Supporting Information

Rh(III)-Catalyzed C–H Amidation of 2-Arylindoles with Dioxazolones: A Route to Indolo[1,2-c]quinazolines

Xiaogang Wang,†,§ Jin Zhang,†,§ Di Chen,†,§ Bo Wang,† Xiufang Yang,† Yangmin Ma,†,* and Michal Szostak§,†,*

† College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
phone: (+86)-029-8161-8312
E-Mail: zhangjin@sust.edu.cn; mym63@sina.com
‡ School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

† Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
Fax: (+ 1-973-353-1264
phone: (+ 1)-973-353-5329
E-mail: michal.szostak@rutgers.edu
§ Both authors contributed equally

Table of Contents

1. General Information---S2
2. General C–H Amidation Procedure----------------------------------S2
3. Representative Procedure of C–H Amidation at 1 mmol Scale--------S3
4. Mechanistic Studies---S3
5. MTT Assay--S5
6. References--S6
7. Characterization Data---S7
8. NMR Spectra--S16
1. **General Information**

Unless otherwise noted, all reagents were obtained commercially and used without further purification. Unless otherwise specified, all other reagents were purchased from Aldrich, Fisher or TCI and used without further purification. The NMR spectra were recorded on a Bruker MERCURY plus-400 (400 MHz, 1H; 100 MHz, 13C) spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvent and the internal standard tetramethylsilane. Data for 1H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Chromatography was carried out with silica gel (200-300 mesh) or neutral alumina (200-300 mesh) using mixtures of petroleum ether (PE) and ethyl acetate (EA) as eluents. High resolution mass spectra (HRMS) were measured with a Waters Micromass GCT instrument and accurate masses were reported for the molecular ion [M+H]$^+$. 2-Aryl-1H-indoles and their derivatives1 and dioxazolones2 were prepared following literature reports.

2. **General C–H Amidation Procedure**

![Chemical reaction diagram]

A pressure tube (capacity: 15.0 mL, outside diameter: 26.0 mm, length: 70.0 mm,) was charged with [Cp*RhCl$_2$]$_2$ (3 mg, 0.005 mmol), AgSbF$_6$ (8.5 mg, 0.025 mmol), LiOAc (2.6 mg, 0.025 mmol), 2-aryl-1H-indole (1, 0.10 mmol) and dioxazolone (2, 0.12 mmol). DCE (0.10 M) was added and the mixture was stirred at 140 °C for 24 h. After cooling to room temperature, the solvent was evaporated and the crude product was purified by column chromatography to afford the desired compound 3.
3. Representative Procedure of C–H Amidation at 1 mmol Scale

A pressure tube (capacity: 150.0 mL, outside diameter: 57.0 mm, length: 140.0 mm,) was charged with [Cp*RhCl₂]₂ (30 mg, 0.05 mmol), AgSbF₅ (85 mg, 0.25 mmol), LiOAc (26 mg, 0.25 mmol), 2-aryl-1H-indole (1a, 1 mmol) and dioxazolone (2a, 1.2 mmol). DCE (0.10 M) was added and the mixture was stirred at 140 °C for 24 h. After cooling to room temperature, the solvent was evaporated and the crude product was purified by column chromatography to afford the desired compound 3aa.

4. Mechanistic Studies

A pressure tube (capacity: 15.0 mL, outside diameter: 26.0 mm, length: 70.0 mm,) was charged with [Cp*RhCl₂]₂ (3 mg, 0.005 mmol), AgSbF₅ (8.5 mg, 0.025 mmol), LiOAc (2.6 mg, 0.025 mmol), 2-aryl-1H-indole (1d, 0.10 mmol), 2-aryl-1H-indole (1g, 0.10 mmol) and dioxazolone (2a, 0.12 mmol). DCE (0.10 M) was added and the mixture was stirred at 140 °C for 24 h. After cooling to room temperature, the solvent was evaporated and the crude product was purified by column chromatography to afford the desired compound 3da and 3ga.
charged with \([\text{Cp}^*\text{RhCl}_2]_2\) (3 mg, 0.005 mmol), AgSbF₆ (8.5 mg, 0.025 mmol), LiOAc (2.6 mg, 0.025 mmol), 2-aryl-1H-indole (1\text{a}, 0.10 mmol), 2-aryl-1H-indole (1\text{o}, 0.10 mmol) and dioxazolone (2\text{a}, 0.12 mmol). DCE (0.10 M) was added and the mixture was stirred at 140 °C for 24 h. After cooling to room temperature, the solvent was evaporated and the crude product was purified by column chromatography to afford the desired compound 3\text{na} and 3\text{oa}.

