Supporting Information

Thermal Degradation in Ultrathin Films Outperforms Dose Control of n-Type Polymeric Dopants for Silicon

Riccardo Chiarcos†‡, Valentina Gianotti†‡, Maurizio Cossi†‡, Alberto Zoccante†‡, Diego Antonioli†‡, Katia Sparnacci†‡, Michele Laus*†‡, Federica Elvira Caligiore§, Michele Perego§*

† Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 1115121 Alessandria, Italy
‡ INSTM, UdR, Alessandria, Italy
§ Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, Italy

* corresponding authors:
Michele Laus michele.laus@uniupo.it and Michele Perego michele.perego@mdm.imm.cnr.it

Figure S1. Thickness (H) of the brush layer of the PSn-SG1 samples grafted in RTP at 250 ºC as a function of annealing time in logarithm scale. The same figure reports the evolution of brush thickness as function of annealing time in logarithm scale for the PS14.2 sample (open symbols).
Figure S2. Structures of DFT PSn-SG1 and PSn-P models comprising two or six PS units.

Figure S3. DEP-MS evolution profiles as a function of temperature for PS$_{4.3}$-SG1 (black curve) and PS$_{5.3}$-P (red curve) samples heated to 800 °C at 20 °C·s$^{-1}$. The curves were acquired in selected ion monitoring (SIM) mode at $m/z=137$ uma for diethoxyphosphinoyl fragment (dashed black curve), $m/z=110$ uma for monoethoxyphosphinoyl fragment (dashed red curve) and $m/z=104$ for styrene (continuous curves).

Data reported in Figure S3 show that PS$_{4.3}$-SG1 starts loosing diethoxyphosphinoyl fragment ($m/z=137$ uma) at approximately 300°C. As this temperature is well below to the temperature of the first loss of PS$_{5.3}$-P, namely the loss of monoethoxyphosphinoyl fragment ($m/z=110$ uma), that occurs at approximately 400 °C, the DEP-MS analysis clearly indicates that the thermal stability of PSn-SG1 is definitely lower than PSn-P samples.