SUPPLEMENTARY MATERIAL

Mechanical behavior of InP twinning superlattice nanowires

Zhilin Liua, b, I. Papadimitrioub, M. Castillo-Rodríguezb, C. Wangb, G. Esteban-Manzanaresb, Xiaoming Yuanc, *, H. H. Tand, J. M. Molina-Aldareguíab, J. Llorcab, e, *

a State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, 410083, P.R. China
b IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid, Spain
c Hunan Key Laboratory for Supr微观structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
d Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
e Department of Materials Science, Polytechnic University of Madrid, E.T.S. de Ingenieros de Caminos, 28040 Madrid, Spain

Corresponding authors: xiaoming.yuan@csu.edu.cn; javier.llorca@imdea.org

Fig. S1. 1 - 8: Tensile sample preparation of TSL InP nanowires, and 9 - 11: \textit{In situ} mechanical testing of nanowires in a transmission electron microscope (TEM).
Video S1. The in-situ TEM mechanical testing of TSL InP nanowires.

Video S2. Molecular dynamics simulation of the tensile deformation and fracture of InP TSL nanowires.

Figure S2. Molecular dynamics calculation results of the tensile stress-strain curves of the untwinned InP nanowires as a function of the nanowire diameter at 300K.

Figure S3. Molecular dynamics calculation results of the tensile stress-strain curves of the twinned InP nanowires as a function of the ratio between the diameter D and the twin spacing l at 300K.