A pressure tube (capacity: 15.0 mL, outside diameter: 26.0 mm, length: 70.0 mm) was charged with \([\text{Cp}^*\text{RhCl}_2]_2\) (3 mg, 0.005 mmol), AgSbF₆ (8.5 mg, 0.025 mmol), LiOAc (2.6 mg, 0.025 mmol), 2-aryl-1H-indole (1\text{a}, 0.10 mmol), dioxazolone (2\text{d}, 0.12 mmol) and dioxazolone (2\text{g}, 0.12 mmol). DCE (0.10 M) was added and the mixture was stirred at 140 °C for 24 h. After cooling to room temperature, the solvent was evaporated and the crude product was purified by column chromatography to afford the desired compound 3\text{ad} and 3\text{ag}.

A pressure tube (capacity: 15.0 mL, outside diameter: 26.0 mm, length: 70.0 mm) was charged with \([\text{Cp}^*\text{RhCl}_2]_2\) (3 mg, 0.005 mmol), AgSbF₆ (17 mg, 0.025 mmol), LiOAc (2.6 mg, 0.025 mmol), 2-aryl-1H-indole (1\text{a}, 0.10 mmol), dioxazolone (2\text{a}, 0.12 mmol) and TEMPO (0.10 mmol) or BHT (0.10 mmol). DCE (0.10 M) was added and the mixture was stirred at 140 °C for 24 h. After cooling to room temperature, the solvent was evaporated and the crude product was purified by column chromatography to afford the desired compound 3\text{aa}.
5. MTT Assay

PC3 cells, A549 cells and MCF-7 cells were all cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS). The cells were cultured in a humidified atmosphere of 5% CO₂/95% air at 37 °C. Cells were cultured in 35 mm glass bottom dishes (Φ = 20 mm) for 24 h and used for fluorescent imaging.

After diluting to 5 × 10⁴ cells mL⁻¹ with the complete medium, 100 μL of the cell suspension obtained was added to each well of 96-well culture plates. The subsequent incubation was performed at 37 °C, 5% CO₂ atmosphere for 24 h before the cytotoxicity assessments. Tested samples at preset concentrations were added to each well, and the cells were incubated for 48 h. The MTT solution (100 μL, 0.5 mg/mL) was added to each well, and the cells were incubated for another 4 h. The formazan crystals were dissolved in 150 μL of DMSO. Cell viability was assessed by measuring the absorbance at a 490 nm wavelength using a Thermo Multiskan FC microplate photometer (Thermo Fisher Scientific). The inhibition was calculated with the formula:

\[
\text{Inhibition \%} = \frac{(\text{OD}_c - \text{OD}_t)}{\text{OD}_c} \times 100\%
\]

ODₖ is the absorbance of negative control and ODₜ is the absorbance of tested drug.

Full Table 2 Referred to from the Main Manuscript: Cytotoxicity of 3aa-3ak in Human Cancer Cells

<table>
<thead>
<tr>
<th>entry</th>
<th>IC₅₀ (µM)</th>
<th>entry</th>
<th>IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC3</td>
<td>A549</td>
<td>MCF-7</td>
</tr>
<tr>
<td>3aa</td>
<td>229.8</td>
<td>134.9</td>
<td>n/a</td>
</tr>
<tr>
<td>3ba</td>
<td>229.1</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>3ca</td>
<td>198.4</td>
<td>145.2</td>
<td>356.3</td>
</tr>
<tr>
<td>3da</td>
<td>152.4</td>
<td>79.1</td>
<td>309.7</td>
</tr>
<tr>
<td>3ea</td>
<td>515.7</td>
<td>195.3</td>
<td>n/a</td>
</tr>
<tr>
<td>3fa</td>
<td>188.2</td>
<td>135.8</td>
<td>n/a</td>
</tr>
<tr>
<td>3ga</td>
<td>n/a</td>
<td>n/a</td>
<td>551.1</td>
</tr>
<tr>
<td>3ha</td>
<td>164.6</td>
<td>121.2</td>
<td>n/a</td>
</tr>
<tr>
<td>3ia</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>3ja</td>
<td>192.4</td>
<td>153.7</td>
<td>198.2</td>
</tr>
<tr>
<td>3ka</td>
<td>187.3</td>
<td>n/a</td>
<td>189.4</td>
</tr>
<tr>
<td></td>
<td>3la</td>
<td></td>
<td>3ma</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>154.8</td>
<td>n/a</td>
<td>123.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ak</td>
<td></td>
<td></td>
<td>158.4</td>
</tr>
<tr>
<td></td>
<td>87.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>287.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. References

7. Characterization Data

6-Phenylindolo[1,2-c]quinazoline, yellow solid (24.9 mg, 85% yield purified by silica gel chromatography using PE/EA 20:1), 3aa. 1H NMR (400 MHz, Chloroform-d) δ 8.14 – 8.08 (m, 1H), 7.86 – 7.81 (m, 1H), 7.77 (d, $J = 7.9$ Hz, 1H), 7.69 – 7.58 (m, 5H), 7.58 – 7.48 (m, 2H), 7.33 – 7.26 (m, 2H), 6.98 (ddd, $J = 8.4$, 7.1, 1.1 Hz, 1H), 6.45 (d, $J = 8.6$ Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 149.3, 139.2, 135.9, 135.2, 131.6, 130.3, 129.2, 129.0, 128.2, 127.8, 127.4, 123.4, 122.7, 121.4, 120.5, 120.4, 114.8, 95.7. HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{18}$N$_2$: 325.1230, found: 325.1228.

3-Methyl-6-phenylindolo[1,2-c]quinazoline, yellow solid (23.4 mg, 76% yield purified by silica gel chromatography using PE/EA 10:1), 3ba. 1H NMR (400 MHz, Chloroform-d) δ 8.03 (t, $J = 7.0$ Hz, 1H), 7.78 (t, $J = 6.7$ Hz, 1H), 7.68 (m, 6H), 7.38 (d, $J = 7.7$ Hz, 1H), 7.36 – 7.30 (t, $J = 8.0$ Hz, 1H), 7.28 – 7.23 (m, 1H), 6.99 (q, $J = 7.0$, 5.7 Hz, 1H), 6.50 – 6.43 (m, 1H), 2.53 (d, $J = 6.0$ Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 149.5, 139.5, 135.3, 131.5, 130.5, 130.4, 129.3, 128.8, 128.2, 127.6, 123.5, 122.6, 121.3, 120.3, 117.9, 114.8, 99.9, 95.1, 21.7. HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{19}$N$_2$: 309.1386, found: 309.1383.

3-Ethyl-6-phenylindolo[1,2-c]quinazoline, yellow solid (23.8 mg, 74% yield, purified by silica gel chromatography using PE/EA 20:1), 3ca. 1H NMR (400 MHz, Chloroform-d) δ 8.06 (d, $J = 8.1$ Hz, 1H), 7.79 (d, $J = 7.9$ Hz, 1H), 7.73 (s, 1H), 7.72 – 7.62 (m, 5H), 7.40 (dd, $J = 8.1$, 1.5 Hz, 1H), 7.33 (t, $J = 7.5$ Hz, 1H), 7.26 (s, 1H), 7.00 (ddd, $J = 8.4$, 7.2, 1.1 Hz, 1H), 6.48 (d, $J = 8.6$ Hz, 1H), 2.84 (q, $J = 7.6$ Hz, 2H), 1.36 (t, $J = 7.6$ Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 149.3, 145.7, 139.2, 136.0, 135.4, 131.5, 130.5, 130.3, 129.3, 128.2, 127.7, 126.5, 123.4, 122.6, 121.2, 120.3, 118.1, 114.8, 95.0, 28.9, 15.4. HRMS: [M+H]$^+$ calculated for C$_{25}$H$_{19}$N$_2$: 323.1543, found: 323.1541.
3-Methoxy-6-phenylindolo[1,2-c]quinazoline, yellow solid (30.7 mg, 95% yield, purified by silica gel chromatography using PE/EA 10:1), **3da.** 1H NMR (400 MHz, Chloroform-d) δ 8.05 (d, $J = 8.7$ Hz, 1H), 7.77 (d, $J = 7.9$ Hz, 1H), 7.75 – 7.61 (m, 5H), 7.40–7.31 (m, 2H), 7.16 (d, $J = 7.8$ Hz, 2H), 7.04 – 6.94 (m, 1H), 6.46 (d, $J = 8.6$ Hz, 1H), 3.94 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 160.5, 149.9, 135.4, 131.4, 130.7, 130.4, 129.3, 128.1, 123.9, 123.5, 120.9, 120.1, 116.9, 114.8, 113.8, 109.4, 94.1, 55.6. HRMS: [M+H]$^+$ calculated for C$_{22}$H$_{17}$N$_2$O$^+$: 325.1335, found: 325.1331.

3-Chloro-6-phenylindolo[1,2-c]quinazoline, yellow solid (24.6 mg, 75% yield, purified by silica gel chromatography using PE/EA 10:1), **3ea.** 1H NMR (400 MHz, Chloroform-d) δ 8.06 (d, $J = 8.5$ Hz, 1H), 7.89 (s, 1H), 7.80 (d, $J = 7.9$ Hz, 1H), 7.69 (m, 5H), 7.50 (dd, $J = 8.5$, 2.0 Hz, 1H), 7.35 (t, $J = 7.5$ Hz, 1H), 7.30 (s, 1H), 7.03 (t, $J = 8.3$ Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 150.5, 134.5, 134.3, 130.7, 130.4, 129.4, 128.1, 127.8, 127.2, 123.8, 121.9, 120.6, 119.0, 114.9, 96.5. HRMS: [M+H]$^+$ calculated for C$_{21}$H$_{15}$ClN$_2$+: 329.0840, found: 329.0838.

