Supporting Information

Ru-Catalyzed Chemo- and Enantioselective Hydrogenation of β -Diketones Assisted by the Neighboring Heteroatoms

Wanfang Li,†,‡ Bin Lu,‡ Xiaomin Xie,‡ and Zhaoguo Zhang*,‡,§

[†]College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

zhaoguo@sjtu.edu.cn

Table of Contents

General and Materials	2
1. Preparation of 1a-k	2
2. Characterization data of compounds 2a-k	5
3. Preparation of 3a-j	10
4. Characterization data of compounds 4a-j	14
5. Study of the enol structure of 1a in THF.	16
6. References	18
7. NMR spectra of key substrates and all hydrogenation products	19
8. HPLC diagram of chiral products	61

[‡]Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

[§]State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

General and Materials

General: All reactions were carried out under an atmosphere of N₂ using standard Schlenk techniques unless otherwise noted. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were obtained on a 400 MHz NMR spectrometer. The chemical shifts for ¹H NMR were recorded in ppm downfield from tetramethylsilane (TMS) with the solvent resonance as the internal standard. The chemical shifts for ¹³C NMR were recorded in ppm downfield using the central peak of CDCl₃ (77.00 ppm) as the internal standard. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplications. Flash column chromatography was performed on silica gel (300-400 mesh).

Materials: Commercially available reagents were used throughout without further purification other than those detailed below. The solvents used in catalyst preparation and hydrogenation reactions were pretreated by the following procedures: THF and 1,4-dioxane were distilled over sodium benzopheneone ketyl under nitrogen. CH₂Cl₂ and DMF was distilled over calcium hydride. EtOH was distilled over magnesium under nitrogen. Acetone, MeCN and ethyl acetate was distilled over P₂O₅ under nitrogen.

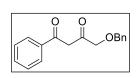
1. Preparation of 1a-k

(1a) 1-(Benzyloxy)pentane-2,4-dione^[1]

To a stirred solution of LDA (prepared from 6.0 g of iPr_2NH and 32 mL of 2.4 M n-BuLi in hexane, 2.2 eq.) was added acetone (4.0 g, 68.9 mmol) dropwise at -78 °C. The mixture was maintained at -50 °C for 1 h before 2-(benzyloxy)-N-methoxy-N-methylacetamide (11.5 g, 55.1 mmol) was added dropwise. Then the mixture was warmed to room temperature and acidified with 10% HCl (aq.) to pH = 4-5. Then the solvent was removed under reduced pressure and the aqueous phase was extracted with ethyl acetate (20 mL \times 3). The combined organic phase was washed with saturated brine and dried over Na₂SO₄. Column chromatography (PE/EA = 20:1) gave the product as light yellow liquid (6.5 g, 57%). ¹H NMR (400 MHz, CDCl₃): mixture of keto:enol = 26:74, δ 7.42–7.27 (m, 5H), 5.86 (s, -CH=CO), 4.59 and 4.57 (s, PhCH₂O-, 2H), 4.09 and 4.06 (BnOCH₂-, s, 2H), 3.64 (s, -COCH₂-), 2.23 and 2.10 (s, -CH₃, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.8, 201.6, 191.8, 190.7, 137.1, 128.3, 127.9, 127.8, 127.7, 127.6, 97.2, 74.9, 73.4, 73.1, 70.9, 54.1, 30.7, 24.5.

(1b) 4-Methoxy-1-phenylbutane-1,3-dione^[2]

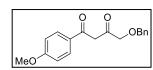
Prepared by the similar procedure to 1a from N,2-dimethoxy-N-methylacetamide. ^[3] ^{1}H NMR (400 MHz, CDCl₃): mixture of keto:enol = 10:90, δ 7.95–7.89 (m, 2H), 7.58–7.50 (m, 1H), 7.50–7.41 (m, 2H), 6.49 (s, -CH=CO),


4.10 (s, OCH₂, 2H), 3.48 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 194.3, 182.7, 134.1, 132.3, 128.5, 128.4, 128.2, 126.9, 93.0, 74.0, 59.0, 49.5.

(1c) 1-Phenoxypentane-2,4-dione^[4]

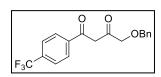
To a suspension of NaH (60% in mineral oil, 1.44 g, 36.1 mmol) in toluene (100 mL) was added methyl 2-phenoxyacetate^[5] (5.0 g, 30.1 mmol) in one portion at 80 °C, then acetone (2.6 g, 45.1 mmol) was added dropwise and reacted at this temperature for 5 h. The reaction was quenched with 50 mL of 10% HCl (aq.) and the aqueous phase was extracted with ethyl acetate for three times and the combined organic phase was washed with saturated brine and dried over Na₂SO₄. Column chromatography (PE/EA = 15:1) gave the product as light yellow liquid (4.1 g, 71%). ¹H NMR (400 MHz, CDCl₃): mixture of keto:enol = 19:81, δ 7.35–7.28 (m, 2H), 7.01 (d, J = 7.4 Hz, 1H), 6.94–6.88 (m, 2H), 5.90 (s, -CH=CO), 4.60 and 4.57 (OCH₂, 2H), 3.76 (s, COCH₂), 2.28 and 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.2, 191.2, 190.1, 157.6, 129.4, 129.3, 121.3, 114.3, 114.2, 97.0, 72.3, 68.5, 53.7, 30.5, 24.0.

1(d-k) were prepared from various aryl methyl ketones with ethyl 2-benzoxyacetate [6] as 1c.


(1d) 4-(Benzyloxy)-1-phenylbutane-1,3-dione

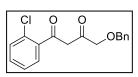
Light yellow liquid. 1 **H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 11:89, δ 7.98–7.84 (m, 2H), 7.53 (dd, J = 5.0, 3.8 Hz, 1H), 7.52–7.41 (m, 2H), 7.42–7.26 (m, 4H), 7.23–7.11 (m, 1H), 6.55 (s, -CH=CO), 4.66 (s, 2H), 4.56 (s, 1H), 4.18 (s,

2H). ¹³C **NMR** (100 MHz, CDCl₃): δ 194.5, 183.0, 137.2, 134.4, 132.5, 128.6, 128.5, 128.2, 128.0, 127.8, 127.1, 93.4, 73.4, 71.7. **HRMS** Calculated for $C_{17}H_{16}O_3Na$ (M+Na)⁺: 291.0997, found: 291.0994.


(1e) 4-(Benzyloxy)-1-(4-methoxyphenyl)butane-1,3-dione

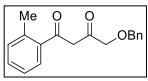
Light yellow liquid. 1 **H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 15:85, δ 7.89 (d, J = 9.0 Hz, 2H), 7.42–7.24 (m, 5H), 6.95 (d, J = 9.0 Hz, 2H), 6.48 (s, -CH=CO), 4.65 and 4.56 (s, PhCH₂O, 2H), 4.17 and 4.12 (s, OCH₂CO, 2H), 3.87

(s, OMe, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 192.1, 183.6, 163.1, 137.2, 130.7, 129.1, 128.4, 128.3, 127.8, 127.7, 126.8, 113.8, 92.4, 74.9, 73.3, 73.2, 71.3, 55.3, 49.6. **HRMS** Calculated for C₁₈H₁₉O₄ (M+H)⁺: 299.1283, found: 299.1280.


(1f) 4-(Benzyloxy)-1-(4-(trifluoromethyl)phenyl)butane-1,3-dione

Light yellow solid, m.p.: 74.7–78.3 °C. ¹**H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 15:85, δ 8.00 (d, J = 8.2 Hz, 2H), 7.71 (d, J = 8.2 Hz, 2H), 7.47–7.27 (m, 5H), 6.57 (s, CH=CO), 4.66 (s, 2H), 4.19 (s, 2H). ¹³C NMR (100 MHz,

CDCl₃): δ 196.0, 180.4, 137.6, 137.0, 133.8, 133.5, 129.3, 128.8, 128.6, 128.1, 127.8, 127.3, 127.2, 125.6, 125.5, 125.0, 94.1, 73.5, 71.8. **HRMS** Calculated for C₁₈H₁₅F₃O₃Na (M+Na)⁺: 359.0871, found: 359.0871.


(1g) 4-(Benzyloxy)-1-(2-chlorophenyl)butane-1,3-dione

Light yellow liquid. ¹**H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 9:91, δ 7.95–7.27 (m, 9H), 6.55 (s, -CH=CO), 6.44 (s, 1H), 4.64 (s, 2H), 4.19 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ 193.5, 183.8, 137.0, 134.9, 132.4, 131.8, 131.7, 130.6,

130.0, 128.5, 128.4, 127.9, 127.8, 127.7, 127.0, 126.8, 98.8, 93.4, 73.3, 71.3, 53.6. **HRM**S Calculated for $C_{17}H_{15}ClO_3Na~(M+Na)^+$: 325.0607, found: 325.0600.

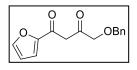
(1h) 4-(Benzyloxy)-1-(o-tolyl)butane-1,3-dione

Light yellow liquid. ¹H NMR (400 MHz, CDCl₃): mixture of keto:enol = 17:83, δ 7.69–7.15 (m, 9H), 6.23 (s, CH=CO), 4.64 (s, 2H), 4.17 (s, 2H), 2.59 and 2.51 (s 3H). ¹³C NMR (100 MHz, CDCl₃): δ 193.6, 187.6, 137.2, 135.3, 131.0, 131.4,

130.8, 129.3, 128.5, 127.9, 127.7, 125.7, 125.6, 97.6, 73.3, 71.5, 20.8. **HRMS** Calculated for $C_{18}H_{18}O_{3}Na$ (M+Na)⁺: 305.1154, found: 305.1155.

(1i) 4-(Benzyloxy)-1-(naphthalen-1-yl)butane-1,3-dione

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 20:80, δ 8.47 (s, 1H), 7.97–7.85 (m, 4H), 7.66–7.49 (m, 3H), 7.44–7.33 (m, 4H), 6.69 (s, CH=CO), 4.69 and 4.57 (s, 2H), 4.30 (s, 1H), 4.22 (s, 2H). ¹³**C NMR** (100 MHz,


CDCl₃): δ 194.5, 182.8, 137.2, 135.3, 132.6, 131.6, 129.6, 129.3, 128.8, 128.6, 128.4, 128.1, 128.0, 127.9, 127.7, 127.4, 126.7, 126.4, 126.2, 126.0, 123.1, 93.8, 73.5, 71.8, 50.0. **HRMS** Calculated for C₂₁H₁₈O₃Na (M+Na)⁺: 341.1154, found: 341.1147.

(1j) 4-(Benzyloxy)-1-(naphthalen-2-yl)butane-1,3-dione

Light yellow solid, m.p.: 41.2-42.4 °C. ¹**H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 25:75, δ 8.56 (d, J = 8.4 Hz, 1H), 7.96–7.87 (m, 2H), 7.80 (dd, J = 7.2, 1.2 Hz, 1H), 7.65–7.47 (m, 3H), 7.51–7.22 (m, 5H), 6.47 (s, -CH=CO),

4.68 and 4.59 (s, 2H), 4.30 and 4.26 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 192.8, 187.8, 137.1, 133.7, 133.6, 131.8, 130.0, 128.4, 128.3, 127.9, 127.8, 127.7, 127.3, 127.2, 126.3, 125.4, 124.6, 98.5, 73.3, 71.3, 53.0. **HRMS** Calculated for $C_{21}H_{19}O_3$ (M+H)⁺: 319.1334, found: 319.1328.

(1k) 4-(Benzyloxy)-1-(furan-2-yl)butane-1,3-dione

Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 25:75, δ 7.59 (dd, J = 1.6, 0.8 Hz, 1H), 7.41–7.25 (m, 5H), 7.21–7.15 (m, 1H), 6.59–6.48 (m, 1H), 6.41 (s, CH=CO), 4.64 and 4.56 (s, 2H), 4.18 (s, COCH₂), 4.15 and 4.03 (s, OCH₂,

2H). ¹³C **NMR** (100 MHz, CDCl₃): δ 189.8, 175.5, 149.8, 146.8, 146.2, 137.0, 129.3, 128.3, 128.1, 127.8, 127.7, 118.2, 116.0, 112.4, 93.1, 70.5, 49.6. **HRMS** Calculated for $C_{15}H_{14}O_4Na$ (M+Na)⁺: 281.0790, found: 281.0791.

2. Characterization data of compounds 2a-k

Typical procedure for asymmetric hydrogenation reactions: To a 20 mL Schlenk tube were added [Ru(benzene)Cl₂]₂ (5.0 mg, 10.0 μmol) and (*S*)-SunPhos (15.1 mg, 22.6 μmol). The tube was vacuumed and purged with nitrogen three times before addition of freshly distilled and freeze-and-thaw degassed EtOH/CH₂Cl₂ (1 mL/1 mL). The resulting mixture was heated at 50 °C for 1 h and then the solvent was removed under vacuum to give the catalyst as a brownish yellow solid. The catalyst was dissolved in degassed THF (10 mL) and then the solution was equally divided into 5 vials. Then the vials were taken into an autoclave. The autoclave was purged three times with H₂ and the required pressure of H₂ was set. Then the autoclave was stirred under specified reaction conditions. After being cooled to ambient

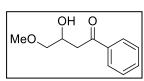
temperature and careful release of the hydrogen, the autoclave was opened, and the solvent was evaporated. The enantiomeric excess was determined by HPLC after passing the samples through a short pad of silica gel eluted with petroleum ether and ethyl acetate.

Table S1. Screening of the Other Solvents

entry	solvent	conversion	2a		2aa		
Circi	Solvent	(%)	isolated yield (%)	ee (%)	isolated yield (%)		
1	MeCN	<2					
2	DMF	<2					
3	dioxane	80	76	94.0			
4	EtOAc	19	17	92.8			
5	EtOH	99			95		
6	DCM	95			90		
7	Acetone	95			89		
Condit	Conditions: 1a (103 mg, 0.5 mmol, solvent (2 mL), $S/C = 200$						

Conditions: **1a** (103 mg, 0.5 mmol, solvent (2 mL), S/C = 200.

(2a) (*R*)-5-(Benzyloxy)-4-hydroxypentan-2-one^[7]

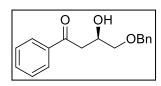

Purified by flash column chromatography (PE/EA = 5:1) as light yellow liquid (97 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 7.39–7.27 (m, 5H), 4.55 (d, J = 1.3 Hz, 2H), 4.26 (dd, J = 7.0, 4.6 Hz, 1H), 3.47 (qd, J = 9.6, 5.4 Hz, 2H), 2.97 (d, J = 4.0 Hz, 1H), 2.72–2.59 (m, 2H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 207.9, 137.5, 127.9, 127.2, 73.0, 72.7, 66.1, 46.4, 30.2. **HPLC** (Chiralcel OJ-H column, hexane/ⁱPrOH = 94/6, 0.9 mL min⁻¹, 220 nm): t_1 = 25.9 min, t_2 = 27.6 min. $[\alpha]_D^{25}$ = +16.4 (c 0.59, CH₂Cl₂); Reference value: ^[7] $[\alpha]_D^{\pi}$ = -13.8 (*c* 0.58, CH₂Cl₂) for (*S*)-**5a** with 98% ee.

(2aa) anti-1-(Benzyloxy)pentane-2,4-diol^[8]

Purified by flash column chromatography (PE/EA = 5:1) as light yellow liquid (42 mg, 40%). The *anti*-configuration was determined by comparing the 13 C NMR data with the literature value. [8] **1H NMR** (400 MHz, CDCl₃): δ 7.45–7.17 (m,

5H), 4.56 (s, 2H), 4.15–4.09 (m, 2H), 3.72–3.87 (m, 0.4H), 3.51–3.40 (m, 2H), 1.64–1.51 (m, 2H), 1.22 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 137.7, 128.2, 127.6, 74.4, 73.1, 67.5, 64.5, 40.8, 23.4.

(2b) 3-Hydroxy-4-methoxy-1-phenylbutan-1-one


Purified by flash column chromatography (PE/EA = 4:1) as light yellow liquid (185 mg, 95%). 1 **H NMR** (400 MHz, CDCl₃): δ 8.01–7.93 (m, 2H), 7.62–7.55 (m, 1H), 7.50–7.42 (m, 2H), 4.49–4.35 (m, 1H), 3.50 (t, J = 5.2 Hz, 2H), 3.41 (s, 3H),

3.21 (d, J = 1.0 Hz, 1H), 3.20 (d, J = 5.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 136.6, 133.4, 128.5, 128.0, 75.7, 66.7, 59.1, 41.7. **HPLC** (ChiralPak AS-H column, hexane/ⁱPrOH = 88/12, 0.8 mL min⁻¹, 220 nm): $t_1 = 13.9$ min, $t_2 = 23.6$ min. **HRMS** Calculated for $C_{11}H_{14}O_3Na$ (M+Na)⁺: 217.0841, found: 217.0835.

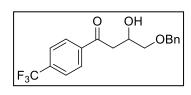
(2c) (R)-4-Hydroxy-5-phenoxypentan-2-one^[9]

Purified by flash column chromatography (PE/EA = 5:1) as white solid (178 mg, 92%), m.p.: 53.3–55.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.20 (m, 2H), 7.01–6.93 (m, 1H), 6.93–6.86 (m, 2H), 4.50–4.35 (m, 1H), 3.97 (d, J = 5.4 Hz, 2H), 3.14 (dd, J = 4.2, 2.8 Hz, 1H), 2.80 (d, J = 6.0 Hz, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 208.3, 158.2, 129.3, 120.8, 114.3, 70.6, 65.9, 46.4, 30.5. HPLC (Chiralcel OJ-H column, hexane/iPrOH = 94/6, 0.9 mL min-1, 220 nm): t_1 = 28.4 min, t_2 = 31.5 min. HRMS Calculated for $C_{11}H_{14}O_3Na$ (M+Na)+: 271.0841, found: 271.0842.

$\textbf{(2d) (\textit{R)-4-(Benzyloxy)-3-hydroxy-1-phenylbutan-1-one}^{[7]} \\$

Purified by flash column chromatography (PE/EA = 5:1) as light yellow oil (254 mg, 94%). 1 H NMR (400 MHz, CDCl₃): δ 8.00–7.91 (m, 2H), 7.57 (d, J = 7.4 Hz, 1H), 7.47 (dd, J = 10.8, 4.5 Hz, 2H), 7.40–7.27 (m, 5H), 4.59 (d, J =

2.0 Hz, 2H), 4.50–4.40 (m, 1H), 3.59 (qd, J = 9.6, 5.2 Hz, 2H), 3.22 (d, J = 0.8 Hz, 1H), 3.20 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 199.5, 137.8, 136.6, 133.2, 128.4, 128.2, 128.0, 127.6, 73.2, 66.9, 41.7. **HPLC** (Chiralcel AD-H column, hexane/ⁱPrOH = 88/12, 0.8 mL min⁻¹, 220 nm): $t_1 = 17.5$ min, $t_2 = 19.2$ min. $[\alpha]_D^{25} = +24.6$ (c 0.47, CH₂Cl₂); Reference value: $[\alpha]_D^{\pi} = -21.4$ (c 0.46, CH₂Cl₂) for (S)-**2d** with 98% ee.


(2e) 4-(Benzyloxy)-3-hydroxy-1-(4-methoxyphenyl)butan-1-one

O OH OBn

Purified by flash column chromatography (PE/EA = 4:1) as light yellow liquid (274 mg, 91%). 1 H NMR (400 MHz, CDCl₃): δ 8.02–7.85 (m, 2H), 7.38–7.26 (m, 5H), 7.01–6.89 (m, 2H), 4.58 (d, J = 1.6 Hz, 2H), 3.87 (s, 3H), 3.63–3.53

(m, 2H), 3.16 (s, 1H), 3.15 (d, J = 1.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 197.9, 163.4, 137.7, 130.2, 129.6, 128.0, 127.4, 127.3, 113.4, 73.2, 73.0, 66.8, 55.1, 41.2, 29.4. **HPLC** (ChiralPak IB-3 column, hexane/ⁱPrOH = 85/15, 0.8 mL min⁻¹, 220 nm): $t_1 = 13.4$ min, $t_2 = 14.5$ min. **HRMS** Calculated for $C_{18}H_{21}O_4$ (M+H)⁺: 301.1440, found: 301.1444.

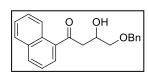
(2f) 4-(Benzyloxy)-3-hydroxy-1-(4-(trifluoromethyl)phenyl)butan-1-one

Purified by flash column chromatography (PE/EA = 5:1) as light yellow liquid (305 mg, 90%). ¹**H NMR** (400 MHz, CDCl₃): δ 8.05 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.39–7.27 (m, 5H), 4.58 (d, J = 2.8 Hz, 2H), 4.51–4.40 (m, 1H), 3.59 (qd, J = 9.6, 5.3 Hz, 2H), 3.29–3.16 (m, 2H), 3.03

(d, J = 4.2 Hz, 1H). ¹³C **NMR** (100 MHz, CDCl₃): δ 198.6, 139.4, 137.7, 134.4, 128.4, 128.4, 127.8, 127.8, 126.0, 125.7, 125.6, 125.2, 124.8, 73.4, 73.1, 66.9, 42.2. **HPLC** (Chiralcel AD-H column, hexane/ⁱPrOH = 88/12, 0.8 mL min⁻¹, 220 nm): $t_1 = 14.9$ min, $t_2 = 17.7$ min. **HRMS** Calculated for $C_{18}H_{17}F_3O_2Na$ (M+Na)⁺: 361.1027, found: 361.1030.

(2gg) 4-(Benzyloxy)-1-(2-chlorophenyl)butane-1,3-diol

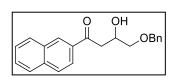
Purified by flash column chromatography (PE/EA = 5:1) as light yellow oil (282 mg, 92%). 1 H NMR (400 MHz, CDCl₃): δ 8.00–7.11 (m, 9H), 5.34 (d, J = 9.8 Hz, 1H), 4.57 (d, J = 10.4 Hz, 2H), 4.24 (s, 1H), 3.98 (s, 1H), 3.59–3.37 (m, 2H),


3.24–3.16 (m, 1H), 1.92 (d, J = 14.6 Hz, 1H), 1.68 (dt, J = 14.4, 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 141.6, 137.6, 131.1, 129.0, 128.5, 128.3, 128.2, 128.0, 127.7, 127.0, 74.2, 73.2, 73.2, 71.1, 70.6, 68.0, 66.9, 41.7, 39.9. **HRMS** Calculated for $C_{17}H_{19}ClO_3Na$ (M+Na)⁺: 329.0920, found: 329.0925.

(2h) 4-(Benzyloxy)-3-hydroxy-1-(o-tolyl)butan-1-one

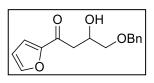
Purified by flash column chromatography (PE/EA = 5:1) as light yellow oil (271 mg, 95%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.67 (d, J = 7.8 Hz, 1H), 7.47–7.17 (m, 8H), 4.58 (d, J = 2.0 Hz, 2H), 4.42 (s, 1H), 3.56 (dd, J = 5.4, 4.2 Hz, 2H), 3.18 (d, J = 3.6 Hz, 1H), 3.16–3.09 (m, 2H), 2.50 (s, 3H). ¹³**C NMR** (100 MHz,

CDCl₃): δ 203.5, 138.3, 137.8, 137.3, 131.9, 131.6, 128.8, 128.3, 127.6, 125.6, 73.3, 73.2, 67.2, 44.5, 21.3. **HPLC** (Chiralcel AS-H column, hexane/iPrOH = 88/12, 0.8 mL min⁻¹, 220 nm): t_1 = 12.5 min, t_2 = 16.5 min. **HRMS** Calculated for $C_{18}H_{20}O_3Na$ (M+Na)⁺: 307.1310, found: 307.1311.


(2i) 4-(Benzyloxy)-3-hydroxy-1-(naphthalen-1-yl)butan-1-one

Purified by flash column chromatography (PE/EA = 5:1) as light yellow oil (296 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 8.47 (s, 1H), 8.06–7.84 (m, 4H), 7.66–7.52 (m, 2H), 7.40–7.27 (m, 5H), 4.61 (d, J = 1.8 Hz, 2H), 4.52 (dd, J = 10.0, 5.0

Hz, 1H), 3.68–3.57 (m, 2H), 3.38–3.33 (m, 2H), 3.25 (d, J = 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 137.8, 135.4, 133.9, 132.2, 129.9, 129.4, 128.4, 128.2, 127.6, 127.5, 126.6, 123.4, 73.2, 67.0, 41.8. **HPLC** (Chiralcel AD-H column, hexane/ⁱPrOH = 88/12, 0.8 mL min⁻¹, 220 nm): t_1 = 26.1 min, t_2 = 28.0 min. **HRMS** Calculated for $C_{21}H_{20}O_3Na$ (M+Na)⁺: 343.1310, found: 343.1301.


(2j) 4-(Benzyloxy)-3-hydroxy-1-(naphthalen-2-yl)butan-1-one

Purified by flash column chromatography (PE/EA = 5:1) as light yellow oil (304 mg, 95%). 1 **H NMR** (400 MHz, CDCl₃): δ 8.64 (d, J = 8.6 Hz, 1H), 8.02–7.87 (m, 3H), 7.65–7.46 (m, 3H), 7.41–7.25 (m, 5H), 4.59 (d, J = 2.0 Hz, 2H),

4.57-4.48 (m, 1H), 3.66-3.56 (m, 2H), 3.38-3.24 (m, 2H), 3.22 (d, J=4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 203.4, 137.7, 135.2, 133.6, 132.8, 129.8, 128.2, 128.0, 127.8, 127.5, 126.2, 125.5, 124.1, 73.2, 73.1, 67.2, 45.0. **HPLC** (ChiralPak AS-H column, hexane/ⁱPrOH = 88/12, 0.8 mL min⁻¹, 220 nm): $t_1 = 20.6$ min, $t_2 = 22.2$ min. **HRMS** Calculated for $C_{21}H_{20}O_3Na$ (M+Na)⁺: 343.1310, found: 343.1299.

(2k) 4-(Benzyloxy)-1-(furan-2-yl)-3-hydroxybutan-1-one

Purified by flash column chromatography (PE/EA = 5:1) as light yellow liquid (245 mg, 94%). Light yellow oil. ¹**H NMR** (400 MHz, CDCl₃): δ 7.60 (d, J = 1.6 Hz, 1H), 7.40–7.26 (m, 5H), 7.22 (d, J = 3.6 Hz, 1H), 6.54 (dd, J = 3.6, 1.8 Hz,

1H), 4.58 (d, J = 1.6 Hz, 2H), 4.42 (s, 1H), 3.56 (qd, J = 9.6, 5.2 Hz, 2H), 3.13–3.00 (m, 2H), 3.06 (s, 1H). ¹³C **NMR** (100 MHz, CDCl₃): δ 188.1, 152.4, 146.7, 137.8, 128.3, 127.6, 117.8, 112.3, 73.3, 73.2,

66.9, 41.6. **HPLC** (Chiralcel AS-H column, hexane/ i PrOH (1% Et₂NH) = 86/14, 1.0 mL min⁻¹, 220 nm): $t_1 = 18.6$ min, $t_2 = 27.4$ min. **HRMS** Calculated for $C_{15}H_{16}O_4Na$ (M+Na)⁺: 283.0946, found: 283.0953.

3. Preparation of 3a-j

(3a) 4,4-Diethoxy-1-phenylbutane-1,3-dione^[10]

To a suspension of 60% NaH (2.9 g, 73.2 mmol) in of THF (60 mL) was added a solution of acetophenone (4.0 g, 33.3 mmol) and ethyl 2,2-diethoxyacetate (5.9 g, 33.3 mmol) in THF (40 mL) at 50 °C and stirred overnight. Then poured the mixture into 50 mL cold 10% HCl (aq.) and the solvent was removed under reduced pressure. The aqueous phase was extracted with ethyl acetate for three times. The combined organic phase was washed with brine and dried over Na₂SO₄. Column chromatography (PE/EA = 10:1) gave **3a** as light yellow liquid (6.9 g, 84%). ¹H NMR (400 MHz, CDCl₃): mixture of keto:enol = 5:95, δ 7.96–7.89 (m, 2H), 7.58–7.50 (m, 1H), 7.48–7.44 (m, 2H), 6.61–6.57 (m, 1H), 4.92–4.87 (m, 1H), 3.78–3.60 (m, 4H), 1.28 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 190.4, 184.4, 134.4, 132.6, 128.6, 127.2, 100.0, 93.7, 62.5, 15.1.

(3b) 4,4-Diethoxy-1-(thiophen-2-yl)butane-1,3-dione

Prepared from acetylthiophene (2.0 g, 15.8 mmol) and ethyl 2,2-diethoxyacetate (2.8 g, 15.8 mmol) with the same procedure as 3a. Purified by flash column chromatography (PE/EA = 8:1) gave the product as light brown liquid (3.2 g,

79%). ¹**H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 17:83, δ 7.81–7.69 (m, 1H), 7.68–7.63 (m, 1H), 7.15–7.12 (m, 1H), 6.43 (s, 1H), 4.94 and 4.16 (s, 1H), 3.79–3.53 (m, 4H), 1.30–1.20 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃): δ 183.2, 182.6, 141.2, 134.5, 133.1, 130.91, 128.2, 128.1, 102.1, 99.0, 94.2, 63.5, 62.2, 48.5, 29.5, 15.0, 14.9. **HRMS** Calculated for C₁₂H₁₆O₄SNa (M+Na)⁺: 279.0667, found: 279.0662.

(3c) 2-(2,4-Dioxopentyl)isoindoline-1,3-dione [11]

Ethyl 2-acetyl-4-(1,3-dioxoisoindolin-2-yl)-3-oxobutanoate: To a suspension of 60% NaH (2.1 g, 50.7 mmol) in THF (50 mL) was added ethyl acetoacetate (6.0 g, 46.1 mmol) at room temperature. Then

2-(1,3-dioxoisoindolin-2-yl)acetyl chloride (10.9 g, 48.0 mmol)^[12] in 100 mL of THF was added dropwise at 40 °C. After addition, the mixture was reacted at 70 °C overnight. The mixture was poured into 100 mL cold 10% HCl (aq.) and the solvent was removed under reduced pressure. The aqueous phase was extracted with ethyl acetate for three times. The combined organic phase was washed with saturated brine and dried over Na₂SO₄. The crude product was recrystallized from EtOH to give light yellow solid (11.3 g, 77%). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (dd, J = 5.6, 3.0 Hz, 2H), 7.75 (dd, J = 5.4, 3.2 Hz, 2H), 4.99 (s, 2H), 4.34 (d, J = 7.2 Hz, 2H), 2.48 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 195.4, 194.7, 168.0, 165. 9, 134.1, 132.1, 123.5, 106.3, 60.9, 44.7, 25.0, 14.3.

Ethyl 2-acetyl-4-(1,3-dioxoisoindolin-2-yl)-3-oxobutanoate (6.8 g, 22.1 mmol) was dissolved in acetic acid (60 mL) containing several drops of concentrated sulfuric acid. The mixture was stirred under reflux for 2 h and the acetic acid was removed under reduced pressure to afford a brown crude mixture. Column chromatography (PE/EA = 3:1) gave the products as white solid (4.8 g, 88%). ¹H NMR (400 MHz, CDCl₃): mixture of keto:enol = 40:60, δ 7.90 (dd, J = 5.4, 3.0 Hz, 2H), 7.75 (dd, J = 5.4, 3.0 Hz, 2H), 5.57 (s, CH=CO), 4.60 and 4.50 (s, 2H), 3.71 (s, COCH₂-), 2.29 and 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 191.3, 185.6, 167.6, 134.2, 134.1, 131.9, 123.5, 97.3, 55.4, 47.0, 43.4, 26.9, 23.0.

(3d) 1-(Phenylsulfonyl)pentane-2,4-dione [13]

To a solution of (methylsulfonyl)benzene (5.0 g, 32.0 mmol) in THF (70 mL) was added n-BuLi (30 mL, 2.4 M in hexane) under nitrogen at 0 °C. After 1 h, the mixture was cooled to -10 °C and ethyl acetoacetate (4.2 g, 32.0 mmol) was added dropwise and warmed to room temperature. After stirring overnight, the reaction was neutralized with cold 10% HCl aq. Then THF was removed under reduced pressure. The aqueous phase was extracted with ethyl acetate (30 mL × 3). Combined organic phase was washed with saturated brine, dried over Na₂SO₄. The crude product was purified by column chromatography (PE/EA = 3:1) to give white solid (5.7 g, 74%). m.p.: 105.3–106.1 °C. ¹H NMR (400 MHz, CDCl₃): mixture of keto:enol = 13:87, δ 7.92–7.86 (m, 2H), 7.67 (d, J = 7.6 Hz, 1H), 7.60–7.54 (m, 2H), 5.73 (s, CH=CO), 4.01 (s, PhSO₂CH₂-, 2H), 2.26 and 2.10 (s, -COCH₃, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 179.5, 138.4, 134.1, 129.1, 128.1, 102.5, 64.1, 57.5, 24.7.

(3e) 1-Phenyl-4-(phenylsulfonyl)butane-1,3-dione

3e was prepared similarly as **3d**. White solid, m.p.: 120.6–122.5 °C. ¹**H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 4:96, δ 7.94–7.84 (m, 4H), 7.74–7.61 (m, 1H), 7.57 (t, J = 7.6 Hz, 3H), 7.47 (t, J = 7.6 Hz, 2H), 6.40 (s, 1H),

4.16 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 184.3, 181.8, 138.4, 134.2, 133.6, 133.1, 129.2, 128.7, 128.3, 127.3, 98.6, 65.0. **HRMS** Calculated for C₁₆H₁₅O₄S (M+H)⁺: 303.0691, found: 303.0690.

(3f) 4,4,4-Trifluoro-1-phenylbutane-1,3-dione^[14]

To a suspension of *t*-BuOK (1.4 g, 12.0 mmol) and acetophenone (1.2 g , 10.0 mmol) in benzene (10 mL) was added ethyl trifluoacetate (1.7 g, 12.0 mmol) dropwise at 10 °C. The reaction mixture was stirred at room temperature for 15 h and acidified by 10% aq. H₂SO₄ to pH = 7 before extracted with ethyl ether (20 mL × 3). The combined organic phase was washed with brine and dried over Na₂SO₄. The crude product was purified by column chromatography (PE/EA = 10:1) to give **3f** as light yellow oil (1.5 g, 69%). ¹**H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 4:96, δ 7.94–7.82 (m, 2H), 7.56 (ddd, J = 6.8, 4.0, 1.2 Hz, 1H), 7.45–7.39 (m, 2H), 6.51 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 186.2, 177.2 (q, J_{F-C} = 36.6 Hz), 134.0, 132.7, 128.9, 128.4, 127.5, 118.6, 115.7, 92.2, 38.0.

(3g) 1-(2-Chlorophenyl)-3-phenylpropane-1,3-dione^[15]

3g was synthesized from acetophenone (1.8 g, 15.0 mmol) and methyl *o*-chlorobenzoate (2.6 g, 15.0 mmol) by using NaH (60% dispersed in mineral oil, 1.5 g, 37.5 mmol) according to the reported procedure. ^[15] The crude product was purified by column chromatography (PE/EA = 15:1) to give yellow solid **3g** (3.3 g, 84%). ¹**H NMR** (400 MHz, CDCl₃): δ 8.09–7.78 (m, 2H), 7.71–7.67 (m, 1H), 7.59–7.27 (m, 6H), 6.76–6.66 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 186.8, 184.4, 136.1, 134.8, 132.6, 131.6, 130.6, 130.0, 128.6, 127.2, 126.9, 98.3.

(3h) Ethyl 2,4-dioxo-4-phenylbutanoate^[16]

To a solution of acetophenone (2.4 g, 20.0 mmol) in toluene (40 mL) was added NaH (60% in mineral oil, 1.0 g, 42.0 mmol) in portions and the mixture was warmed to 45–50 °C under stirring. At this temperature a solution of diethyloxalate (3.5 g, 24.0 mmol) in toluene (20 mL) was added dropwise. The reaction mixture was refluxed for another 1.5 h. Then cooled to room temperature and acidified by 10%

aq. H₂SO₄ to pH = 6 before extracted with ethyl acetate (20 mL × 3). The combined organic phase was washed with brine and dried over Na₂SO₄. The crude product was purified by column chromatography (PE/EA = 4:1) to give **3h** as light yellow liquid (4.1 g, 93%). ¹**H NMR** (400 MHz, CDCl₃): δ 8.08–7.90 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.08 (s, 1H), 4.40 (q, J = 7.0 Hz, 2H), 1.41 (t, J = 7.0 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 190.6, 169.6, 162.0, 134.7, 133.76, 128.8, 127.7, 97.8, 62.5, 14.0.

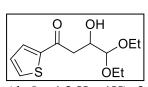
(3i) Ethyl 2,4-dioxo-5-phenylpentanoate^[17]

To a stirred solution of NaOEt (prepared from of 1.2 g of sodium in 25 mL of absolute EtOH) was added a mixture of 1-phenylpropan-2-one (5.4 g, 40.3 mmol) and diethyl oxalate (5.9 g, 40.3 mmol) at 0 °C. After 5 h at room temperature, the mixture was acidified by 10% aq. H_2SO_4 to pH = 6. Ethanol was removed under reduced pressure and the residue was extracted with ethyl acetate (20 mL × 3). The combined organic phase was washed with saturated brine and dried over Na_2SO_4 . The crude product was purified by column chromatography (PE/EA = 3:1) to give **3i** as yellow oil (7.6 g, 81%). **1H NMR** (400 MHz, CDCl₃): mixture of keto:enol = 13:87, δ 7.39–7.19 (m, 5H), 6.36 (s, -CH=CO, 1H), 4.33–4.29 (m, 2H), 3.77 (s, 2H), 1.38–1.30 (m, 3H). **13C NMR** (100 MHz, CDCl₃): δ 200.5, 166.4, 161.6, 133.4, 129.2, 128.7, 127.2, 101.4, 62.3, 47.4, 13.8.

(3j) 5,5-Dimethyl-1-morpholinohexane-1,2,4-trione^[18]

$$+$$
 EtO N + $tBuOK$ THF

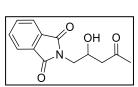
A suspension of *t*-BuOK (2.3 g, 20.5 mmol) in THF (20 mL) was added via cannula to a solution of pinacolone (1.0 g, 10.0 mmol) and ethyl 2-morpholino-2-oxoacetate (1.9 g, 10.0 mmol) in THF (40 mL) over 40 min at 25 °C. After 3 h, AcOH (2.1 mL, 36.0 mmol) was added over 5 min and the resulting heterogeneous mixture was filtered and the solids were washed with CH₂Cl₂. The filtrate was washed with NaHCO₃ and brine, dried, filtered, and concentrated. Purification of the residue by flash chromatography (PE/EA = 1:1) provided the title compound as a yellow solid (1.8 g, 75%). ¹H NMR (400 MHz, CDCl₃): mixture of keto:enol = 31:69, δ 6.03 (s, 1H), 4.05 (s, 1H), 3.78–3.57 (m, 8H), 1.19 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 201.0, 184.6, 163.7, 95.4, 66.8, 66.6, 66.4, 66.3, 47.9, 46.5, 46.2, 42.1, 38.9, 27.0, 26.6, 25.8.


