Supporting Information

Tailored CO\textsubscript{2}-philic Gas Separation Membranes via One-pot Thiol-ene Chemistry

Tao Hong,1 Peng-Fei Cao,*,2 Sheng Zhao,1 Bingrui Li,2 Connor Smith,2 Michelle Lehmann,2,3 Andrew J. Erwin,2,4 Shannon M. Mahurin,2 Surendar R. Venna,5 Alexei P. Sokolov,1,2 Tomonori Saito*,2,3

1Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States

2Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

3The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States

4School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

5National Energy Technology Laboratory/AECOM, 626 Cochrans Mill Rd., Pittsburgh, Pennsylvania 15236, United States
Table S1. Molar feed ratio of starting materials.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Thiol-PDMS</th>
<th>EOPDMS/VTPDMS</th>
<th>PEGMEA/DEAEA</th>
<th>TPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDMS- PEGMEA<sub>0</sub>-EOPDMS<sub>20</sub></td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PDMS- PEGMEA<sub>10</sub>-EOPDMS<sub>15</sub></td>
<td>1</td>
<td>15</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>PDMS- PEGMEA<sub>20</sub>-EOPDMS<sub>10</sub></td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>PDMS- PEGMEA<sub>30</sub>-EOPDMS<sub>10</sub></td>
<td>1</td>
<td>10</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>PDMS- PEGMEA<sub>0</sub>-VTPDMS<sub>20</sub></td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PDMS- PEGMEA<sub>30</sub>-VTPDMS<sub>10</sub></td>
<td>1</td>
<td>10</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>PDMS-DEAE30-EOPDMS<sub>10</sub></td>
<td>1</td>
<td>10</td>
<td>30</td>
<td>4</td>
</tr>
</tbody>
</table>
Scheme S1. Synthesis of VTPDMS-based elastomer membranes via thiol-ene click reaction.
Figure S1. (a) Proton and (b) Carbon NMR of N-(2-(diethylamino)ethyl) acrylamide (DEAEA).
Figure S2. Picture of (a) PDMS-PEGMEA-VTPDMS (b) PDMS-DEAEA-EOPDMS and (c) PDMS-PEGMEA-PEGDA membranes.
(b)

Absorbance [a.u.]

Wavenumber [cm\(^{-1}\)]

PDMS-PEO\(_{30}\) - VTPDMS\(_{10}\)

PDMS-PEGMEA\(_{0}\) - VTPDMS\(_{20}\)

VTPDMS

Thiol-PDMS

PEGMEA

PDMS-PEO\(_{30}\) - VTPDMS\(_{10}\)
Figure S3. Full FT-IR spectra of (a) PDMS-PEGMEA-EOPDMS membranes and starting materials (b) PDMS-PEGMEA-VTPDMS membranes and starting materials and (c) PDMS-DEAEA\textsubscript{30}-EOPDMS\textsubscript{10} membrane and starting materials.
Figure S4. TGA curves of synthesized membranes.
Figure S5. DSC curves for PDMS-PEGMEA-EOPDMS membranes. All curves have been shifted vertically to illustrate the systematic change of the peak shape and position.
Figure S6. SAXS profile of PDMS-DEAEA$_{30}$-EOPDMS$_{10}$ and PDMS-PEGMEA-VTPDMS membranes.
Figure S7. AFM height (top row) and phase (bottom row) images of PDMS-PEGMEA$_{0}$-EOPDMS$_{20}$, PDMS-PEGMEA$_{10}$-EOPDMS$_{15}$, and PDMS-PEGMEA$_{20}$-EOPDMS$_{10}$ membranes. All scale bars are 200 nm.
Figure S8. Tensile test results of the PDMS-PEGMEA-EOPDMS membranes.
Figure S9. Real part of shear modulus (G’) for synthesized membranes.
Figure S10. Pressure rise in the permeate chamber of PDMS-PEGMEA$_{30}$-EOPDMS$_{10}$.