Supporting Information

Synthetic Lipomannan Glycan Microarray Reveals the Importance of α(1,2) Mannose Branching in DC-SIGN Binding
Nithinan Sawettanai†, Harin Leelayuwapan‡, Nitsara Karoonuthaisiri‡, Somsak Ruchirawat‡,§, and Siwarutt Boonyarattanakalin*∥

†Program in Chemical Biology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
‡Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
§Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, and Centre of Excellence on Environmental Health and Toxicology, Bangkok 10210, Thailand
¶School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand

*Corresponding Author, E-mail: siwarutt@siit.tu.ac.th, siwarutt.siit@gmail.com
Table of Contents

<table>
<thead>
<tr>
<th>NMR spectra of compound 7</th>
<th>..</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMR spectra of compound 3</td>
<td>..</td>
<td>S5</td>
</tr>
<tr>
<td>NMR spectra of compound 8</td>
<td>..</td>
<td>S7</td>
</tr>
<tr>
<td>NMR spectra of compound 9</td>
<td>..</td>
<td>S9</td>
</tr>
<tr>
<td>NMR spectra of compound 4</td>
<td>..</td>
<td>S11</td>
</tr>
<tr>
<td>NMR spectra of compound 10</td>
<td>..</td>
<td>S13</td>
</tr>
<tr>
<td>NMR spectra of compound 11</td>
<td>..</td>
<td>S15</td>
</tr>
<tr>
<td>NMR spectra of compound 12</td>
<td>..</td>
<td>S17</td>
</tr>
<tr>
<td>NMR spectra of compound 13</td>
<td>..</td>
<td>S19</td>
</tr>
<tr>
<td>NMR spectra of compound 14</td>
<td>..</td>
<td>S21</td>
</tr>
<tr>
<td>NMR spectra of compound 15</td>
<td>..</td>
<td>S23</td>
</tr>
<tr>
<td>NMR spectra of compound 16</td>
<td>..</td>
<td>S28</td>
</tr>
<tr>
<td>NMR spectra of compound 17</td>
<td>..</td>
<td>S30</td>
</tr>
<tr>
<td>NMR spectra of compound Man2</td>
<td>..</td>
<td>S37</td>
</tr>
<tr>
<td>NMR spectra of compound BMan4</td>
<td>...</td>
<td>S42</td>
</tr>
<tr>
<td>NMR spectra of compound Mans</td>
<td>..</td>
<td>S47</td>
</tr>
<tr>
<td>NMR spectra of compound BMan10</td>
<td>..</td>
<td>S52</td>
</tr>
<tr>
<td>MALDI-TOF mass spectrum of Man2</td>
<td>...</td>
<td>S57</td>
</tr>
<tr>
<td>MALDI-TOF mass spectrum of BMan4</td>
<td>..</td>
<td>S58</td>
</tr>
<tr>
<td>MALDI-TOF mass spectrum of Mans</td>
<td>...</td>
<td>S59</td>
</tr>
<tr>
<td>MALDI-TOF mass spectrum of BMan10</td>
<td>..</td>
<td>S60</td>
</tr>
</tbody>
</table>
Figure S1. 300 MHz 1H NMR spectrum of compound 7 (CDCl$_3$ as solvent).
Figure S2. 75 MHz 13C NMR spectrum of compound 7 (CDCl$_3$ as solvent).
Figure S3. 400 MHz 1H NMR spectrum of compound 3 (CDCl$_3$ as solvent).
Figure S4. 100 MHz 13C NMR spectrum of compound 3 (CDCl$_3$ as solvent).
Figure S5. 300 MHz 1H NMR spectrum of compound 8 (CDCl$_3$ as solvent).
Figure S6. 75 MHz 13C NMR spectrum of compound 8 (CDCl$_3$ as solvent).
Figure S7. 300 MHz 1H NMR spectrum of compound 9 (CDCl$_3$ as solvent).
Figure S8. 75 MHz 13C NMR spectrum of compound 9 (CDCl$_3$ as solvent).
Figure S9. 300 MHz 1H NMR spectrum of compound 4 (CDCl$_3$ as solvent).
Figure S10. 75 MHz 13C NMR spectrum of compound 4 (CDCl$_3$ as solvent).
Figure S11. 300 MHz 1H NMR spectrum of compound 10 (CDCl$_3$ as solvent).
Figure S12. 75 MHz 13C NMR spectrum of compound 10 (CDCl$_3$ as solvent).