4. Characterization data of compounds 4a-j

(4a) 4,4-Diethoxy-3-hydroxy-1-phenylbutan-1-one

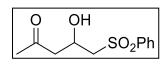
Purified by flash column chromatography (PE/EA = 6:1) as light yellow oil (225 mg, 89%). ¹H NMR (400 MHz, CDCl₃): δ 8.01–7.94 (m, 2H), 7.60–7.52 (m, 1H), 7.48–7.44 (m, 2H), 4.52 (d, J = 4.8 Hz, 1H), 4.29 (s, 1H), 3.80–3.75 (m, 2H), 3.64–

3.58 (m, 2H), 1.24–1.20 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 197.4, 173.7, 136.3, 133.4, 128.5, 128.0, 67.0, 61.6, 42.1, 14.0. **HPLC** (Chiralcel AD-H column, hexane/ⁱPrOH = 90/10, 0.8 mL min⁻¹, 220 nm): $t_1 = 12.4$ min, $t_2 = 13.6$ min. **HRMS** Calculated for $C_{14}H_{20}O_4Na$ (M+Na)⁺: 275.1259, found: 275.1247.


(4b) 4,4-Diethoxy-3-hydroxy-1-(thiophen-2-yl)butan-1-one

Purified by flash column chromatography (PE/EA = 3:1) as yellow oil (186 mg, 93%). 1 H NMR (400 MHz, CDCl₃): δ 7.76 (dd, J = 3.8, 1.1 Hz, 1H), 7.65 (dd, J = 4.9, 1.1 Hz, 1H), 7.13 (dd, J = 4.9, 3.8 Hz, 1H), 4.51 (d, J = 4.8 Hz, 1H), 4.27

(d, J = 4.2 Hz, 1H), 3.80–3.75(m, 2H), 3.64–3.58 (m, 2H), 3.26–3.11 (m, 2H), 2.94 (d, J = 4.4 Hz, 1H), 1.25–1.20 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃): δ 192.6, 144.3, 134.0, 132.6, 128.1, 103.8, 69.1, 64.0, 63.6, 40.5, 15.3, 15.3. **HPLC** (ChiralPak AS-H column, hexane/ⁱPrOH = 92/8, 0.7 mL min⁻¹, 254 nm): $t_1 = 15.7$ min, $t_2 = 16.9$ min. **HRMS** Calculated for $C_{12}H_{18}O_4SNa$ (M+Na)⁺: 281.0832, found: 281.0829.


(4c) 2-(2-Hydroxy-4-oxopentyl)isoindoline-1,3-dione

Purified by flash column chromatography (PE/EA = 2:1) as white solid (223 mg, 90%), m.p.:112.1–113.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (dd, J = 5.5, 3.0 Hz, 2H), 7.73 (dd, J = 5.4, 3.0 Hz, 2H), 4.39–4.35 (m, 1H), 3.88–3.72 (m, 2H),

3.23 (d, J = 4.4 Hz, 1H), 2.67 (dd, J = 10.0, 6.0 Hz, 2H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 208.2, 168.5, 134.0, 131.7, 123.3, 66.0, 47.3, 42.7, 30.6. HPLC (Chiralcel AD-H column, hexane/ⁱPrOH = 82/18, 0.75 mL min⁻¹, 220 nm): $t_1 = 25.2$ min, $t_2 = 29.8$ min. HRMS Calculated for $C_{13}H_{13}NO_4Na$ (M+Na)⁺: 270.0742, found: 270.0730.

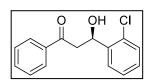
(4d) 4-Hydroxy-5-(phenylsulfonyl)pentan-2-one

Purified by flash column chromatography (PE/EA = 3:1) as yellow oil (221 mg, 91%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.93–7.86 (m, 2H), 7.68–7.61 (m, 1H), 7.58–7.52 (m, 2H), 4.54–4.41 (m, 1H), 3.61 (s, 1H), 3.37–3.22 (m, 2H), 2.75 (d,

J = 5.6 Hz, 2H), 2.13 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 207.4, 139.2, 133.9, 129.3, 127.8, 62.7, 60.9, 48.5, 30.6. **HPLC** (ChiralPak IA-3 column, hexane/ⁱPrOH = 82/18, 0.8 mL min⁻¹, 220 nm): $t_1 = 28.6 \text{ min}$, $t_2 = 30.8 \text{ min}$. **HRMS** Calculated for $C_{13}H_{17}O_4S$ (M+H)⁺: 243.0691, found: 243.0690.

(4e) 3-Hydroxy-1-phenyl-4-(phenylsulfonyl)butan-1-one

O OH SO₂Ph Purified by flash column chromatography (PE/EA = 3:1) as white solid (280 mg, 92%), m.p.: 100.4–101.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.00–7.89 (m, 4H), 7.67 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 7.8 Hz, 3H), 7.47 (t, J = 7.8 Hz, 2H), 4.71–4.67


(m, 1H), 3.74 (d, J = 3.6 Hz, 1H), 3.46 (dd, J = 6.0, 1.8 Hz, 2H), 3.34 (d, J = 5.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 139.3, 136.2, 134.0, 133. 8, 129. 3, 128.7, 128.1, 128.0, 63.2, 61.2, 43.9. **HPLC** (ChiralPak IA-3 column, hexane/ⁱPrOH = 81/19, 0.9 mL min⁻¹, 254 nm): $t_1 = 26.4$ min, $t_2 = 28.5$ min. **HRMS** Calculated for $C_{16}H_{16}O_4SNa$ (M+Na)⁺: 327.0667, found: 327.0657.

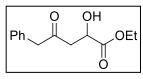
(4f) (*R*)-4,4,4-Trifluoro-3-hydroxy-1-phenylbutan-1-one^[19]

O OH CF₃ Purified by flash column chromatography (PE/EA = 8:1) as colorless liquid (208 mg, 95%). ¹**H NMR** (400 MHz, CDCl₃): δ 7.97 (dd, J = 8.2, 1.0 Hz, 2H), 7.62 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 4.69 (s, 1H), 3.51 (d, J = 4.6 Hz, 1H),

3.43–3.27 (m, 2H). ¹³C **NMR** (100 MHz, CDCl₃): δ 197.5, 136.9, 134.1, 128.8, 128.2, 124.69 (q, J = 280.0 Hz), 67.03 (q, J = 32.0 Hz), 38.3. **HPLC** (Chiralcel OD-H column, hexane/ⁱPrOH = 95/5, 1.0 mL min⁻¹, 237 nm): t_1 = 9.5 min, t_2 = 10.7 min.

$\textbf{(4g) } \textbf{(R)-3-(2-Chlorophenyl)-3-hydroxy-1-phenylpropan-1-one} ^{[20]}$

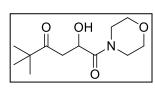
Purified by flash column chromatography (PE/EA = 5:1) as yellowoil (242 mg, 93%). 1 **H NMR** (400 MHz, CDCl₃): δ 8.00–7.93 (m, 2H), 7.72 (d, J = 7.8 Hz, 1H), 7.59 (dd, J = 10.7, 4.2 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.35 (t, J = 8.0 Hz, 2H),


7.29–7.20 (m, 2H), 5.69 (d, J = 9.6 Hz, 1H), 3.84 (d, J = 3.2 Hz, 1H), 3.60–3.55 (m, 1H), 3.18–3.12 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 140.3, 136.3, 133.6, 131.0, 129.2, 128.6, 128.5, 128.1, 127.2, 66.7, 45.3. **HPLC** (ChiralPak AS-H column, hexane/ⁱPrOH = 90/10, 1.0 mL min⁻¹, 220 nm): $t_1 = 10.9$ min, $t_2 = 14.4$ min.

(4h) (R)-Ethyl 2-hydroxy-4-oxo-4-phenylbutanoate^[21]

Purified by flash column chromatography (PE/EA = 6:1) as yellowoil (207 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 8.00–7.90 (m, 2H), 7.63–7.53 (m, 1H), 7.52–7.42 (m, 2H), 4.66 (d, J = 3.8 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 3.57–3.43

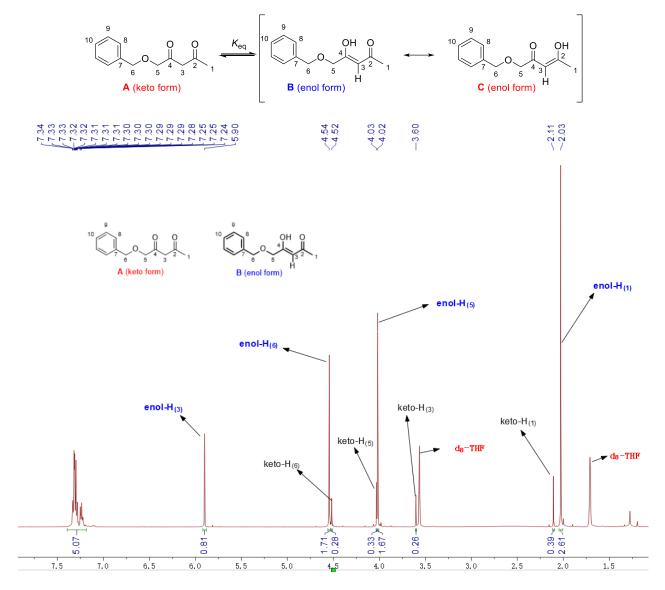
(m, 2H), 3.35 (d, J = 5.8 Hz, 1H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 197.4, 173.7, 136.3, 133.4, 128.5, 128.0, 67.0, 61.6, 42.1, 14.0. **HPLC** (ChiralPak AS-H column, hexane/ⁱPrOH = 85/15, 1.0 mL min⁻¹, 254 nm): $t_1 = 13.5$ min, $t_2 = 16.7$ min.


(4i) Ethyl 2-hydroxy-4-oxo-5-phenylpentanoate

Purified by flash column chromatography (PE/EA = 5:1) as yellow oil (219 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.13 (m, 5H), 4.44 (s, 1H), 4.20 (q, J = 7.2 Hz, 2H), 3.73 (s, 2H), 3.18 (d, J = 5.4 Hz, 1H), 2.95 (dd, J = 9.0, 5.0 Hz,

2H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 205.6, 173.4, 133.2, 129.3, 128.5, 126.9, 66.7, 61.6, 50.2, 45.0, 13.8. **HPLC** (ChiralCel AD-H column, hexane/ⁱPrOH = 85/15, 1.0 mL min⁻¹, 220 nm): $t_1 = 11.3$ min, $t_2 = 12.4$ min. **HRMS** Calculated for $C_{13}H_{16}O_4Na$ (M+Na)⁺: 259.0946, found: 259.0955.

(4j) 2-Hydroxy-5,5-dimethyl-1-morpholinohexane-1,4-dione^[22]



Purified by flash column chromatography (PE/EA = 5:1) as yellow liquid (224 mg, 92%). ¹**H NMR** (400 MHz, CDCl₃): δ 4.83 (td, J = 7.6, 3.2 Hz, 1H), 3.86 (d, J = 7.4 Hz, 1H), 3.80–3.45 (m, 8H), 3.01–3.95 (m, 1H), 2.58–2.53(m, 1H),

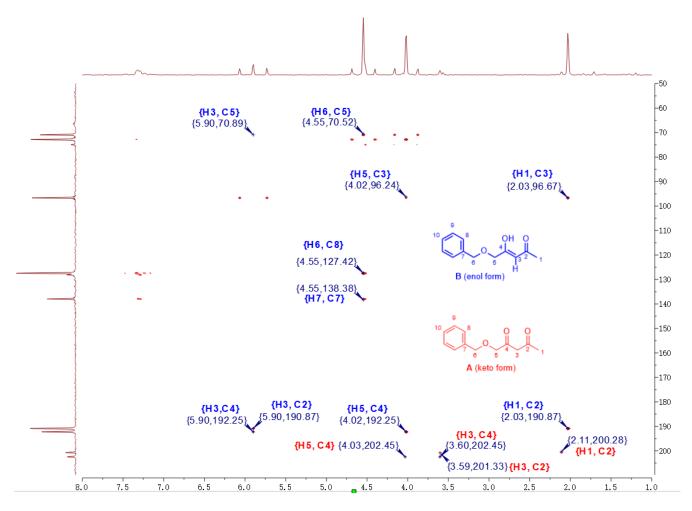
1.16 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 213.8, 171.5, 66.4, 66.3, 65.0, 45.4, 44.1, 42.4, 41.0, 25.7. **HPLC** (ChiralPak AS-H column, hexane/ⁱPrOH = 80/20, 0.8 mL min⁻¹, 220 nm): t_1 = 8.8 min, t_2 = 9.5 min. **HRMS** Calculated for $C_{12}H_{21}NO_4Na$ (M+Na)⁺: 266.1368, found: 266.1370.

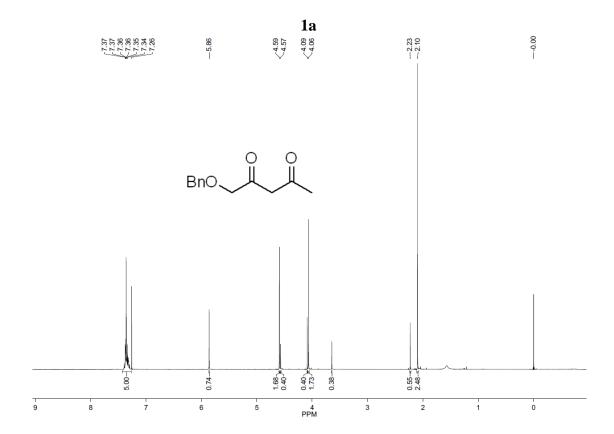
5. Study of the enol structure of 1a in THF.

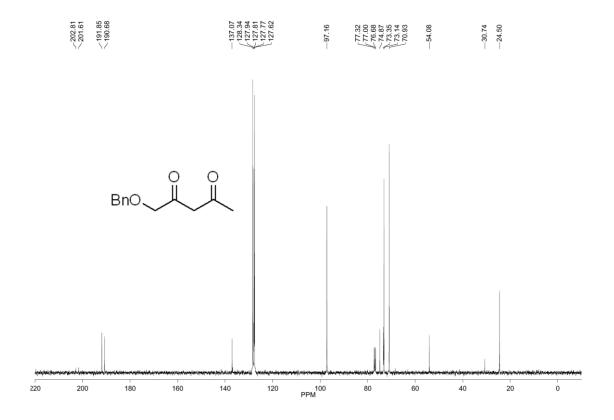
The following ¹H NMR and ¹H-¹³C HMBC spectra were recorded on a Brucker-500 MHz NMR spectrometer at room temperature. The enol content in d_8 -THF is 87% from the integrals of the H₍₁₎. The tautomerization equilibrium constant K_{eq} is calculated to be 6.7. ^[23] An asymmetric β -diketone **1a** may exist in two possible enol forms (**B** and **C**), which could be identified by an HMBC experiment. ^[24]

Figure S1. The Assignments of the 1 H NMR (d_{8} -THF, 500 MHz) Spectrum of **1a**.

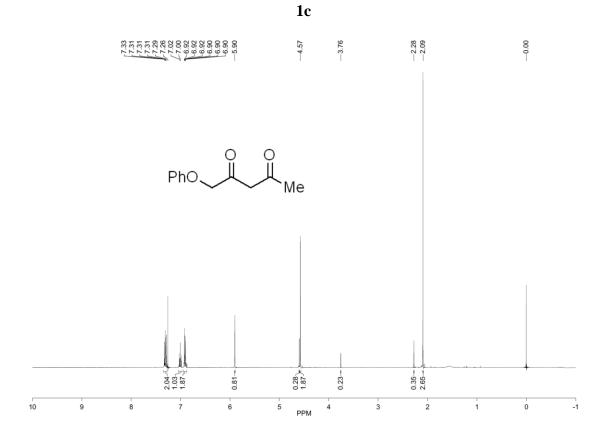
From the ${}^{1}\text{H}-{}^{13}\text{C}$ -HMBC spectrum, the enol form **B** is the predominant in THF.



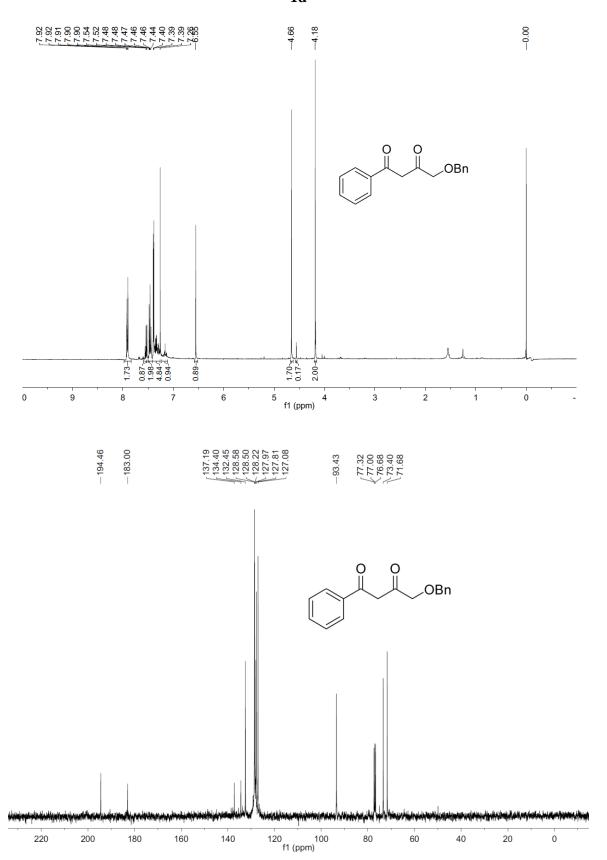

Figure S2. ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC (d_{8} -THF, 500 MHz) Correlations for 1a.

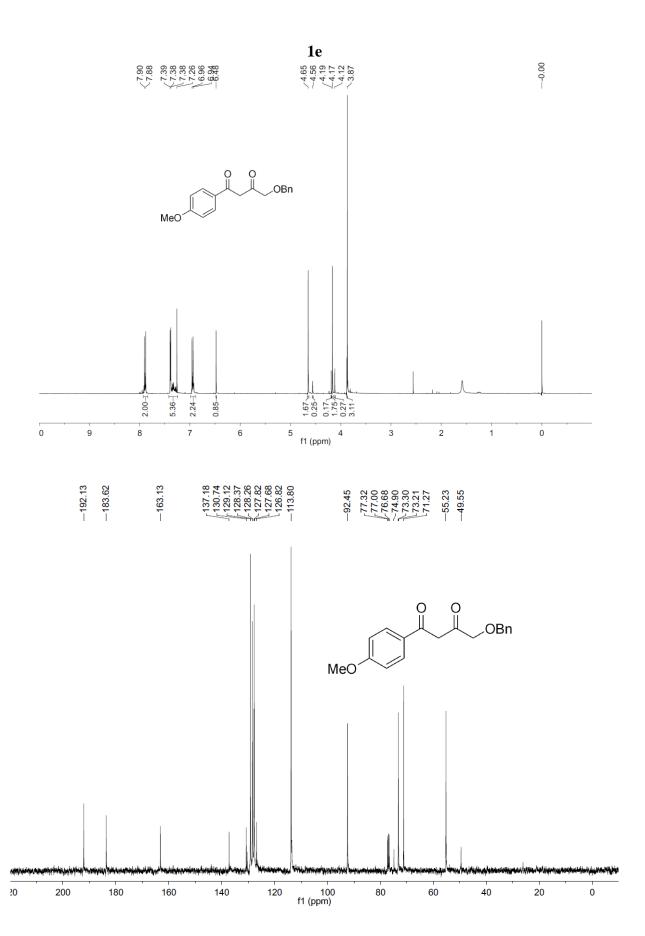

6. References

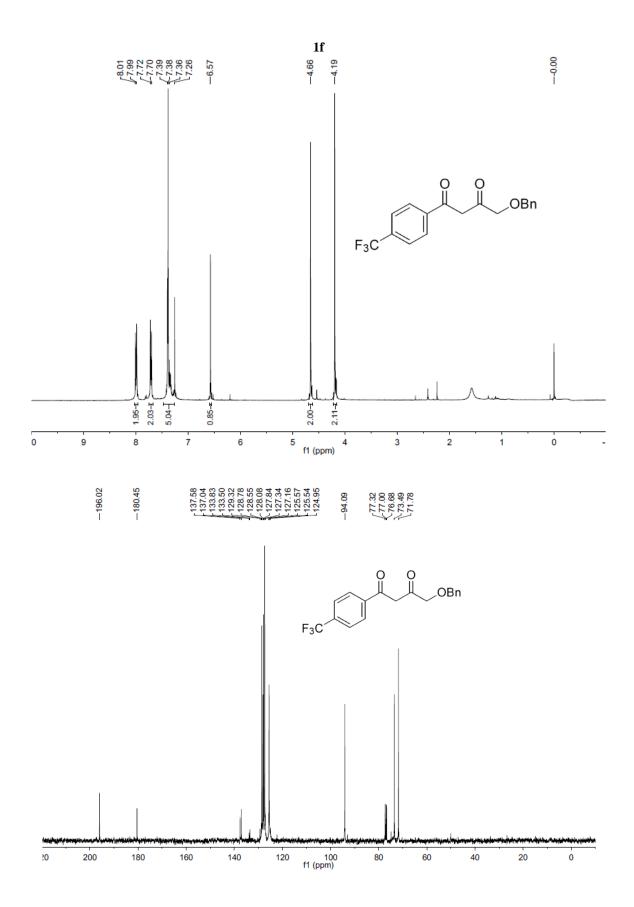
- [1] W. Wenner, J. T. Plati, J. Org. Chem. 1946, 11, 751-759.
- [2] B. C. Ranu, S. Bhar, R. Chakraborti, J. Org. Chem. 1992, 57, 7349-7352.
- [3] D. Globisch, C. A. Lowery, K. C. McCague, K. D. Janda, Angew. Chem., Int. Ed. 2012, 51, 4204-4208, Supporting Information.
- [4] V. I. Dulenko, S. V. Tolkunov (Inst. Fiz.-Org. Khim. Uglekhim.), WO 2009015369, 1987; [Chem. Abstr. 1987, 108, 167343].
- [5] A. K. Chakraborti, Basak, V. Grover, J. Org. Chem. 1999, 64, 8014-8017.
- [6] G. Solladié, F. Colobert, D. Denni, Tetrahedron: Asymmetry 1998, 9, 3081-3094.
- [7] D. A. Evans, M. C. Kozlowski, J. A. Murry, C. S. Burgey, K. R. Campos, B. T. Connell, R. J. Staples, *J. Am. Chem. Soc.* 1999, 121, 669-685, in *Supporting Information*.
- [8] O. Labeeuw, J. B. Bourg, P. Phansavath, J. P. Genêt, Arkivoc 2007, 2007, 94-106.
- [9] a) S. Kwiatkowski, J. Chem. Soc., Chem. Commun. 1987, 1496-1498; b) S. Kwiatkowski, S. Ostrowski, Bull. Soc. Chim. Belg. 1993, 102, 259-269.

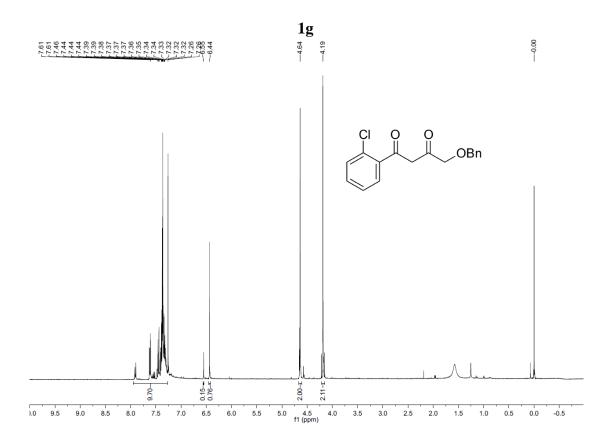

- [10] K.-H. Park, W. J. Marshall, Tetrahedron Lett. 2004, 45, 4931-4934.
- [11] R. E. Bowman, D. J. Tivey, J. Chem. Soc. (Resumed) 1954, 4548-4550.
- [12] S. Wang, J. Golec, W. Miller, S. Milutinovic, A. Folkes, S. Williams, T. Brooks, K. Hardman, P. Charlton, S. Wren, J. Spencer, *Bioorg. Med. Chem. Lett.* 2002, 12, 2367-2370.
- [13] a) J. J. Eisch, S. K. Dua, M. Behrooz, J. Org. Chem. 1985, 50, 3674-3676; b) G. Solladie, N. Ghiatou, Tetrahedron: Asymmetry 1992, 3, 33-38.
- [14] I. Katsuyama, S. Ogawa, Y. Yamaguchi, K. Funabiki, M. Matsui, H. Muramatsu, K. Shibata, Synthesis 1997, 1321-1324.
- [15] J. Zhao, Y. Zhao, H. Fu, Angew. Chem. Int. Ed. 2011, 50, 3769-3773.
- [16] A. K. Roy, S. Batra, Synthesis 2003, 2325-2330.
- [17] J. B. Kraïem, H. Amri, Synth. Commun. 2012, 43, 110-117.
- [18] J. Wang, N. A. Morra, H. Zhao, J. S. T. Gorman, V. Lynch, R. McDonald, J. F. Reichwein, B. L. Pagenkopf, *Can. J. Chem.* 2009, 87, 328-334.
- [19] K. Funabiki, Y. Itoh, Y. Kubota, M. Matsui, J. Org. Chem. 2011, 76, 3545-3550.
- [20] H. Li, C.-S. Da, Y.-H. Xiao, X. Li, Y.-N. Su, J. Org. Chem. 2008, 73, 7398-7401.
- [21] J.-F. Zhao, B.-H. Tan, T.-P. Loh, Chem. Sci. 2011, 2, 349-352.
- [22] J. Kang, Y. H. Kim, M. Park, C. H. Lee, W.-J. Kim, Synth. Commun. 1984, 14, 265-269.
- [23] Drexler, E. J.; Field, K. W. J. Chem. Educ. 1976, 53, 392-393.
- [24] Tan, M.; Bİldİrİcİ, İ.; Mengeş, N. J. Serb. Chem. Soc. 2018, 83, 953-968.

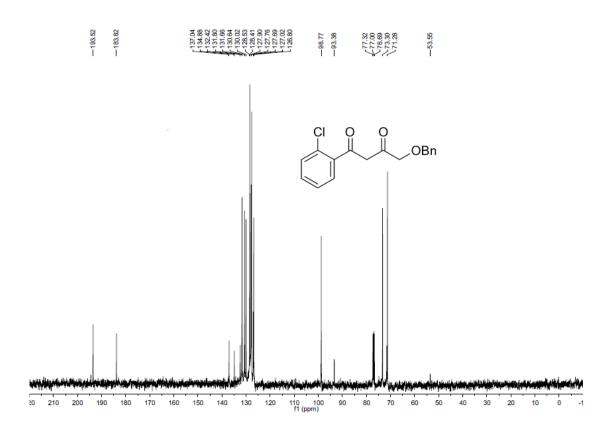
7. NMR spectra of key substrates and all hydrogenation products

