Supporting Information

Quantitative Adjustment to the Molecular Energy Parameter in the Lake-Thomas Theory of Polymer Fracture Energy

Shu Wang,† Sergey Panyukov,‡ Michael Rubinstein,†,§ Stephen L. Craig*,†

†Department of Chemistry, Duke University, Durham, NC 27708, United States
‡P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924, Russia
§Departments of Mechanical Engineering and Materials Science, Biomedical Engineering, and Physics, Duke University, Durham, NC 27708, United States

Calculation of W and U. In order to estimate W, the modified Freely Jointed Chain (m-FJC) was chosen to represent the full range of polymer elasticity up to break (eq. 2).1,2 A plot of eq. 2 is shown in Figure S1a, in which $L_0 = 21 \text{ nm}$, $f_c = 7 \text{ pN}$, and $f_s = 12 \text{ nN}$.3 Since an accurate inverse function of eq. 2 is not available, we calculated W (red shaded region in Figure S1b) by:

$$W = f_{\text{break}}R_{\text{break}} - \int_{0}^{f_{\text{break}}} Rdf$$ \hspace{1cm} (S1)

where $\int_{0}^{f_{\text{break}}} Rdf$ is the gray area in Figure S1b. Based on a typical breaking force of C-C bond ($f_{\text{break}} = 4.5 \text{ nN}$)4,5 and the parameters shown above, $R_{\text{break}} \approx 28.8 \text{ nm}$ was given by eq. 2.
and $\int_0^{f_{\text{break}}} R \, df \approx 111 \, nN \cdot nm$ was obtained by integrating eq. 2 to $f_{\text{break}} = 4.5 \, nN$.

Therefore, W is estimated to be $18.5 \, nN \cdot nm$. This value was divided by the number of bonds $n = 175$ ($N = 35$, each Kuhn segment $b = 0.6 \, nm$ is assumed to contain five main chain bonds) to give $U \approx 64 \, kJ \cdot mol^{-1}$.

Figure S1. (a) The end-to-end distance R of a polymer chain is plotted as a function of the force f based on eq. 2, where $L_0 = 21 \, nm$, $f_c = 7 \, pN$, and $f_S = 12 \, nN$. (b) Schematic illustration for the estimation of W.

REFERENCES:

