithium tetrakis[bis(*t*-butyl)methoxo]ferrate(III)-bis(*t*-butyl)-methanol (1/1). *J. Chem. Soc., Dalton Trans.* **1980**, 1863-1871.
- 30. Soriaga, R. A. D.; Nguyen, J. M.; Albright, T. A.; Hoffman, D. M., Diamagnetic Group 6 Tetrakis(di-*tert*-butylketimido)metal(IV) Complexes. *J. Am. Chem. Soc.* **2010**, *132*, 18014-18016.
- 31. von Wartenberg, H., Über höhere Chromfluoride (CrF<sub>4</sub>, CrF<sub>5</sub> und CrO<sub>2</sub>F<sub>2</sub>). *Z. Anorg. Allg. Chem.* **1941**, 247, 135-146.
- 32. Bougon, R.; Wilson, W. W.; Christe, K. O., Synthesis and characterization of tetrafluoroammonium hexafluorochromate and reaction chemistry of chromium pentafluoride. *Inorg. Chem.* **1985**, *24*, 2286-2292.
- 33. Prof. Dr. Sebastian Riedel, personal communication.
- 34. Jacobs, J.; Mueller, H. S. P.; Willner, H.; Jacob, E.; Bürger, H., Vibrational and electronic spectra of molecular chromium tetrafluoride, CrF<sub>4</sub>, and chromium pentafluoride, CrF<sub>5</sub>. Comments on the existence of chromium hexafluoride, CrF<sub>6</sub>. *Inorg. Chem.* **1992**, *31*, 5357-5363.
- 35. See Figure 6a in Jacobs et al; also, Prof. Dr. Sebastian Riedel, personal communication.

- 36. McClure, D. S., Electronic Spectra of Molecules and Ions in Crystals. Part II. Spectra of Ions in Crystals. In *Solid State Physics*, Seitz, F.; Turnbull, D., Eds. Academic Press: New York, 1959; Vol. 9, pp 399-525.
- 37. Hedberg, L.; Hedberg, K.; Gard, G. L.; Udeaja, J. O., Molecular Structure of Chromium Tetrafluoride in the Gas Phase. *Acta Chem. Scand.* **1988,** *42a*, 318-323.
- 38. Stavropoulos, P.; Savage, P. D.; Tooze, R. P.; Wilkinson, G.; Hussain, B.; Motevalli, M.; Hursthouse, M. B., The synthesis and X-ray crystal structures of homoleptic tetrahedral aryls of osmium(IV) and of cyclohexyls of ruthenium(IV), osmium(IV), and chromium(IV). *J. Chem. Soc.*, *Dalton Trans.* **1987**, 557-562.
- 39. Groysman, S.; Villagrán, D.; Nocera, D. G., Pseudotetrahedral d<sup>0</sup>, d<sup>1</sup>, and d<sup>2</sup> Metal–Oxo Cores within a Tris(alkoxide) Platform. *Inorg. Chem.* **2010**, *49*, 10759-10761.
- 40. Bader, R. F. W., *Atoms in Molecules: A Quantum Theory*. Clarendon Press: Oxford, UK, 1994.
- 41. Keith, T. A. AIMAll, 17.11.14; TK Gristmill Software: Overland Park, KS, 2017.
- 42. Schlöder, T.; Brosi, F.; Freyh, B. J.; Vent-Schmidt, T.; Riedel, S., New Evidence in an Old Case: The Question of Chromium Hexafluoride Reinvestigated. *Inorg. Chem.* **2014**, *53*, 5820-5829.