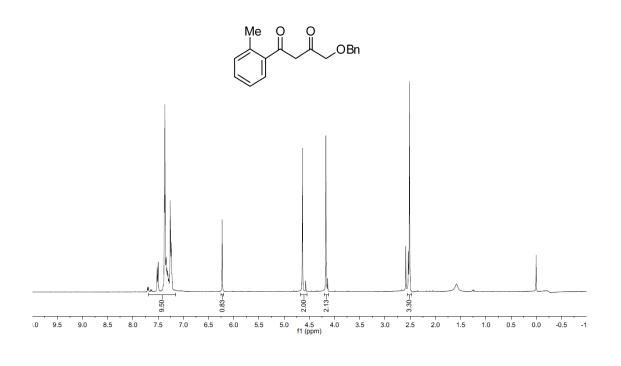


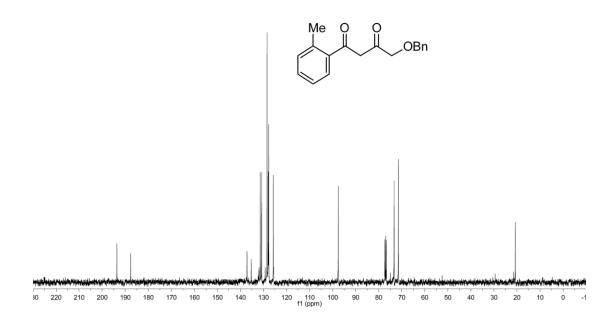


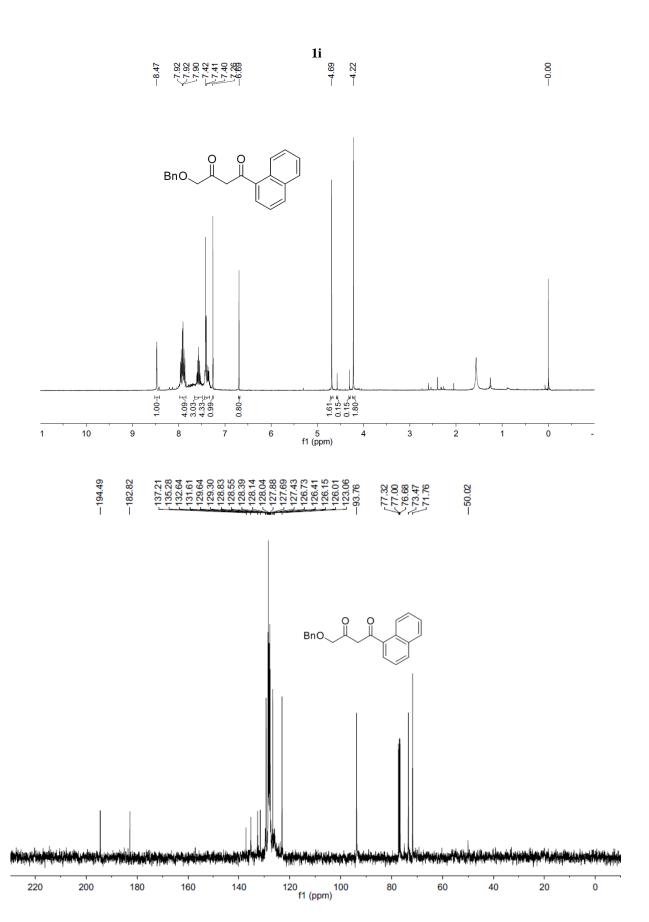


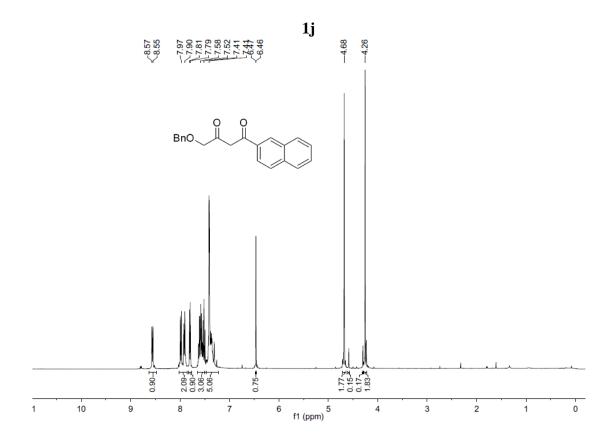


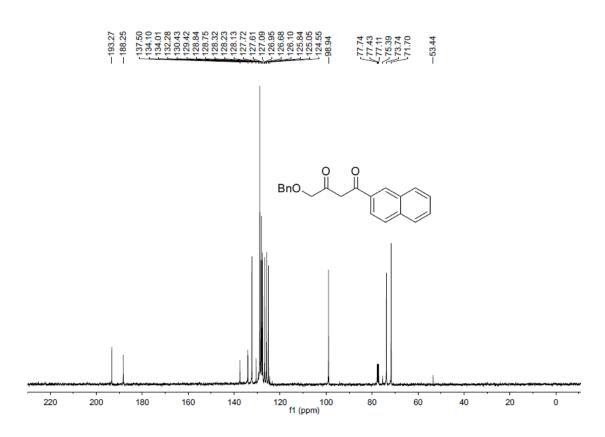


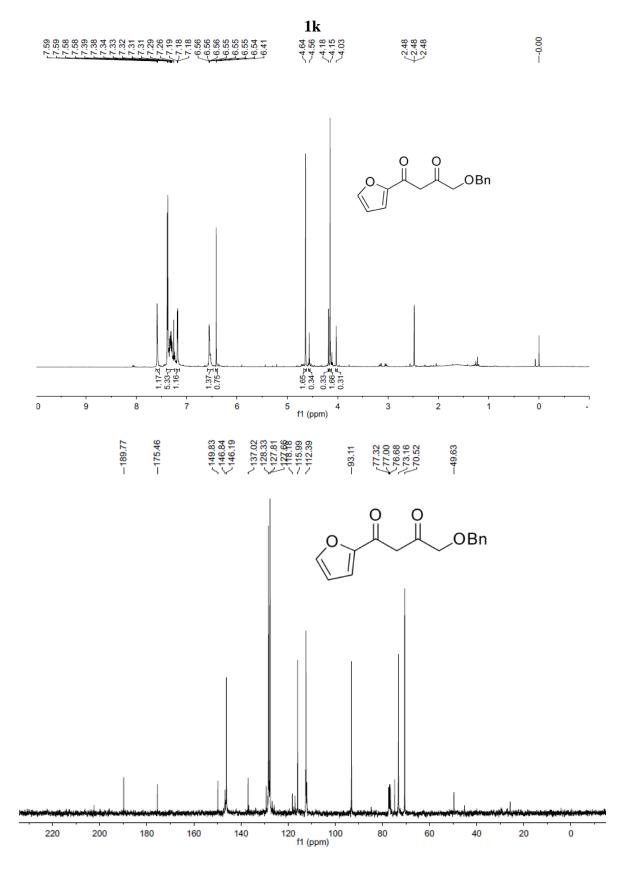


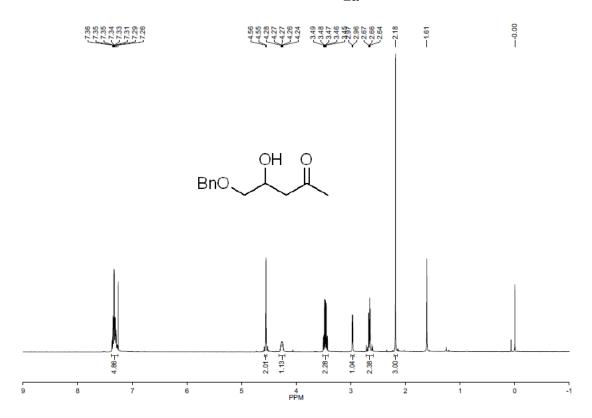


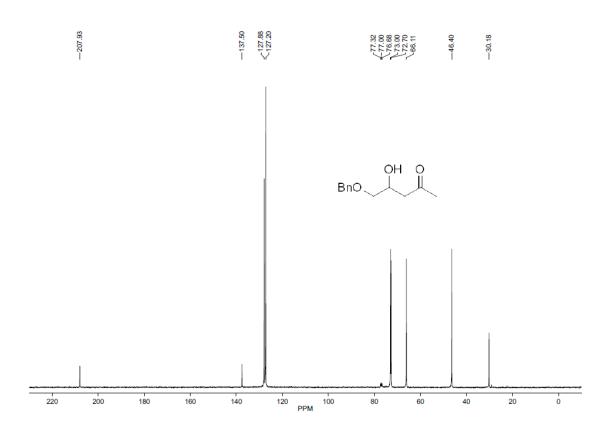


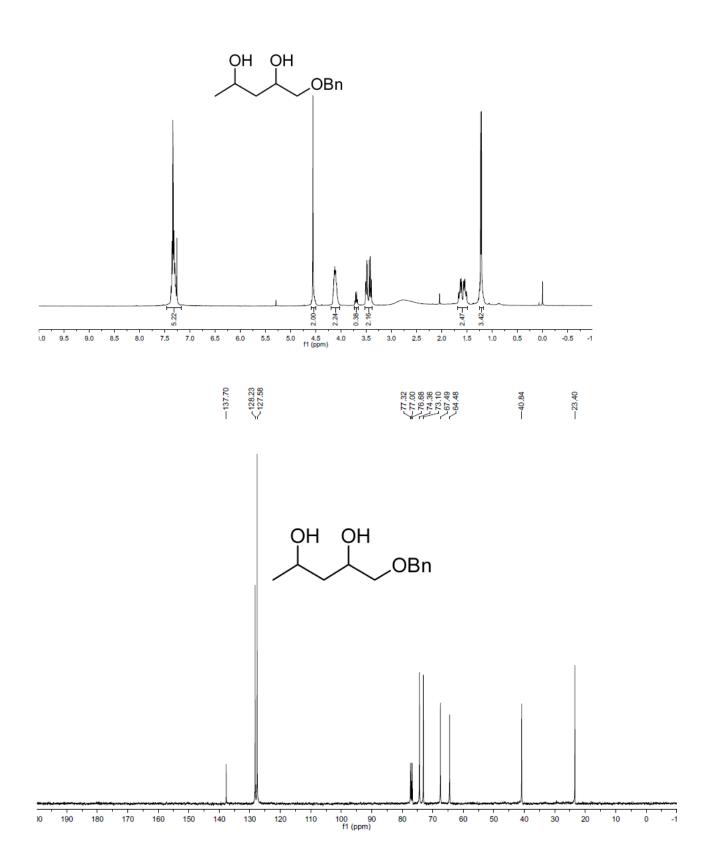


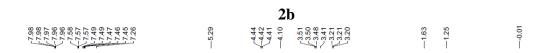


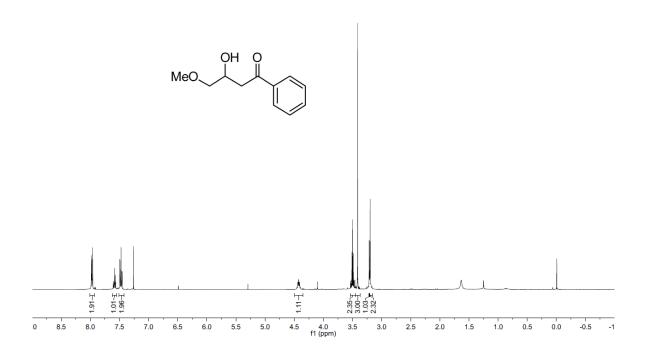


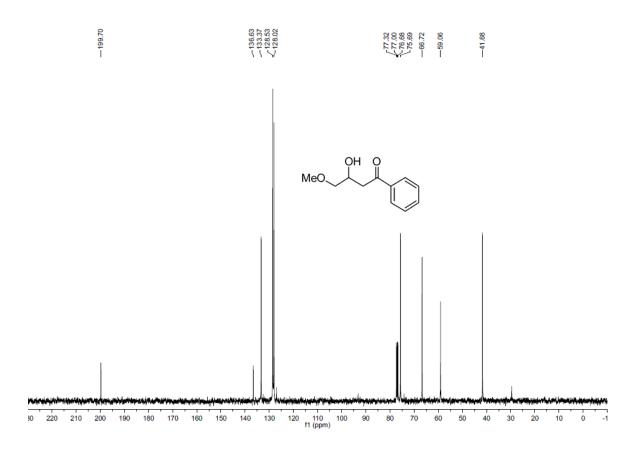


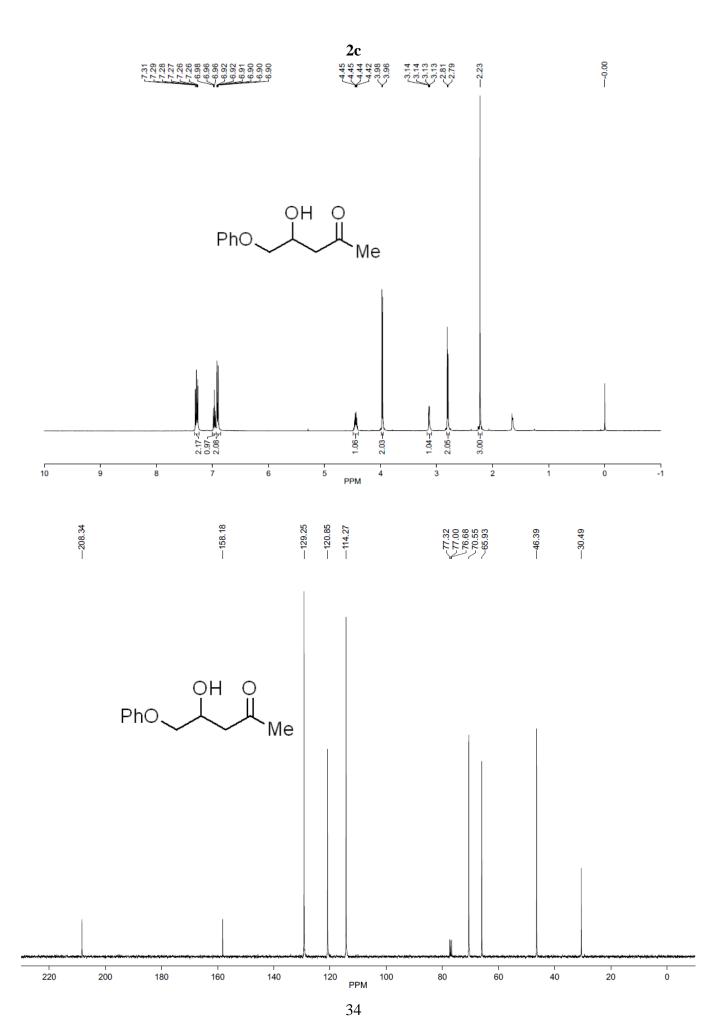


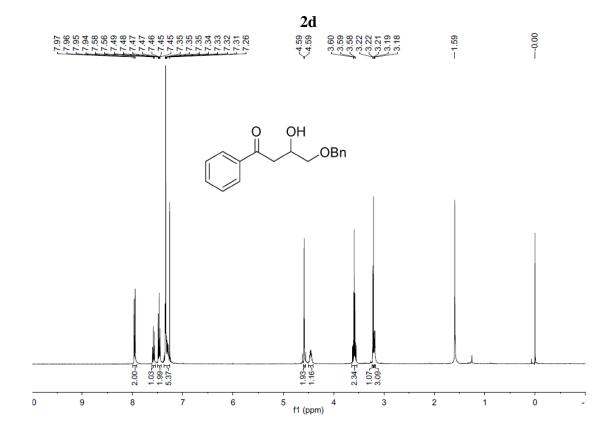


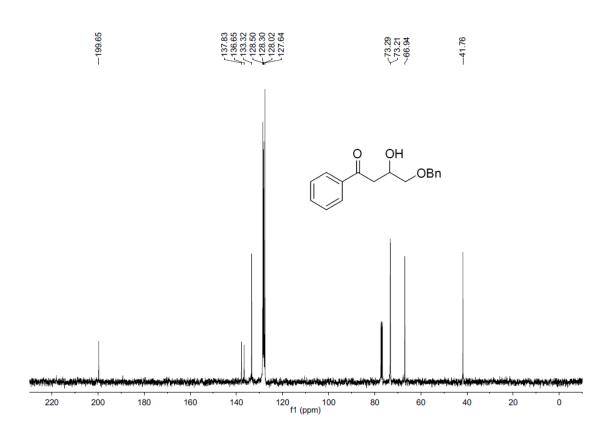


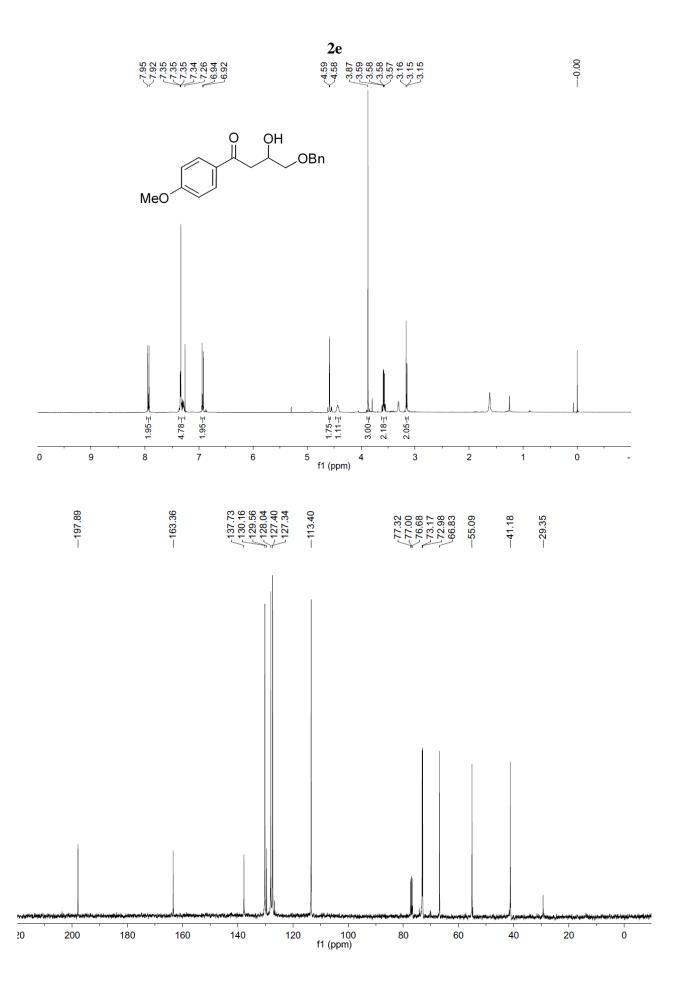


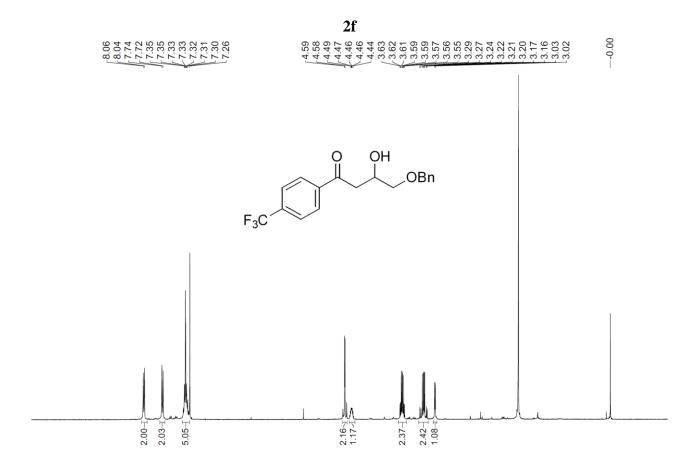

7.37

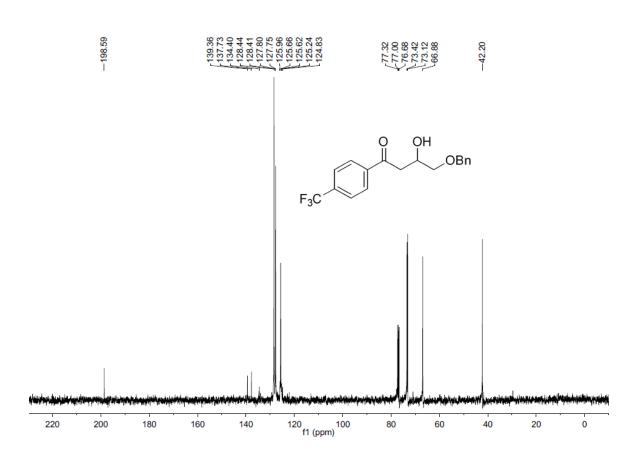

2aa

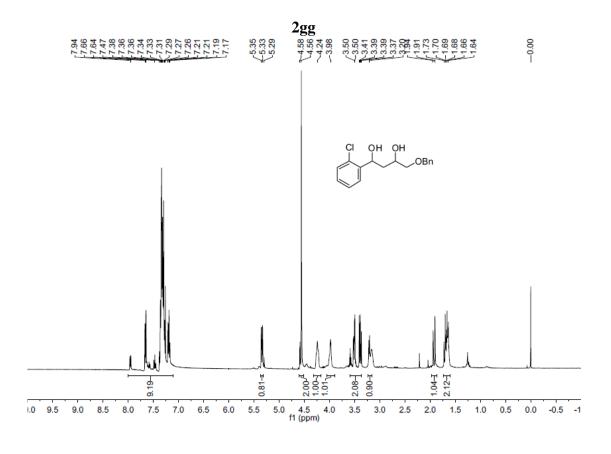


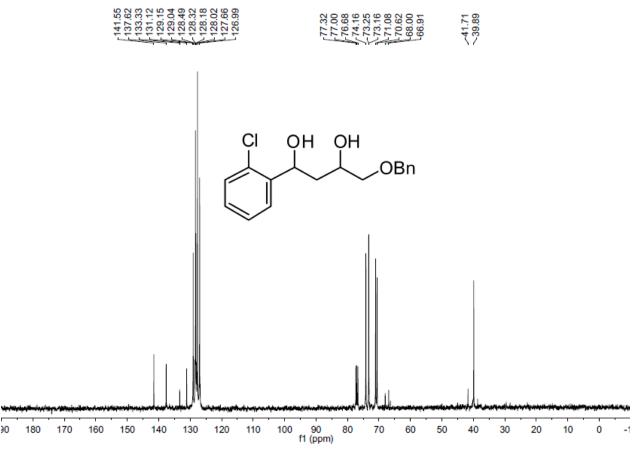


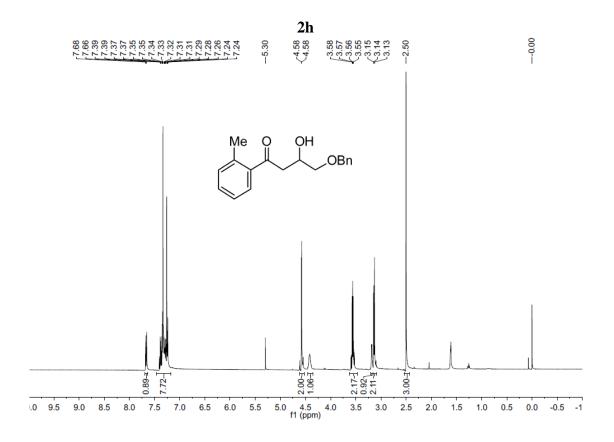


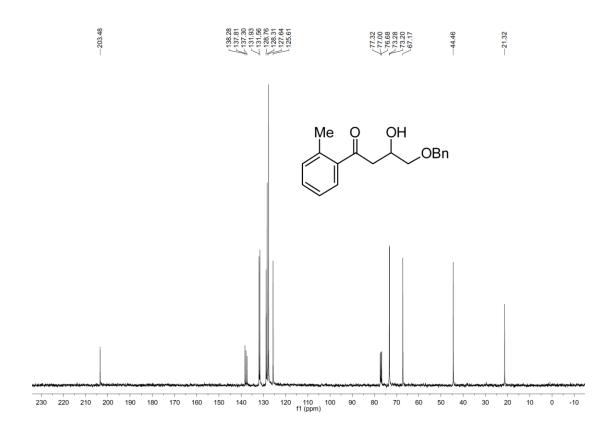


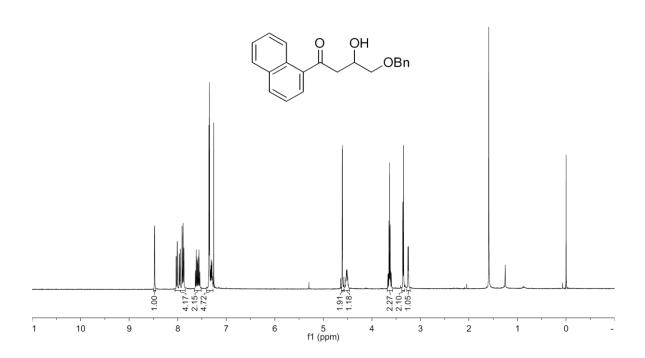


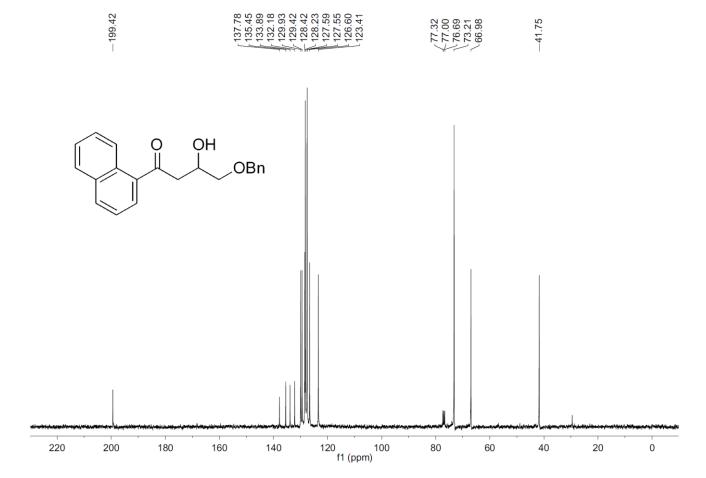


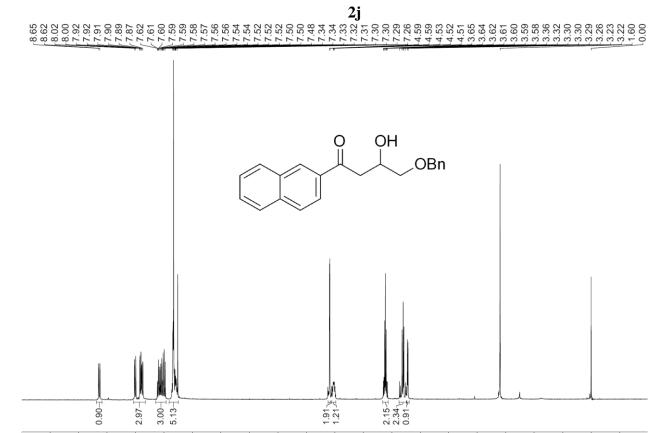


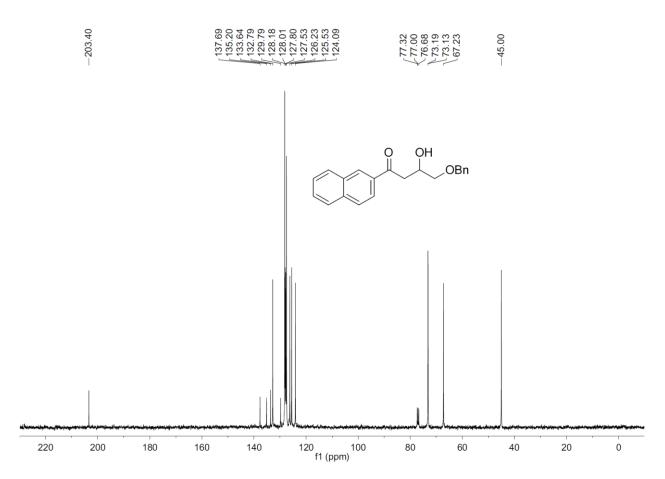


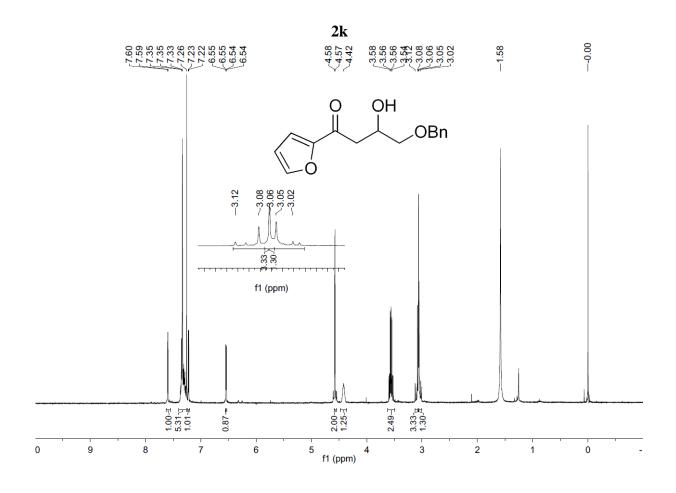

f1 (ppm)