3-Trifluoromethoxy-6-phenylindolo[1,2-c]quinazoline, yellow solid (21.9 mg, 58% yield, purified by silica gel chromatography using PE/EA 20:1), **3fa.** 1H NMR (400 MHz, Chloroform-d) δ 8.15 (d, $J = 8.7$ Hz, 1H), 7.81 (d, $J = 7.7$ Hz, 1H), 7.77 – 7.62 (m, 6H), 7.41 – 7.33 (m, 2H), 7.31 (s, 1H), 7.09 – 7.00 (m, 1H), 6.50 (d, $J = 8.6$ Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 150.6, 149.3, 140.2, 135.4, 134.2, 131.6, 130.7, 130.3, 129.4, 128.0, 124.1, 123.8, 121.9, 120.6, 120.3, 119.2 (q, $J = 20.0$ Hz), 114.9, 96.4. HRMS: [M+H]$^+$ calculated for C$_{22}$H$_{14}$F$_3$N$_2$O$^+$: 379.1053, found: 379.1048.
3-Triﬂuoromethyl-6-phenylindolo[1,2-c]quinazoline, yellow solid (19.5 mg, 54% yield, purified by silica gel chromatography using PE/EAs 10:1), 3ga. \(^1\)H NMR (400 MHz, Chloroform-d): \(^\delta\) 8.23 (d, \(J = 8.3\) Hz, 1H), 8.16 (s, 1H), 7.84 (d, \(J = 7.9\) Hz, 1H), 7.77 – 7.66 (m, 6H), 7.42 (s, 1H), 7.38 (t, \(J = 7.3\) Hz, 1H), 7.08 (ddd, \(J = 8.4, 7.2, 1.1\) Hz, 1H), 6.54 (d, \(J = 8.6\) Hz, 1H). \(^13\)C NMR (101 MHz, Chloroform-d): \(^\delta\) 150.6, 138.8, 135.2, 133.8, 131.8, 130.9, 130.8, 130.5, 130.1, 129.4, 128.1, 125.1 (d, \(J = 20\) Hz), 123.9, 123.6 (d, \(J = 16\) Hz), 123.3, 122.4, 120.9, 115.0, 97.8. HRMS: [M+H]\(^+\) calculated for C\(_{23}\)H\(_{16}\)F\(_3\)N\(_2\): 365.1104, found: 365.1101.

2-Methyl-6-phenylindolo[1,2-c]quinazoline, yellow solid (22.2 mg, 72% yield, purified by silica gel chromatography using PE/EAs 20:1), 3ha. \(^1\)H NMR (400 MHz, Chloroform-d): \(^\delta\) 7.95 (s, 1H), 7.91 – 7.76 (m, 3H), 7.76 – 7.60 (m, 5H), 7.40 (d, \(J = 8.1\) Hz, 1H), 7.36 – 7.30 (m, 1H), 7.10 – 6.96 (m, 1H), 6.48 (d, \(J = 8.6\) Hz, 1H), 2.58 (s, 3H). \(^13\)C NMR (101 MHz, Chloroform-d): \(^\delta\) 148.7, 137.5, 135.2, 131.6, 130.5, 130.4, 129.3, 128.3, 127.5, 123.4, 122.6, 121.4, 120.4, 120.2, 114.9, 95.6, 21.7. HRMS: [M+H]\(^+\) calculated for C\(_{23}\)H\(_{17}\)N\(_2\): 309.1386, found: 309.1382.

1-Methyl-6-phenylindolo[1,2-c]quinazoline, yellow solid (23.5 mg, 76% yield, purified by silica gel chromatography using PE/EAs 20:1), 3ia. \(^1\)H NMR (400 MHz, Chloroform-d): \(^\delta\) 7.82 (dd, \(J = 14.2, 7.8\) Hz, 2H), 7.68 (m, 5H), 7.51 – 7.46 (m, 1H), 7.46 – 7.39 (m, 2H), 7.38 – 7.32 (m, 1H), 7.10 – 6.98 (m, 1H), 6.46 (d, \(J = 8.6\) Hz, 1H), 2.94 (s, 3H). \(^13\)C NMR (101 MHz, Chloroform-d): \(^\delta\) 149.3, 134.8, 134.6, 130.7, 130.5, 130.4, 129.9, 129.4, 128.3, 128.2, 125.6, 123.4, 121.8, 120.6, 114.9, 101.4, 24.0. HRMS: [M+H]\(^+\) calculated for C\(_{23}\)H\(_{17}\)N\(_2\): 309.1386, found: 309.1382.
1-Methoxy-6-phenylindolo[1,2-c]quinazoline, yellow solid (28.2 mg, 87% yield, purified by silica gel chromatography using PE/EtOAc 20:1), 3ja. 1H NMR (400 MHz, Chloroform- d) δ 7.83 (d, $J = 7.9$ Hz, 1H), 7.73 (s, 1H), 7.72 – 7.62 (m, 5H), 7.52 (d, $J = 5.0$ Hz, 2H), 7.33 (t, $J = 7.5$ Hz, 1H), 7.11 – 7.04 (m, 1H), 7.00 (t, $J = 7.8$ Hz, 1H), 6.45 (d, $J = 8.6$ Hz, 1H), 4.18 (s, 3H). 13C NMR (101 MHz, Chloroform- d) δ 156.2, 149.9, 132.3, 130.9, 130.80, 130.4, 129.3, 128.8, 128.2, 123.3, 121.4, 120.6, 119.7, 114.7, 110.9, 108.3, 101.6, 55.9. HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{27}$N$_3$O: 325.1335, found: 325.1333.

6-Phenylbenzo[g]indolo[1,2-c]quinazoline, yellow solid (29.2 mg, 85% yield, purified by silica gel chromatography using PE/EtOAc 20:1), 3ka. 1H NMR (400 MHz, Chloroform- d) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.04 – 8.00 (m, 1H), 7.99 – 7.96 (m, 1H), 7.81 (d, $J = 7.9$ Hz, 1H), 7.76 – 7.72 (m, 2H), 7.71 – 7.63 (m, 3H), 7.56 (d, $J = 7.0$, 6.1, 3.8 Hz, 2H), 7.48 (s, 1H), 7.33 (t, $J = 7.5$ Hz, 1H), 7.06 – 7.00 (m, 1H), 6.45 (d, $J = 8.6$ Hz, 1H). 13C NMR (101 MHz, Chloroform- d) δ 149.2, 137.1, 135.8, 134.9, 133.8, 132.5, 132.3, 130.4, 130.1, 129.2, 128.33, 128.3, 127.7, 126.4, 126.3, 125.7, 123.3, 122.1, 121.4, 120.6, 119.7, 114.7, 98.1. HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{27}$N$_3$: 345.1386, found: 345.1383.

9-Chloro-6-phenylindolo[1,2-c]quinazoline, yellow solid (20.0 mg, 61% yield, purified by silica gel chromatography using PE/EtOAc 20:1), 3la. 1H NMR (400 MHz, Chloroform- d) δ 8.13 (d, $J = 8.4$ Hz, 1H), 7.87 (d, $J = 7.6$ Hz, 1H), 7.74 – 7.64 (m, 5H), 7.57 (tq, $J = 10.3, 5.4, 3.5$ Hz, 2H), 7.32 – 7.24 (m, 3H), 6.37 (d, $J = 10.0$ Hz, 1H). 13C NMR (101 MHz, Chloroform- d) δ 148.9, 139.0, 135.8, 135.2, 131.7, 130.7, 129.5, 129.4, 128.7, 128.1, 128.0, 127.7, 127.0, 124.1, 122.7, 121.1, 120.4, 115.0, 95.5. HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{24}$ClN$_3$: 329.0840, found: 329.0839.
10-Methyl-6-phenylindolo[1,2-c]quinazoline, yellow solid (24.9 mg, 81% yield, purified by silica gel chromatography using PE/EtOAc 20:1), 3ma. 1H NMR (400 MHz, Chloroform-d) δ 8.13 (dd, $J = 7.6, 1.6$ Hz, 1H), 7.88 (d, $J = 7.4$ Hz, 1H), 7.72 ~ 7.64 (m, 5H), 7.60 ~ 7.51 (m, 3H), 7.24 (s, 1H), 6.84 (dd, $J = 8.7, 1.5$ Hz, 1H), 6.35 (d, $J = 8.7$ Hz, 1H), 2.48 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 149.4, 135.2, 133.2, 130.7, 130.4, 129.9, 129.3, 129.0, 128.2, 127.6, 127.4, 123.2, 122.7, 120.5, 120.1, 114.5, 95.5. HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{17}$N$_2$: 309.1386, found: 309.1383.