Figure S13. 300 MHz 1H NMR spectrum of compound 11 (CDCl$_3$ as solvent).
Figure S14. 75 MHz 13C NMR spectrum of compound 11 (CDCl$_3$ as solvent).
Figure S15. 400 MHz 1H NMR spectrum of compound 12 (CDCl$_3$ as solvent).
Figure S16. 100 MHz 13C NMR spectrum of compound 12 (CDCl$_3$ as solvent).
Figure S17. 300 MHz 1H NMR spectrum of compound 13 (CDCl$_3$ as solvent).
Figure S18. 75 MHz 13C NMR spectrum of compound 13 (CDCl$_3$ as solvent).
Figure S19. 300 MHz 1H NMR spectrum of compound 14 (CDCl$_3$ as solvent).
Figure S20. 75 MHz 13C NMR spectrum of compound 14 (CDCl$_3$ as solvent).
Figure S21. 400 MHz ^1H NMR spectrum of compound 15 (CDCl$_3$ as solvent).
Figure S22. 100 MHz 13C NMR spectrum of compound 15 (CDCl$_3$ as solvent).
Figure S23. HSQC NMR spectrum of compound 15 (CDCl₃ as solvent).
Figure S24. HMBC NMR spectrum of compound 15 (CDCl₃ as solvent).
Figure S25. COSY NMR spectrum of compound 15 (CDCl₃ as solvent).
Figure S26. 400 MHz 1H NMR spectrum of compound 16 (CDCl$_3$ as solvent).
Figure S27. 100 MHz 13C NMR spectrum of compound 16 (CDCl$_3$ as solvent).
Figure S28. 300 MHz 1H NMR spectrum of compound 17 (CDCl$_3$ as solvent).
Figure S29. 75 MHz 13C NMR spectrum of compound 17 (CDCl$_3$ as solvent).
Figure S30. 400 MHz 1H NMR spectrum of compound 18 (CDCl$_3$ as solvent).
Figure S31. 100 MHz 13C NMR spectrum of compound 18 (CDCl$_3$ as solvent).
Figure S32. HSQC NMR spectrum of compound 18 (CDCl₃ as solvent).
Figure S33. HMBC NMR spectrum of compound 18 (CDCl₃ as solvent).
Figure S34. COSY NMR spectrum of compound 18 (CDCl₃ as solvent).
Figure S35. 400 MHz 1H NMR spectrum of Man$_2$ (D$_2$O as solvent).
Figure S36. 100 MHz 13C NMR spectrum of Man$_2$ (D$_2$O as solvent).
Figure S37. HSQC NMR spectrum of Man$_2$ (D$_2$O as solvent).
Figure S38. HMBC NMR spectrum of \textit{Man}_2 (D_2O as solvent).
Figure S39. COSY NMR spectrum of \textit{Man}_2 (D_2O as solvent).
Figure S40. 400 MHz 1H NMR spectrum of BMan$_4$ (D$_2$O as solvent).
Figure S41. 100 MHz 13C NMR spectrum of BMan$_4$ (D$_2$O as solvent).
Figure S42. HSQC NMR spectrum of BMan₄ (D₂O as solvent).
Figure S43. HMBC NMR spectrum of BMan$_4$ (D$_2$O as solvent).
Figure S44. COSY NMR spectrum of BMan_4 (D_2O as solvent).
Figure S45. 400 MHz 1H NMR spectrum of Man$_5$ (D$_2$O as solvent).
Figure S46. 100 MHz 13C NMR spectrum of Man$_5$ (D$_2$O as solvent).
Figure S47. HSQC NMR spectrum of Man$_5$ (D$_2$O as solvent).
Figure S48. HMBC NMR spectrum of Man₅ (D₂O as solvent).
Figure S49. COSY NMR spectrum of Man$_5$ (D$_2$O as solvent).
Figure S50. 400 MHz 1H NMR spectrum of BMan$_{10}$ (D$_2$O as solvent).
Figure S51. 100 MHz 13C NMR spectrum of BMan$_{10}$ (D$_2$O as solvent).
Figure S52. HSQC NMR spectrum of BMAn$_{10}$ (D$_2$O as solvent).
Figure S53. HMBC NMR spectrum of BMAn_{10} (D_{2}O as solvent).
Figure S54. COSY NMR spectrum of BMAn\textsubscript{10} (D\textsubscript{2}O as solvent).
Figure S55. MALDI-TOF mass spectrum of Man$_2$.
Figure S56. MALDI-TOF mass spectrum of BMa₄.
Figure S57. MALDI-TOF mass spectrum of Man₅.
Figure S58. MALDI-TOF mass spectrum of BMan$_{10}$.