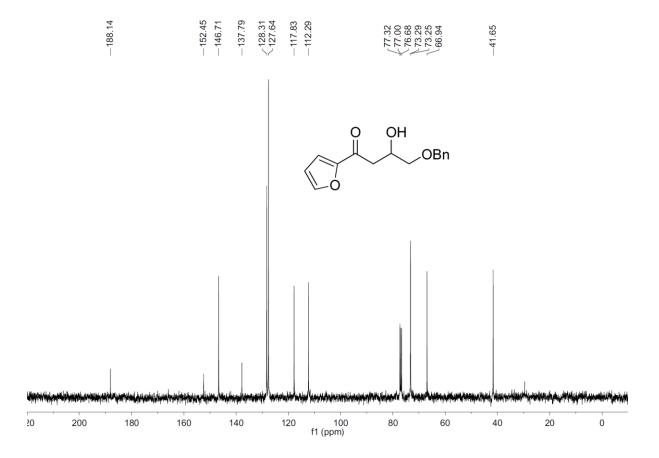


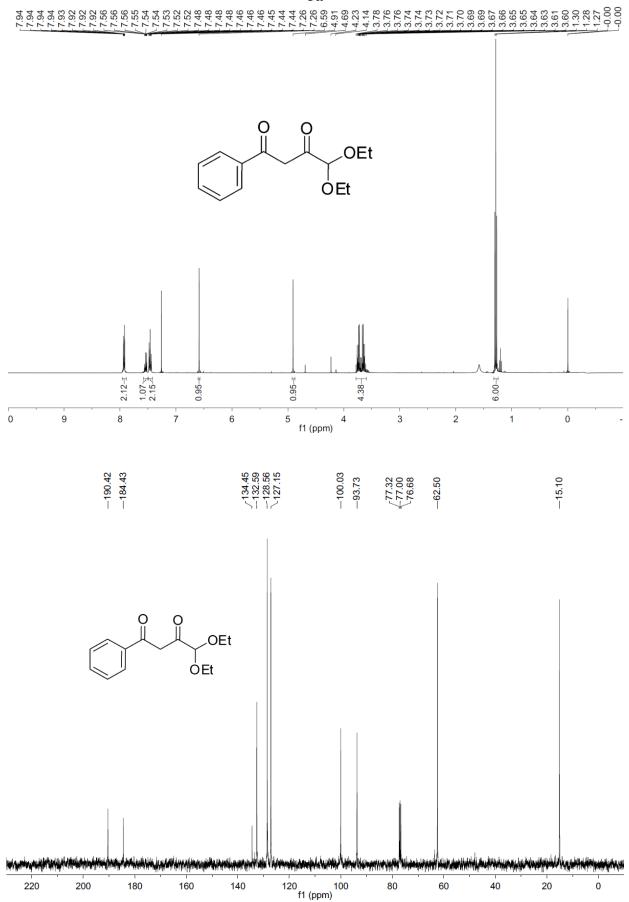


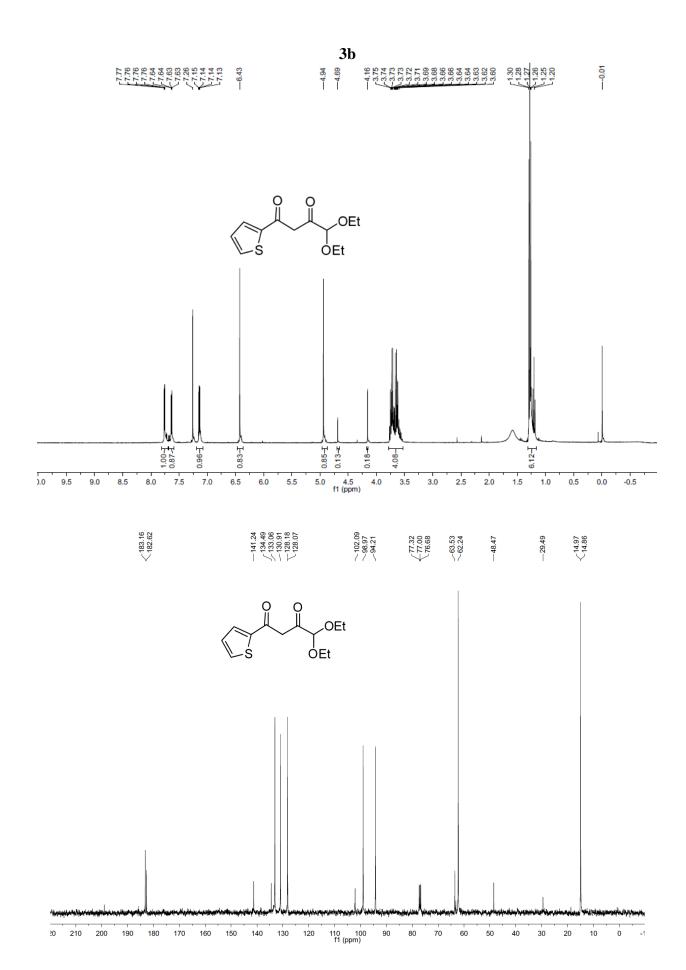


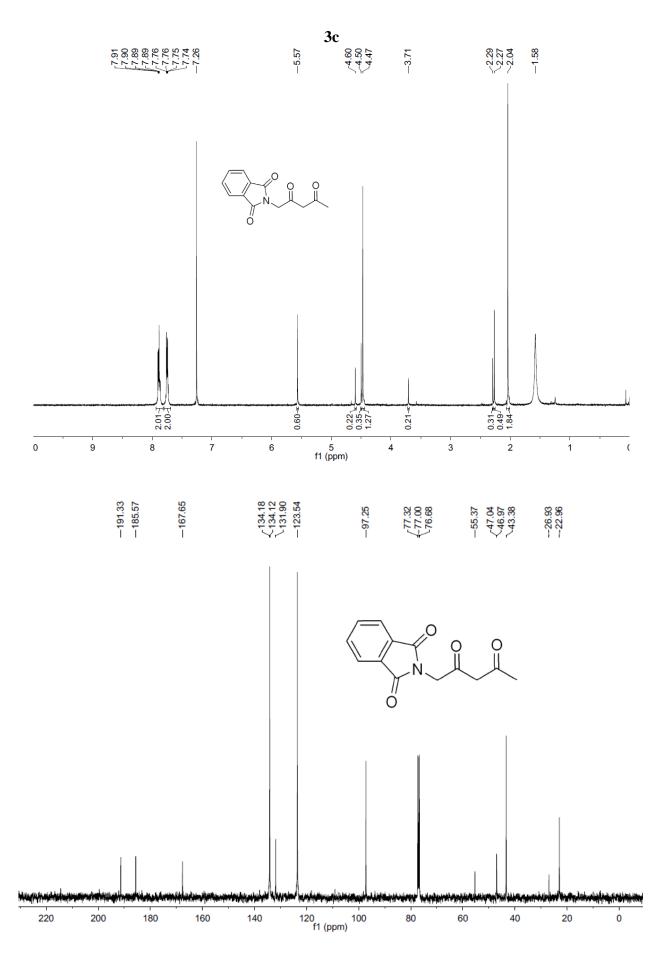


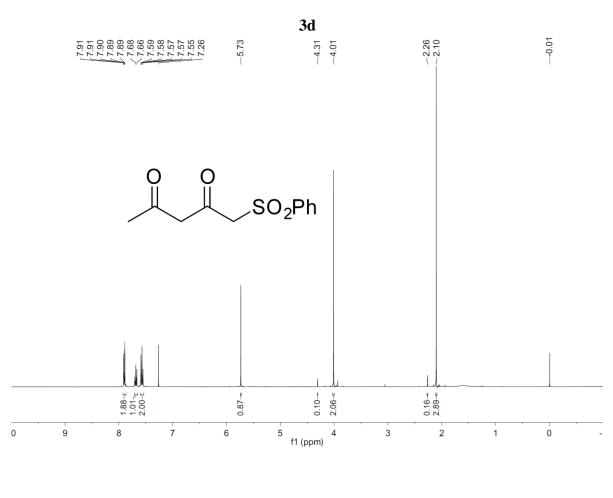


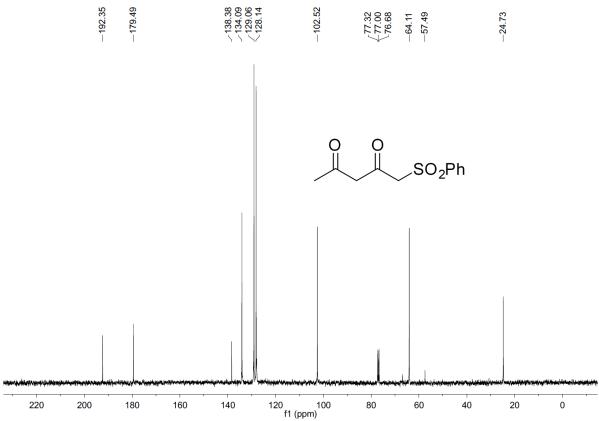


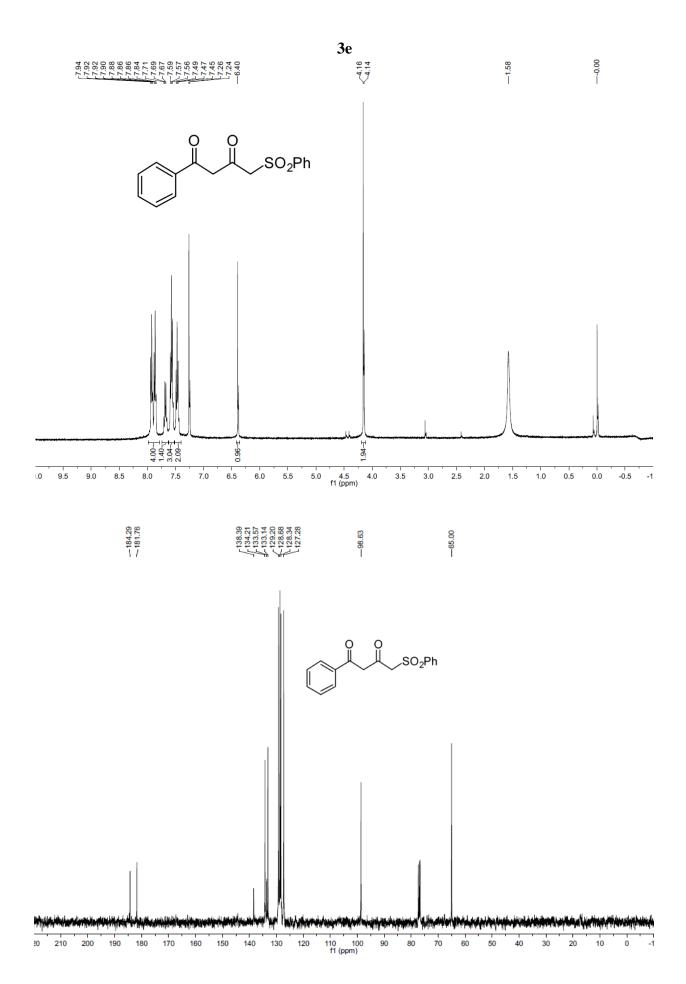

f1 (ppm)

