Supporting Information

Tailoring Ca-based Nanoparticles by Polyol Process for use as Nematicidals and pH Adjusters in Agriculture

Panagiota Tryfona, Orestis Antonogloua, Georgios Vourliasb, Stefanos Mourtikoudisc,d, Ourania Menkisogloue, Catherine Dendrinou-Samaraa*

aLaboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
bDepartment of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
cUCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, W1S 4BS, London, UK.
dBiophysics Group, Department of Physics and Astronomy, University College London (UCL), Gower Street, WC1E 6BT, London, UK.
ePesticide Science Laboratory, Faculty of Agriculture, School of Agriculture, Forestry and Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.

*Corresponding author
E-mail address: samkat@chem.auth.gr
Figure S1. X-ray diffractograms 29-30° (XRD) of Ca(OH)$_2$/CaCO$_3$ (CaC TEG, CaN TEG and CaC PG) and CaCO$_3$ (CaN PG) NPs with TEG and PG, with CaCl$_2$ (CaC) and Ca(NO$_3$)$_2$ (CaN) as precursors.
Figure S2. FTIR spectra of Ca(OH)$_2$ (CaN PEG), Ca(OH)$_2$/CaCO$_3$ (CaN TEG) and CaCO$_3$ (CaN PG) NPs with Ca(NO$_3$)$_2$ as precursor.
Figure S3. DLS and ζ-potential measurements for CaN PG, CaN TEG and CaN PEG.
Figure S4. TEM image of Ca(OH)$_2$/CaCO$_3$ NPs (CaN TEG).