10-Methoxy-6-phenylindolo[1,2-c]quinazoline, yellow solid (28.2 mg, 87% yield, purified by silica gel chromatography using PE/EtOAc 20:1), 3na. 1H NMR (400 MHz, Chloroform-d) δ 8.13 (d, $J = 7.5$ Hz, 1H), 7.87 (d, $J = 7.7$ Hz, 1H), 7.67 (m, 5H), 7.56 (dt, $J = 15.1, 7.2$ Hz, 2H), 7.24 (s, 1H), 7.20 (d, $J = 2.0$ Hz, 1H), 6.67 ~ 6.60 (m, 1H), 6.35 (d, $J = 9.3$ Hz, 1H), 3.89 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 156.3, 149.0, 139.1, 135.8, 135.6, 131.4, 130.4, 129.3, 129.0, 128.2, 127.7, 127.3, 126.5, 122.7, 115.7, 111.4, 101.5, 95.5, 55.5. HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{17}$N$_2$O: 325.1335, found: 325.1333.

10-Fluoro-6-phenylindolo[1,2-c]quinazoline, yellow solid (23.4 mg, 75% yield, purified by silica gel chromatography using PE/EtOAc 20:1), 3oa. 1H NMR (400 MHz, Chloroform-d) δ 8.16 ~ 8.10 (m, 1H), 7.88 (d, $J = 7.7$ Hz, 1H), 7.72 ~ 7.63 (m, 5H), 7.63 ~ 7.53 (m, 2H), 7.41 (dd, $J = 9.0, 2.5$ Hz, 1H), 7.26 (s, 1H), 6.74 (td, $J = 9.1, 2.5$ Hz, 1H), 6.39 (dd, $J = 9.3, 4.4$ Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 160.7, 158.3, 148.9, 139.1, 136.7, 135.4, 131.3 (d, $J = 40$ Hz), 130.6, 129.5 (d, $J = 12$ Hz), 128.2 (d, $J = 12$ Hz), 127.8, 127.6, 122.8, 120.1, 115.9 (d, $J = 36$ Hz), 110.0 (d, $J = 104$ Hz), 105.3 (d, $J = 92$ Hz), 95.7 (d, $J = 16$ Hz). HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{14}$FN$_2$: 313.1136, found: 313.1132.
10-Chloro-6-phenylindolo[1,2-c]quinazoline, yellow solid (27.2 mg, 83% yield, purified by silica gel chromatography using PE/EtOAc 20:1), 3pa. 1H NMR (400 MHz, Chloroform-d) δ 8.16 – 8.10 (m, 1H), 7.89 (d, J = 7.7 Hz, 1H), 7.75 (d, J = 1.9 Hz, 1H), 7.71 – 7.53 (m, 7H), 7.24 (s, 1H), 6.95 (dd, J = 9.1, 2.1 Hz, 1H), 6.36 (d, J = 9.1 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 148.9, 139.0, 136.4, 135.3, 131.4, 130.7, 129.9, 129.6, 129.4, 129.2, 128.1, 127.9, 127.7, 122.8, 121.8, 120.1, 119.7, 115.8, 95.2. HRMS: [M+H]$^+$ calculated for C$_{32}$H$_{23}$ClN$_3$: 329.0840, found: 329.0936.

6-Methylindolo[1,2-c]quinazoline, yellow solid (20.6 mg, 89% yield, purified by silica gel chromatography using PE/EtOAc 10:1), 3ab. 1H NMR (400 MHz, Chloroform-d) δ 8.09 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 7.7 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.51 – 7.42 (m, 2H), 7.42 – 7.36 (m, 1H), 7.20 (s, 1H), 3.13 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 148.5, 138.8, 134.8, 131.6, 130.4, 129.0, 126.8, 123.4, 122.6, 122.0, 120.7, 120.2, 114.7, 95.4, 25.4. HRMS: [M+H]$^+$ calculated for C$_{30}$H$_{23}$N$_3$: 233.1073, found: 233.1071.