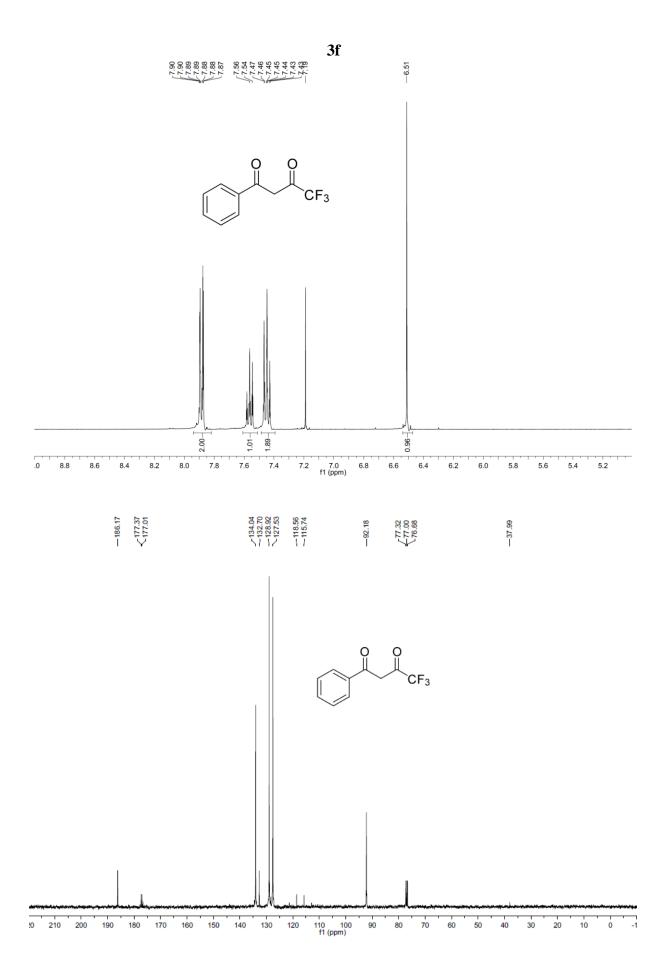


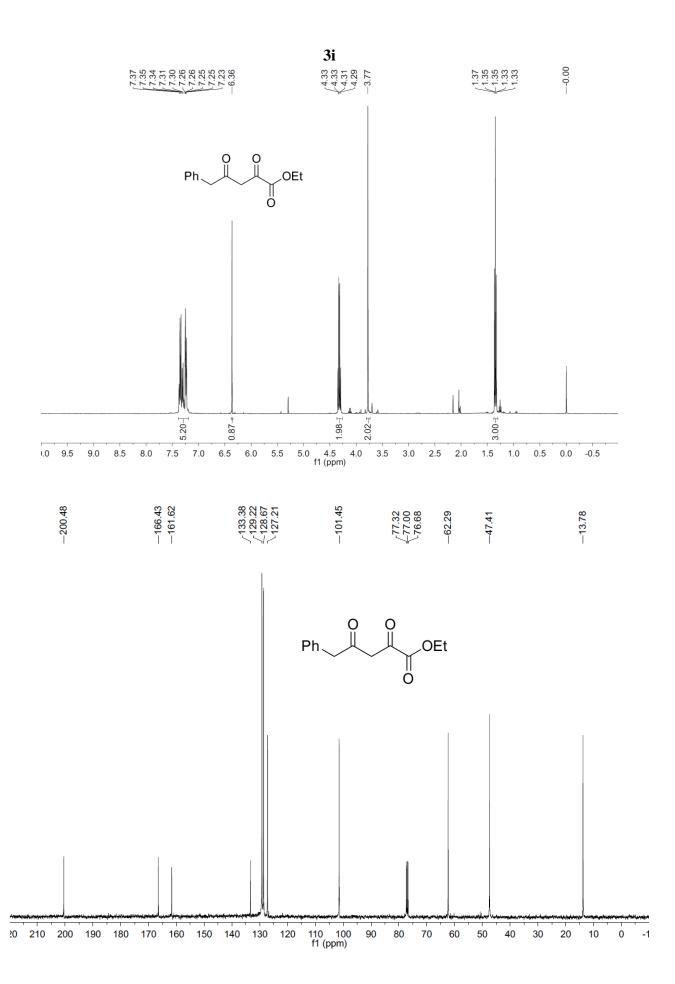


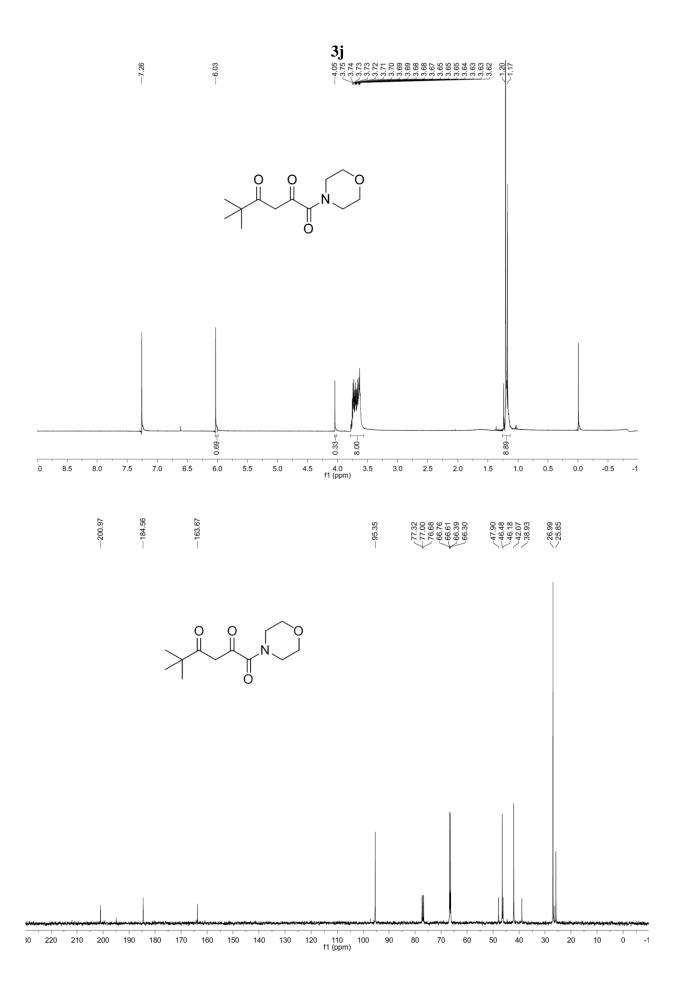


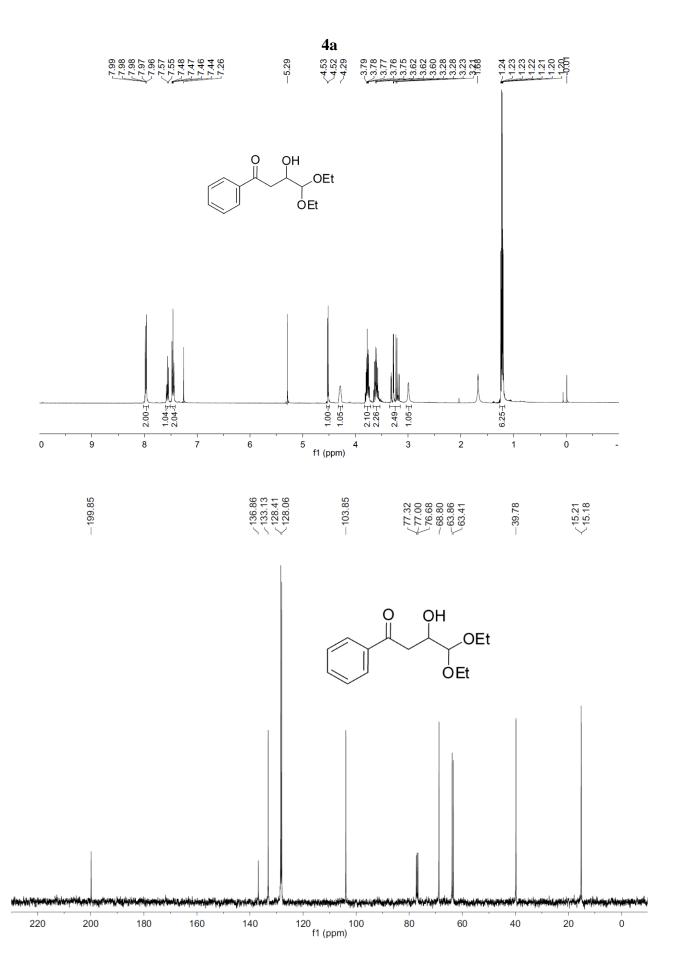


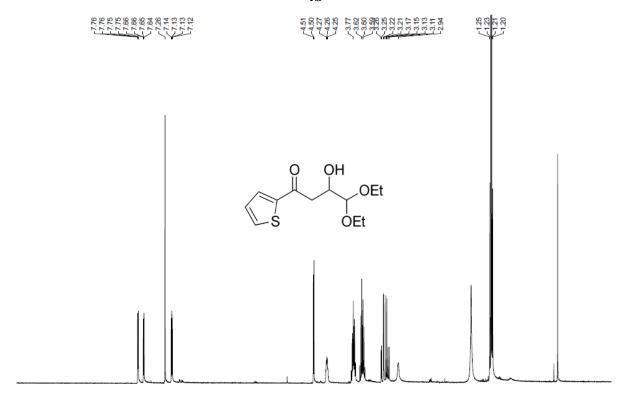


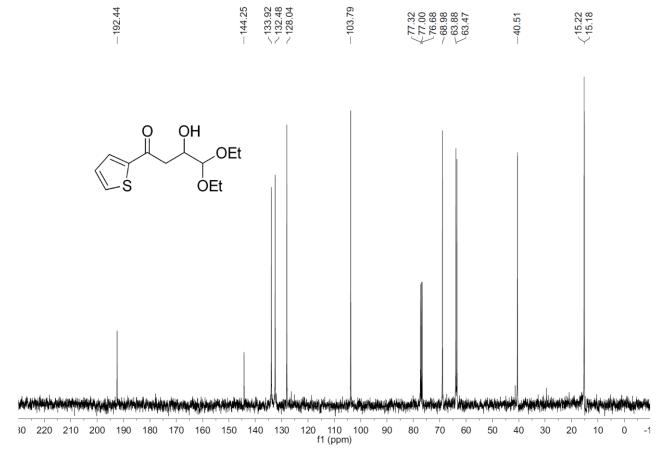


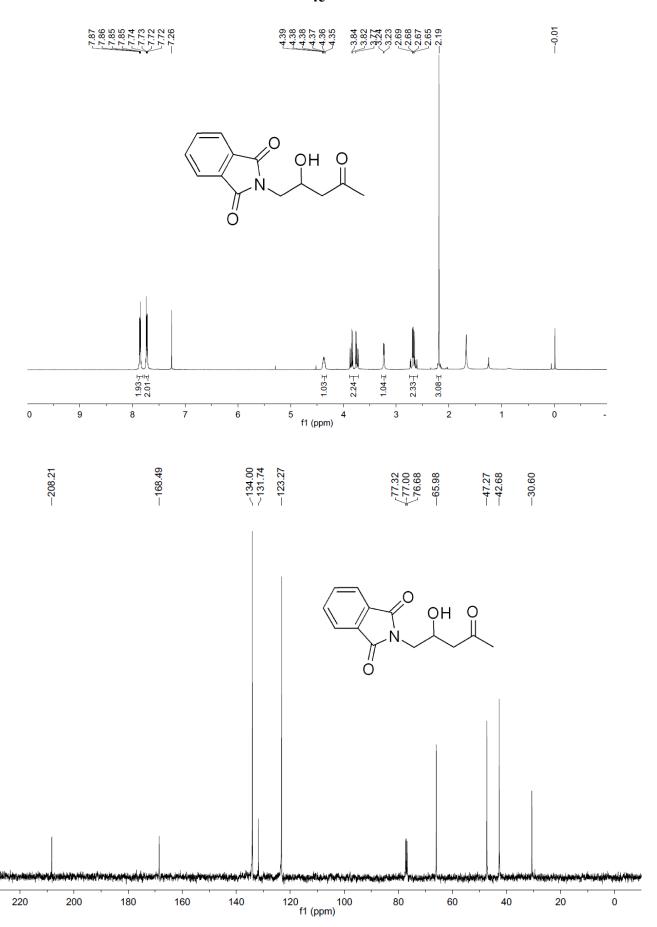


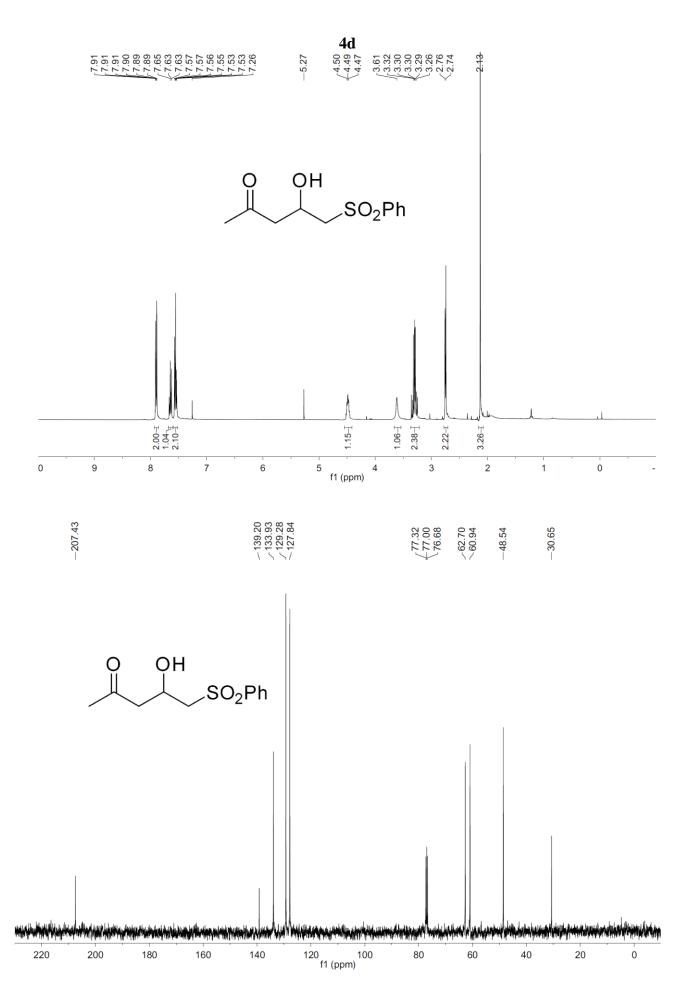


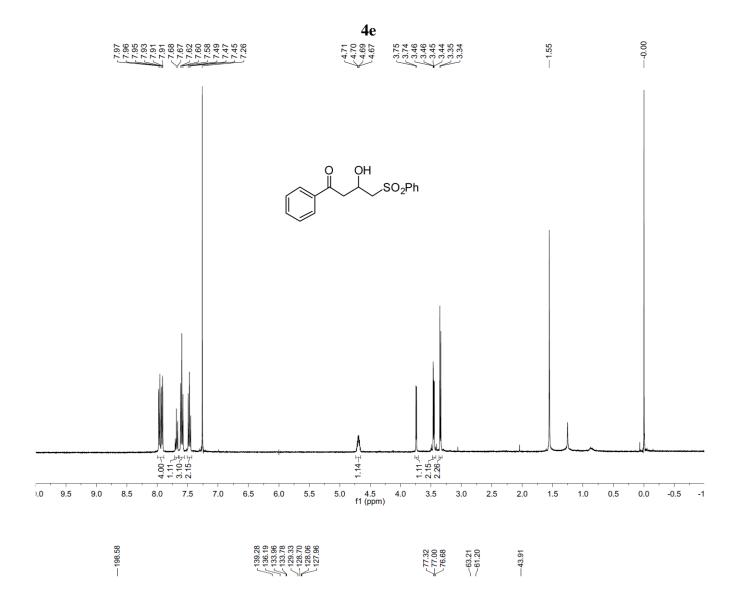


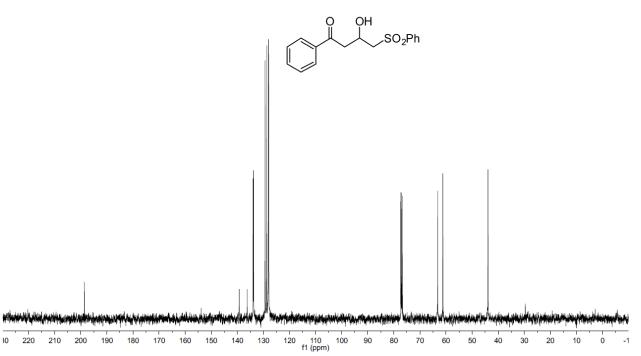


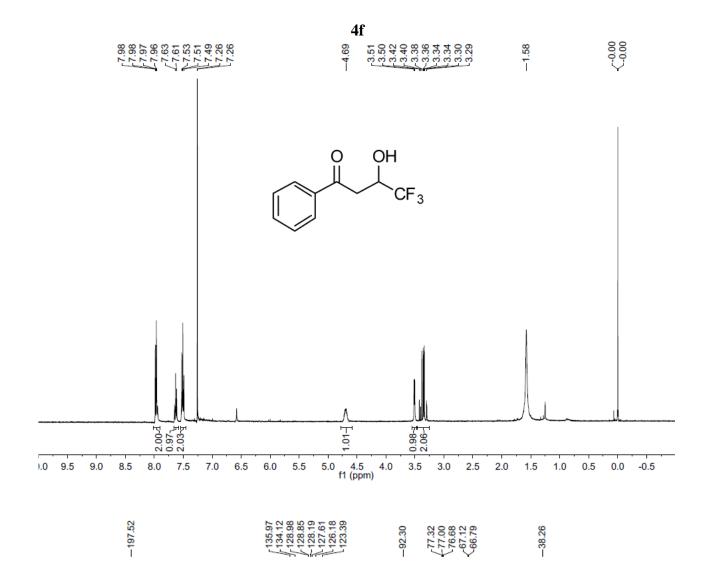


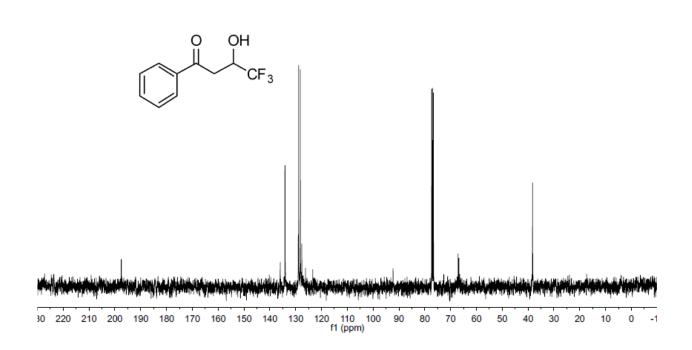


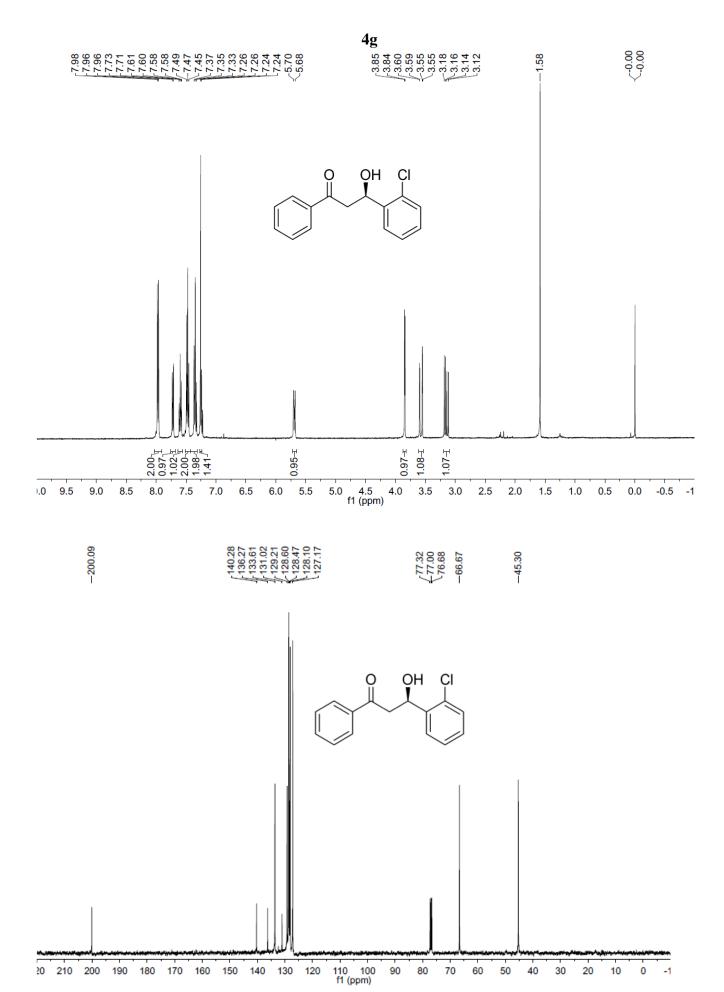


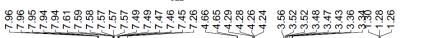


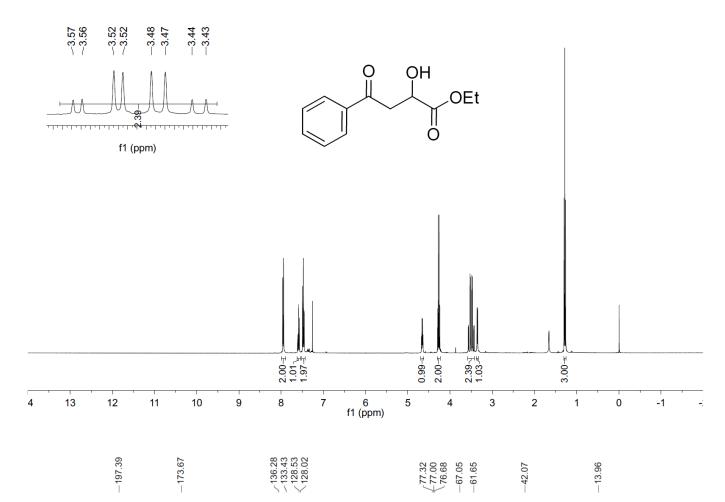


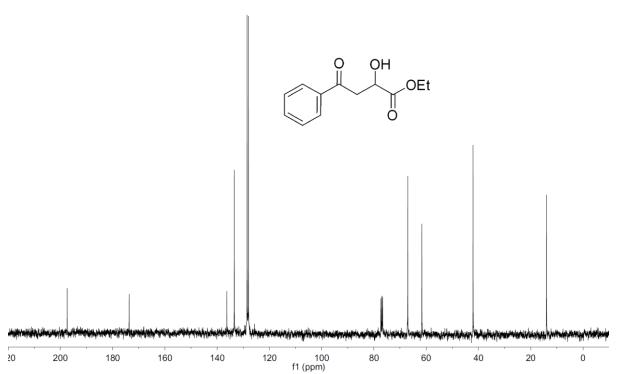


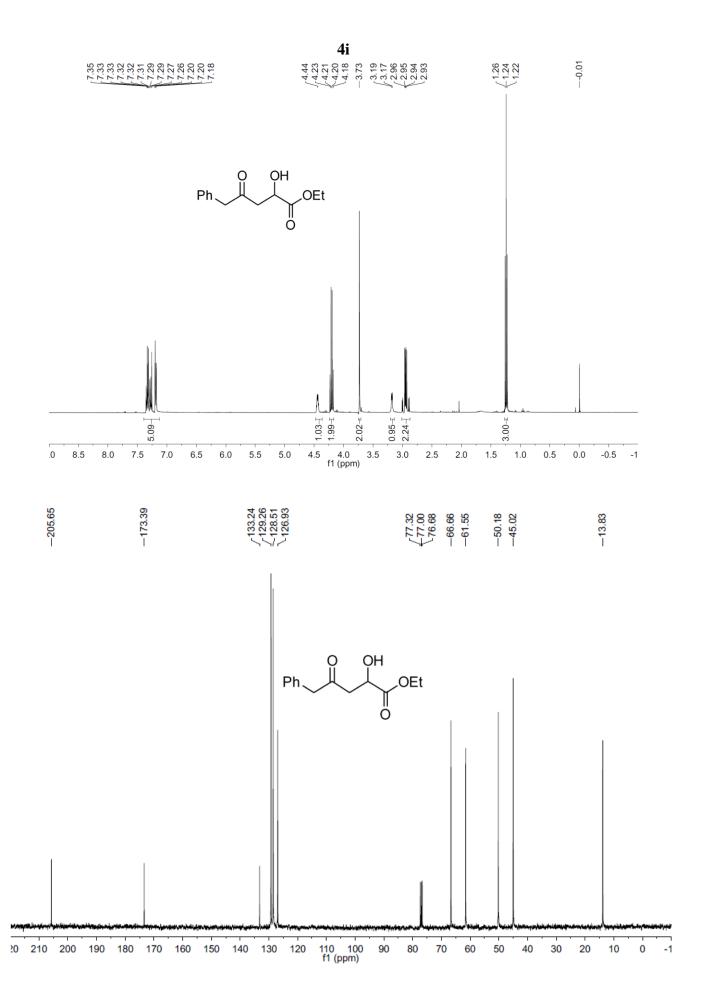


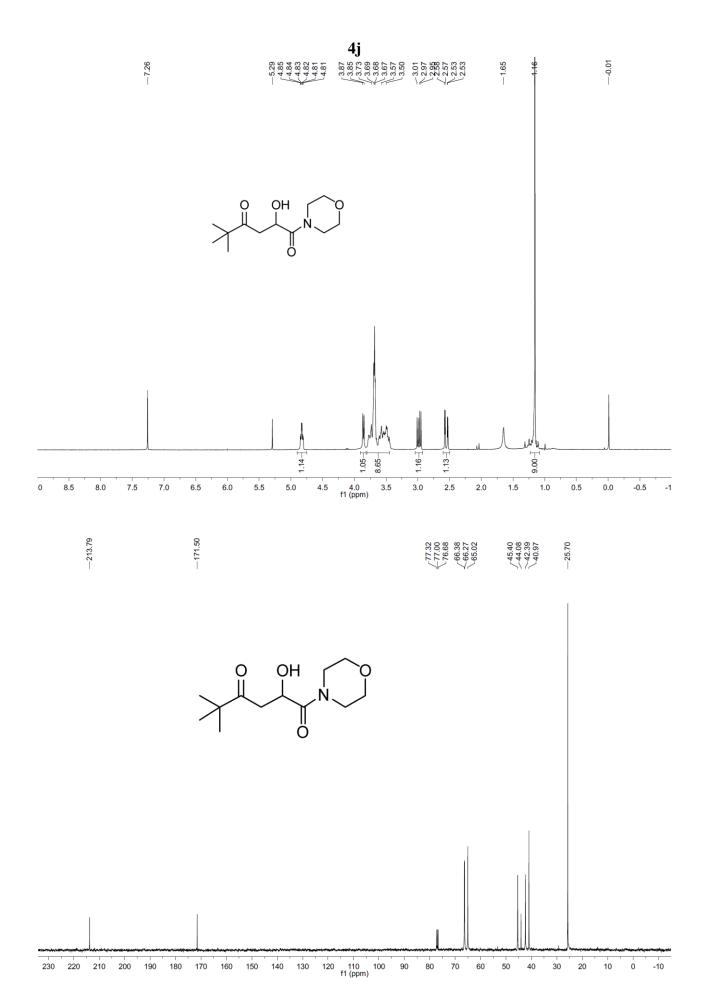




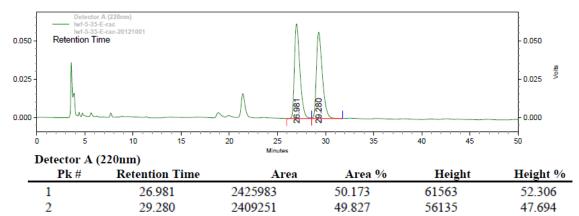


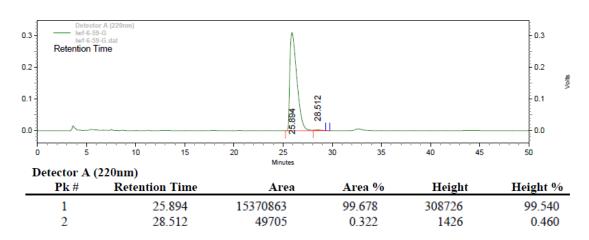




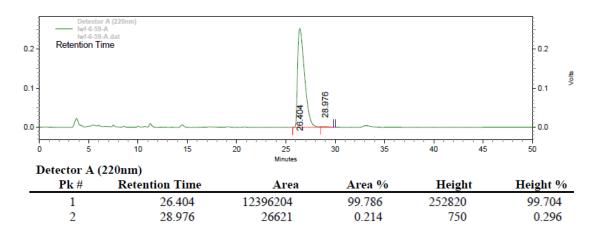


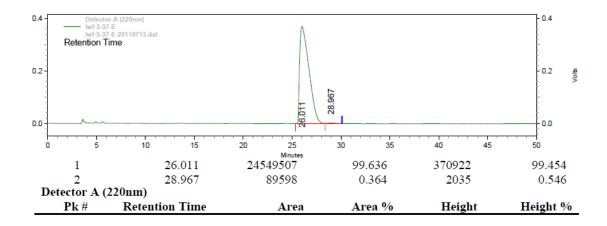
--0.01





8. HPLC diagram of chiral products


(2a) Table 1, racemate of 2a


Table 1, entry 1: Ru-(S)-SunPhos, 50 °C, 10 bar H₂

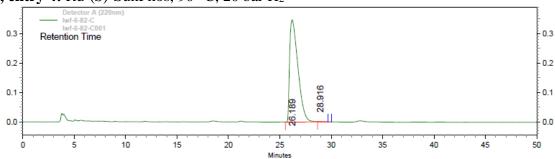

Table 1, entry 2: Ru-(S)-SunPhos, 50 °C, 20 bar H_2

Table 1, entry 3: Ru-(S)-SunPhos, 70 °C, 20 bar H₂

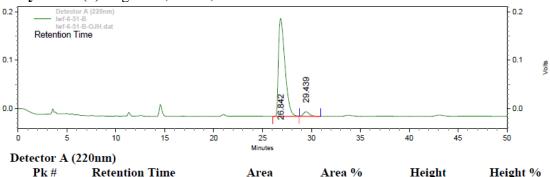


Table 1, entry 4: Ru-(S)-SunPhos, 90 °C, 20 bar H₂

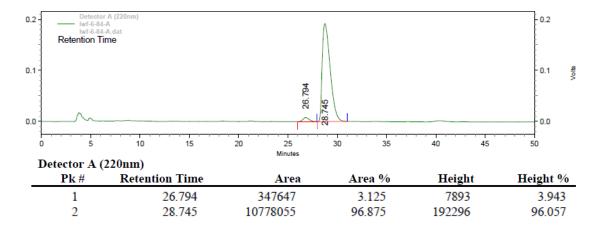
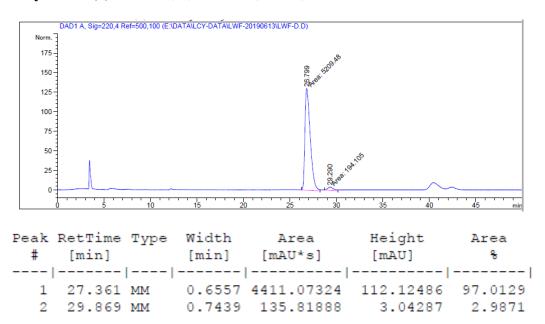
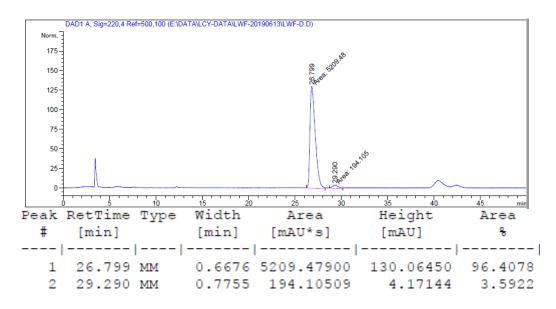

