Supporting Information

Polymorphism and phase transitions in t-ZrO$_2$/CoFe$_2$O$_4$ composite structures: Impact of composition and heat treatments

Subina Raveendran and S. Kannan*

Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, INDIA

Supporting Information

Figure S1 XRD patterns for two different Co$^{2+}$, Fe$^{3+}$ and Y$^{3+}$ combinations recorded after heat treatment at 900 and 1300 °C respectively. The numerical values given in sample codes inside the Figure specifies the concentration of respective elements used for the powder synthesis. 900 and 1300 values mentioned in the sample codes specifies the heat treatment temperatures.

Figure S2 XRD patterns for two different Co$^{2+}$, Fe$^{3+}$ and Zr$^{4+}$ combinations recorded after heat treatment at 900 and 1300 °C respectively. The numerical values given in sample codes inside the Figure specifies the concentration of respective elements used for the powder synthesis. 900 and 1300 values mentioned in the sample codes specifies the heat treatment temperatures.
Figure S1

[Graph showing X-ray diffraction patterns for 8Y9Co9Fe@1300 at 1300°C, 8Y9Co9Fe@900 at 900°C, 8Y3Co3Fe@1300 at 1300°C, and 8Y3Co3Fe@900 at 900°C. Peaks are labeled for YCoO₃, Y₂O₃, YFeO₃, and Co₃O₄.]
Figure S2

ICDD No. 01-076-8397 (α-Fe₂O₃)

ICDD No. 01-083-0944 (m-ZrO₂)