6-Heptylindolo[1,2-c]quinazoline, yellow solid (26.5 mg, 84% yield, purified by silica gel chromatography using PE/EtOAc 20:1), 3ac. 1H NMR (400 MHz, Chloroform-d) δ 7.98 (d, J = 7.8 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.79 (t, J = 8.4 Hz, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.47 – 7.36 (m, 3H), 7.13 (s, 1H), 3.43 – 3.21 (m, 2H), 2.02 (p, J = 7.9 Hz, 2H), 1.63 (p, J = 7.8, 7.3 Hz, 2H), 1.51 – 1.43 (m, 2H), 1.44 – 1.34 (m, 4H), 0.97 (t, J = 6.4 Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 151.6, 138.6, 135.0, 131.1, 130.4, 128.8, 127.0, 126.7, 123.2, 122.5, 122.0, 120.7, 120.1, 114.9, 95.5, 36.8, 31.8, 29.5, 29.2, 26.1, 22.7, 14.2. HRMS: [M+H]$^+$ calculated for C$_{32}$H$_{35}$N$_3$: 317.2012, found: 317.2011.
6-(4-Methoxyphenyl)indolo[1,2-c]quinazoline, yellow solid (21.1 mg, 65% yield, purified by silica gel chromatography using PE/EA 10:1), 3ad. 1H NMR (400 MHz, Chloroform-d) δ 8.19 – 8.10 (m, 1H), 7.88 (d, $J = 7.6$ Hz, 1H), 7.81 (d, $J = 7.9$ Hz, 1H), 7.65 (d, $J = 8.6$ Hz, 2H), 7.37 – 7.32 (m, 1H), 7.31 (s, 1H), 7.15 (d, $J = 8.6$ Hz, 2H), 7.05 (t, $J = 7.8$ Hz, 1H), 6.66 (d, $J = 8.6$ Hz, 1H), 3.98 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 161.1, 149.3, 135.3, 131.7, 130.3, 129.8, 129.1, 127.7, 127.3, 123.4, 122.7, 121.4, 120.4, 115.1, 114.6, 95.7, 55.5. HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{17}$N$_3$O$: 325.1335$, found: 325.1332.

6-(p-Tolyl)indolo[1,2-c]quinazoline, yellow solid (24.6 mg, 80% yield, purified by silica gel chromatography using PE/EA 10:1), 3ae. 1H NMR (400 MHz, Chloroform-d) δ 8.13 (d, $J = 7.6$ Hz, 1H), 7.88 (d, $J = 7.9$ Hz, 1H), 7.81 (d, $J = 7.9$ Hz, 1H), 7.64 – 7.50 (m, 4H), 7.46 (d, $J = 7.9$ Hz, 2H), 7.35 (t, $J = 7.5$ Hz, 1H), 7.30 (s, 1H), 7.05 (t, $J = 7.8$ Hz, 1H), 2.57 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 149.5, 140.5, 139.2, 135.3, 131.1, 131.7, 130.3, 129.9, 129.0, 128.1, 127.8, 127.3, 123.4, 122.7, 121.4, 120.5, 120.4, 115.0, 95.6, 21.7. HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{17}$N$_3$: 309.1386, found: 309.1384.

6-(Naphthalene-2-yl)indolo[1,2-c]quinazoline, yellow solid (18.6 mg, 54% yield, purified by silica gel chromatography using PE/EA 20:1), 3af. 1H NMR (400 MHz, Chloroform-d) δ 8.32 (s, 1H), 8.20 – 8.16 (m, 1H), 8.11 (d, $J = 8.4$ Hz, 1H), 8.00 (m, 3H), 7.82 (d, $J = 7.9$ Hz, 1H), 7.74 (d, $J = 8.4$ Hz, 1H), 7.71 – 7.53 (m, 5H), 7.37 (s, 1H), 7.33 (t, $J = 7.5$ Hz, 1H), 6.93 (t, $J = 7.8$ Hz, 1H), 6.54 (d, $J = 8.6$ Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 149.5, 135.2, 134.0, 133.2, 131.6, 130.4, 129.2, 129.1, 128.8, 128.3, 128.0, 127.6, 127.5, 126.9, 125.1, 123.6, 122.8, 121.7, 120.5, 120.5, 115.1, 99.1. HRMS: [M+H]$^+$ calculated for C$_{23}$H$_{17}$N$_3$: 345.1386, found: 345.1383.
6-(4-(Trifluoromethyl)phenyl)indolo[1,2-c]quinazoline, yellow solid (26.1 mg, 72% yield), purified by silica gel chromatography using PE/EA 20:1, 3ag. 1H NMR (400 MHz, Chloroform-d) δ 8.16 (d, $J = 7.3$, 1.8 Hz, 1H), 7.93 (d, $J = 8.0$ Hz, 2H), 7.85 (m, 4H), 7.62 – 7.54 (m, 2H), 7.39 (s, 1H), 7.35 (s, 1H), 7.07 (t, $J = 7.8$ Hz, 1H), 6.53 (d, $J = 8.6$ Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 147.8, 139.2, 138.7, 135.1, 132.6, 132.3, 131.2, 130.4, 129.3, 128.9, 127.9, 126.4 (q, $J = 12$ Hz), 125.1, 123.7, 122.8, 122.4, 121.8, 120.8, 120.5, 114.4, 96.1. HRMS: [M+H]$^+$ calculated for C$_{21}$H$_{16}$F$_3$N$_2$: 363.1104, found: 363.1099.