Detector .	A (220nm)				
Pk #	Retention Time	Area	Area %	Height	Height %
1	26.189	19561319	99.935	347840	99.904
2	28.916	12657	0.065	335	0.096

Table 1, entry 5: Ru-(S)-SegPhos, 70 °C, 20 bar H₂



Pk #	Retention Time	Area	Area %	Height	Height %
1	26.842	9303591	95.730	202243	95.453
2	29.439	415023	4.270	9634	4.547


Table 1, entry 6: Ru-(R)-Binap, 70 °C, 20 bar H₂

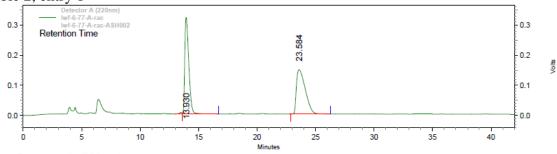
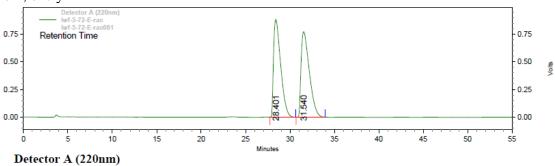
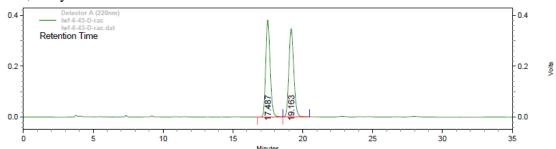

Table S1, entry 3: Ru-(S)-SunPhos, 1,4-dioxane, 70 °C, 20 bar H₂

Table S1, entry 4: Ru-(S)-SunPhos, EtOAc, 70 °C, 20 bar H₂

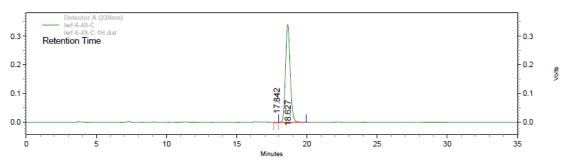

(**2b**) Table 2, entry 1

De	etector A (220nn	1)				
	Pk# Re	tention Time	Area	Area %	Height	Height %
	1	13.930	7683030	49.836	320574	68.560
	2	23.584	7733746	50.164	147010	31.440
0.15	Detector A (220n Mrf-8-81-A N-4-81-A Retention Time		22.658			- 0.15 - 0.10 - 0.05 - 0.00
0	5	10 15	20	25 30	35	40
			Minutes			

Detector A (220nm) **Pk** # Retention Time Height % Area Area % Height 13.578 784542 8.134 27910 14.742 1 2 22.658 8860720 91.866 161414 85.258

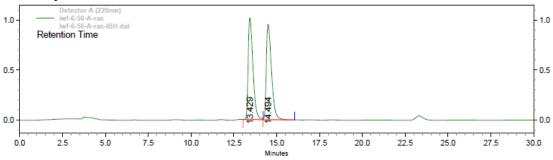

(**2c**) Table 2, entry 2

Pk #	A (220nm) Retention Time	Area	Area %	Height	Height %
1	28.401	49457136	49.772	884200	53.325
2	31.540	49911011	50.228	773933	46.675
lwf-5	ctor A (220nm) -7-73-E 1-73-E001 1 Time	28.438	31,969		0.4
0 5	10 15 20	0 25 30 Minutes	35 40	45 50	55
Detector A	(220nm)				
Pk #	Retention Time	Area	Area %	Height	Height %



(**2d**) Table 2, entry 3

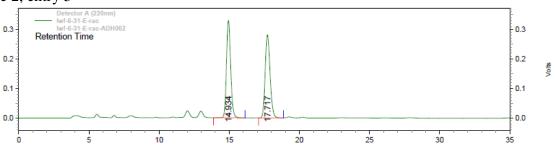
Detector A (220nm)


Pk#	Retention Time	Area	Area %	Height	Height %
1	17.487	8446290	49.937	381894	52.395
2	19.163	8467723	50.063	346982	47.605

Detector A (220nm)

Pk #	Retention Time	Area	Area %	Height	Height %
1	17.842	623	0.008	43	0.013
2	18.627	7875929	99.992	340048	99.987

(2e) Table 2, entry 4

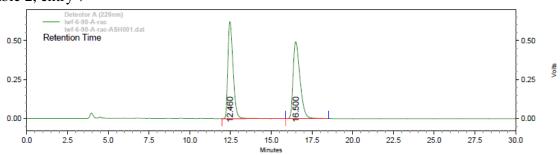


Detector A (220nm)

	Pk #	Retent	ion Time	Area	Area %	Height	Height %
	1		13.429	19690326	49.648	1014973	51.647
	2		14.494	19969181	50.352	950220	48.353
0.75	lwf-6-	57-A-IBH-0.75					- 0.75 - 0.50
0.25				14.786			0.25
0.00				13.591			0.00
0.0	2.5	5.0	7.5 10.0		17.5 20.0 2	22.5 25.0 27	7.5 30.0
De	tector A (220nm)		Minutes			
	Pk#		ion Time	Area	Area %	Height	Height %

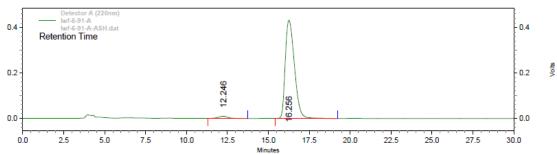
1	13.591	12956197	99.353	836015	99.299
2	14.786	84348	0.647	5901	0.701

(**2f**) Table 2, entry 5

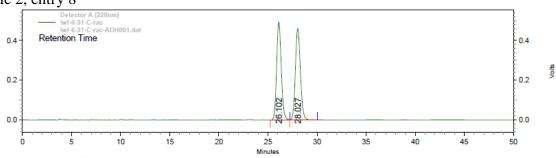

Detector A (220nm)

Pk#	Retention Time	Area	Area %	Height	Hoight 0/a
- FK#	Retention Time	Area	Area 70	neight	Height %
1	14.934	6853461	49.953	329564	53.964
2	17.717	6866433	50.047	281146	46.036
Detecto lwf-6-34 lwf-6-34		Λ.			ŀ
4 Retention T					- 0.4
-					į.
2-					- 0.2
		25			
1		200			<u>.</u>
.0 =		(c)			0.0
0	5 10	15 2	0 25	30	35

Detector A (220nm)


Pk	# Retention Time	Area	Area %	Height	Height %
1	15.200	9149099	98.711	467019	99.014
2	19.521	119451	1.289	4651	0.986

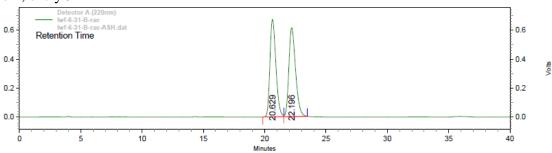
(**2h**) Table 2, entry 7

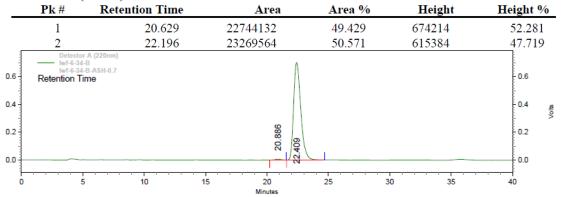

Detector A (220nm)

Pk#	Retention Time	Area	Area %	Height	Height %
1	12.460	13807978	48.863	622017	55.808
2	16.500	14450430	51.137	492544	44.192

Pk #	Retention Time	Area	Area %	Height	Height %
1	12.246	389989	2.271	9557	2.160
2	16.256	16785421	97.729	432874	97.840

(2i) Table 2, entry 8

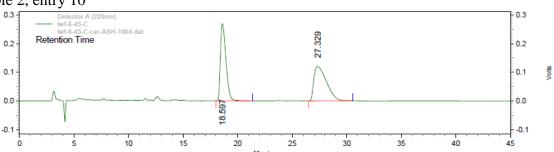

Detector A (220nm)


D	elector A ((2201111)				
	Pk#	Retention Time	Area	Area %	Height	Height %
	1	26.102	16314548	49.895	493687	51.729
	2	28.027	16383418	50.105	460688	48.271
0.3	lwf-6-34	1-C-0.3-ADH	26.033			0.3 0.2 9 0.1
0	5	10 15	20 25	30 35	40 45	50

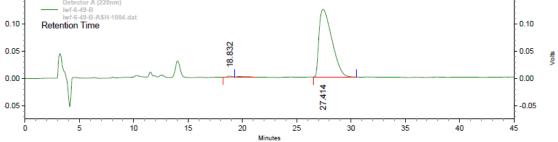
Detector A (220nm)

	Pk #	Retention Time	Area	Area %	Height	Height %
Ξ	1	26.033	121238	1.089	3767	1.194
	2	27.923	11010327	98.911	311757	98.806

(**2j**) Table 2, entry 9

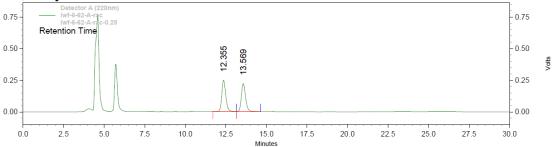


Detector A (220nm)


Pk #	Retention Time	Area	Area %	Height	Height %
1	20.886	215658	0.750	6391	0.900
2	22.409	28542536	99.250	703707	99.100

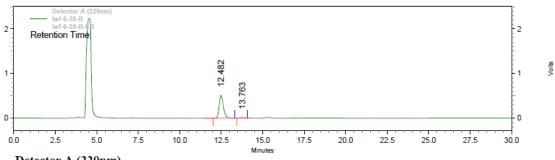
(**2k**) Table 2, entry 10

Detector A (220nm)

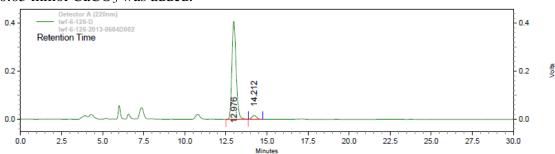

	Pk #	Retention Time	Area	Area %	Height	Height %
	1	18.597	9540886	49.836	269238	69.178
	2	27.329	9603844	50.164	119955	30.822
0.10	lwf-6-4	9-B-ASH-1004.dat		\bigcap		- 0.10

Detector A (220nm)

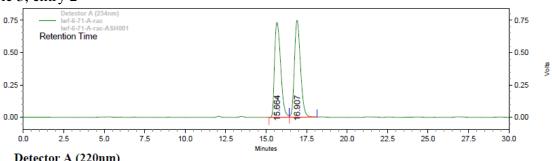
	Pk#	Retention Time	Area	Area %	Height	Height %
Ξ	1	18.832	69387	0.681	2057	1.640
	2	27.414	10118010	99.319	123333	98.360


(4a) Table 3, entry 1

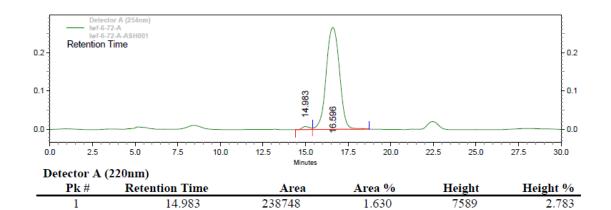
Det	tect	tor A	A (2	220	nm))


Pk #	Retention Time	Area	Area %	Height	Height %
1	12.355	4229901	51.223	246749	52.795
2	13.569	4027851	48.777	220625	47.205

50 °C


Detector A ((220nm)				
Pk #	Retention Time	Area	Area %	Height	Height %
1	12.482	8979284	98.729	509884	98.754
2	13.763	115576	1.271	6432	1.246

70 °C, 0.05 mmol CaCO₃ was added:



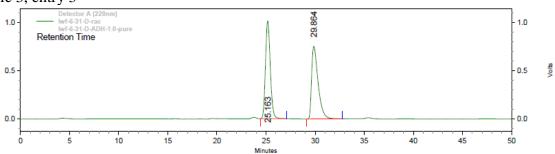
Detector A (220nm)							
Pk #	Retention Time	Area	Area %	Height	Height %		
1	12.976	7255379	95.807	407740	96.157		
2	14.212	317555	4.193	16297	3.843		

(**4b**) Table 3, entry 2

Detector A ((220nm)				
Pk #	Retention Time	Area	Area %	Height	Height %
1	15.664	19172409	49.691	733136	49.500
2	16.907	19410483	50.309	747941	50.500

98.370

265071

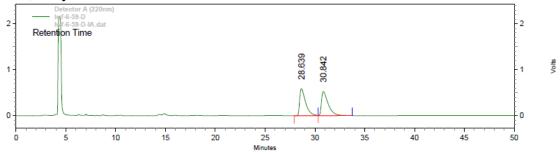

97.217

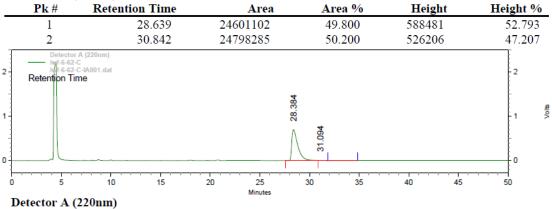
14405608

(**4c**) Table 3, entry 3

2

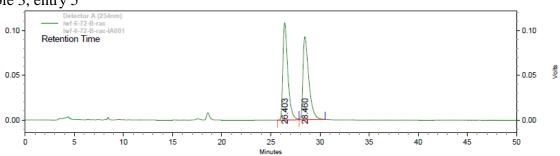
16.596


De	etector A (22	20nm)				
	Pk#	Retention Time	Area	Area %	Height	Height %
	1	25.163	34493751	50.013	1011693	57.402
	2	29.864	34476134	49.987	750779	42.598
0.50 -	lwf-6-34-l	D-0627.dat				- 0.50
0.25			92	29.933		- 0.25
0.00		10 15	20 25	30 35	40 45	0.00


Detector A (220nm)

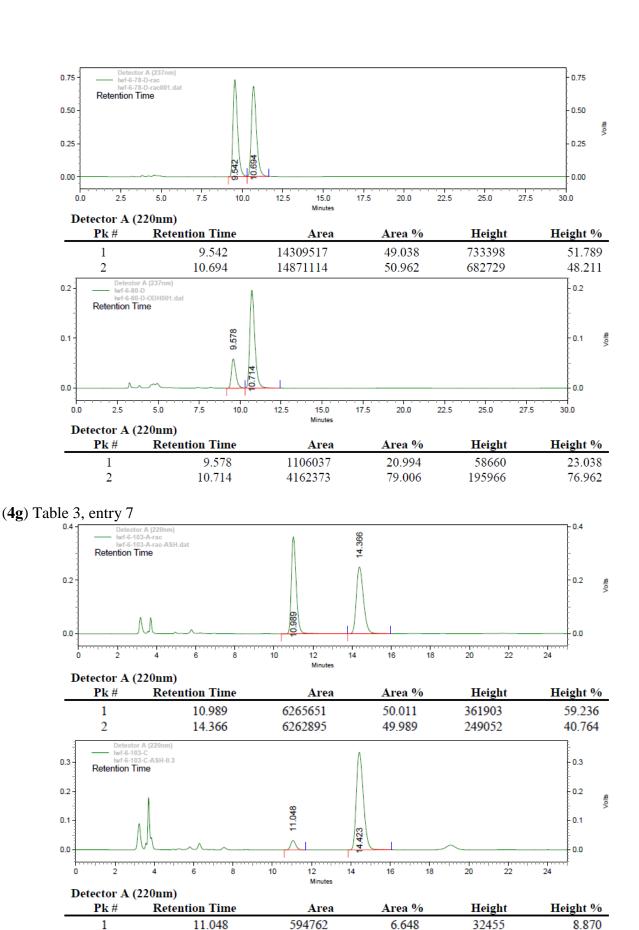
Pk #	Retention Time	Area	Area %	Height	Height %
1	24.765	20078245	98.789	582999	99.003
2	29.933	246128	1.211	5874	0.997

Minutes


(**4d**) Table 3, entry 4

Pk #	Retention Time	Area	Area %	Height	Height %
1	28.384	30165308	99.892	697743	99.865
2	31.094	32540	0.108	942	0.135

(**4e**) Table 3, entry 5


Detector A (220nm)

220HH)				
Retention Time	Area	Area %	Height	Height %
26.403	3782977	49.924	108412	53.900
28.460	3794493	50.076	92724	46.100
or A (254nm) -8 2-8-IA-20120924.dat i me	133			0.2
	26.6			0.0
10 15	20 25	30 35	40 45	50
	26.403 28.460 or A (254nm) -B -B-IA-20120924.dat ime	26.403 3782977 28.460 3794493 F A (254nm) -B -B-IA-20120924.dat ime	26.403 3782977 49.924 28.460 3794493 50.076 F A (254nm) -B -B-IA-20120924.dat ime	26.403 3782977 49.924 108412 28.460 3794493 50.076 92724 F.A. (254nm) -BB-IM-20120924.dat ime

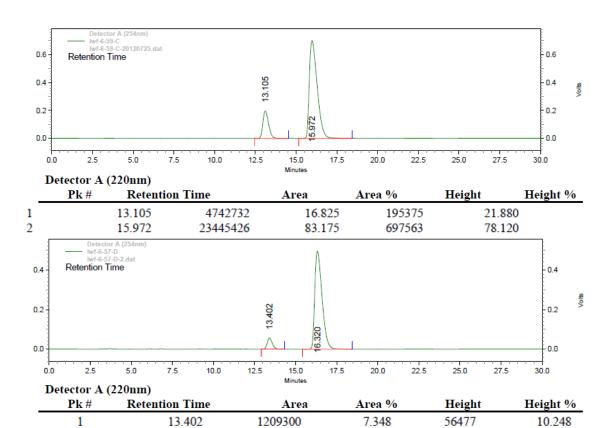
Detector A (220nm)

 Pk #	Retention Time	Area	Area %	Height	Height %
1	26.633	24165	0.194	704	0.258
2	28.273	12419566	99.806	272534	99.742

(**4f**) Table 3, entry 6

(4h) Table 3, entry 8

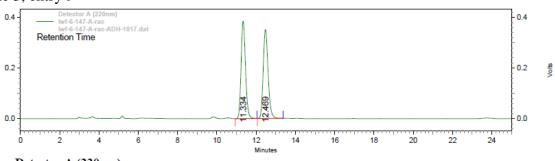
2


14.423

93.352

333456

91.130

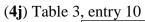

8351708

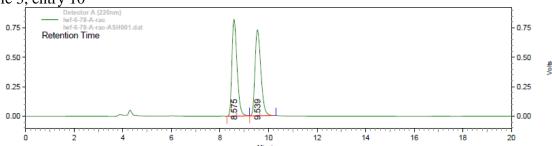
(**4i**) Table 3, entry 9

2

16.320

15248424


92.652


494607

89.752

Detector A (220nm) **Pk** # **Retention Time** Area % Height Height % Area 1 11.334 6008279 49.722 52.323 385187 12.469 6075544 50.278 350989 47.677 lwf-6-147-D lwf-6-147-D-ADH001 Retention Time 0.50 0.50 0.25 0.00 0.00 12 Minutes

Pk #	Retention Time	Area	Area %	Height	Height %
1	11.229	912839	6.550	50105	7.302
2	12.356	13022587	93.450	636064	92,698

Detector A (220nm)

	Pk #	Retention Time	Area	Area %	Height	Height %
	1	8.575	12103533	49.748	820800	52.953
	2	9.539	12226335	50.252	729255	47.047
0.4	lwf-6-80	-A001.dat	62			0.4
0.0		4 6	8.462	12 14	16 18	0.0
U	2	4 6	Minutes	12 14	16 18	20

Detector A (220nm)

Pk #	Retention Time	Area	Area %	Height	Height %
1	8.462	618778	5.819	25420	5.713
2	9.391	10014896	94.181	419502	94.287