Supporting Information

Facile Synthesis and Characterization of Pd@Ir_{nL} (n=1–4) Core-Shell Nanocubes for Highly Efficient Oxygen Evolution in Acidic Media

Jiawei Zhu,†‡ Zhiheng Lyu,‡ Zitao Chen,†¶ Minghao Xie,‡ Miaofang Chi,† Wanqin Jin,‡ Younan Xia†‡,#,*

†The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States

‡State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China

#School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

¶Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
Figure S1. (a) TEM image and (b) size distribution of the Pd nanocubes. Average edge length of 17.6±1.6 nm was derived for the Pd nanocubes (scale bar: 50 nm).
Figure S2. (a) Ir 4f and (b) Pd 3d XPS spectra recorded from the Pd@Ir_{nL} nanocubes, indicating that the nanocubes were composed of metallic Pd and Ir.1,2
Figure S3. (a) Schematic illustration and (b) TEM image of Pd@Ir_{4L} core-shell nanocubes synthesized using the standard procedure, except for the absence of KBr (scale bar: 50 nm).
Figure S4. TEM images of the as-prepared (a) Pd@Ir_{1L}/C, (b) Pd@Ir_{2L}/C, (c) Pd@Ir_{3L}/C, and (d) Pd@Ir_{4L}/C (scale bar: 100 nm).
Figure S5. (a) CV curves recorded from the commercial Ir/C and Pd@Ir\textsubscript{3L}/C, and (b) their corresponding ECSAs at an Ir loading of 10.2 μg\textsubscript{Ir}·cm-2 on RDE. Although a small amount of Cl4− can be reduced by Ir surface to form Cl− during test at low potential, the generated Cl− has no obvious effect on the measurements.3
Figure S6. OER activity activation for (a) commercial Ir/C, (b) Pd@Ir$_{1L}$/C, (c) Pd@Ir$_{2L}$/C, (d) Pd@Ir$_{3L}$/C, and (e) Pd@Ir$_{4L}$/C during initial 50 rounds of scanning in the potential region of 1.2–1.6 V.
Figure S7. Enhancement factor for the OER mass activity of Pd@Ir_{nL}/C relative to commercial Ir/C.
Figure S8. (a) CV curves, (b) Specific ECSAs, (c) LSV curves, (d) η at the current density of 10 mA·cm$^{-2}_{\text{geo}}$, (e) Tafel plots, and (f) mass and specific activities of Pd@Ir_{3L}/C with the Ir loadings of 10.2 and 25.5 μg·cm$^{-2}$ on RDEs.
Figure S9. Effect of the number of Ir atomic layers on the changes in Tafel slopes of Pd@Ir$_n$/C before and after durability test.
Figure S10. TEM images of (a) Pd@Ir_{1L}/C, (b) Pd@Ir_{2L}/C, (c) Pd@Ir_{3L}/C, and (d) Pd@Ir_{4L}/C after 2,000 testing cycles (scale bar: 50 nm). The red circles indicate the core-shell nanocubes involving dissolution.
Figure S11. Pd 3d XPS spectra recorded from Pd@Ir$_{1d}$/C after 2,000 testing cycles.
Table S1. The wt.% of Ir and average number of Ir atomic layers calculated from the ICP-MS data for the Pd and Ir contents in the Pd@Ir$_{nL}$ samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Wt.% of Ir in Pd@Ir$_{nL}$ nanocubes</th>
<th>Average number of Ir atomic layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd@Ir$_{1L}$</td>
<td>9.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Pd@Ir$_{2L}$</td>
<td>17.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Pd@Ir$_{3L}$</td>
<td>25.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Pd@Ir$_{4L}$</td>
<td>33.0</td>
<td>3.8</td>
</tr>
</tbody>
</table>
REFERENCES