6-(4-Fluorophenyl)indolo[1,2-c]quinazoline, yellow solid (23.4 mg, 75% yield), purified by silica gel chromatography using PE/EA 20:1, 3ah. 1H NMR (400 MHz, Chloroform-d) δ 8.15 (d, $J = 7.4$ Hz, 1H), 7.88 (d, $J = 7.5$ Hz, 1H), 7.82 (d, $J = 7.9$ Hz, 1H), 7.77 – 7.68 (m, 2H), 7.57 (d, $J = 6.9$ Hz, 2H), 7.40 – 7.31 (m, 4H), 7.06 (t, $J = 7.8$ Hz, 1H), 6.55 (d, $J = 8.6$ Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 165.2, 162.7, 148.5, 135.1, 131.5, 130.6, 130.5, 129.4, 129.2, 127.6, 123.7, 121.7, 120.7, 120.5, 116.7, 116.4, 114.7, 96.1. HRMS: [M+H]$^+$ calculated for C$_{21}$H$_{15}$F2N$_2$: 313.1136, found: 313.1131.

6-(4-Chlorophenyl)indolo[1,2-c]quinazoline, yellow solid (21.0 mg, 66% yield), purified by silica gel chromatography using PE/EA 20:1, 3ai. 1H NMR (400 MHz, Chloroform-d) δ 8.18 – 8.12 (m, 1H), 7.85 (d, $J = 7.7$ Hz, 1H), 7.81 (s, 0H), 7.70 – 7.62 (m, 4H), 7.57 (dd, $J = 14.1$, 7.2, 1.6 Hz, 2H), 7.37 (t, $J = 7.5$ Hz, 1H), 7.33 (s, 1H), 7.12 – 7.04 (m, 1H), 6.61 (d, $J = 8.6$ Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 148.2, 136.6, 135.1, 134.1, 131.4, 130.4, 129.8, 129.6, 129.2, 127.7, 123.6, 122.7, 121.7, 120.7, 120.5, 114.7, 96.0. HRMS: [M+H]$^+$ calculated for C$_{21}$H$_{15}$ClN$_2$: 329.0840, found: 329.0837.
6-(4-Bromophenyl)indolo[1,2-c]quinazoline, yellow solid (26.4 mg, 71% yield, purified by silica gel chromatography using PE/EA 20:1), 3aj. 1H NMR (400 MHz, Chloroform-d) δ 8.16 – 8.12 (m, 1H), 7.85 (dd, J = 9.6, 2.2 Hz, 2H), 7.79 (s, 1H), 7.62 (d, J = 1.8 Hz, 1H), 7.55 (dd, J = 7.1, 5.6 Hz, 1H), 7.39 – 7.34 (m, 1H), 7.32 (s, 1H), 7.08 (ddd, J = 8.4, 7.1, 1.2 Hz, 1H), 6.62 (d, J = 8.6 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 148.2, 135.1, 134.7, 132.5, 131.4, 130.4, 130.0, 129.2, 127.8, 127.6, 124.8, 123.6, 122.7, 121.7, 120.7, 120.5, 114.7, 96.0. HRMS: [M+H]$^+$ calculated for C$_{21}$H$_{16}$BrN$_2$: 373.0335, found: 373.0331.

6-(3,5-Dimethoxyphenyl)indolo[1,2-c]quinazoline, yellow solid (24.1 mg, 68% yield, purified by silica gel chromatography using PE/EA 10:1), 3ak. 1H NMR (400 MHz, Chloroform-d) δ 8.10 (d, J = 7.4 Hz, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.58 – 7.46 (m, 2H), 7.31 (t, J = 7.5 Hz, 1H), 7.27 (s, 1H), 7.05 (t, J = 7.8 Hz, 1H), 6.79 (d, J = 2.2 Hz, 2H), 6.72 (t, J = 2.1 Hz, 1H), 6.63 (d, J = 8.6 Hz, 1H), 3.81 (s, 6H). 13C NMR (101 MHz, Chloroform-d) δ 161.6, 149.0, 139.0, 137.4, 135.1, 131.4, 130.3, 129.1, 127.9, 127.4, 123.5, 122.7, 121.7, 120.4, 115.1, 105.9, 103.0, 55.6. HRMS: [M+H]$^+$ calculated for C$_{21}$H$_{18}$N$_2$O$_2$: 355.1441, found: 355.1438.
8. NMR Spectra

1H and 13C NMR of compound 3aa
1H and 13C NMR of compound 3ba
1H and 13C NMR of compound 3ca
1H and 13C NMR of compound 3da
1H and 13C NMR of compound 3ea
1H and 13C NMR of compound 3fa
1H and 13C NMR of compound 3ga
1H and 13C NMR of compound 3ha
1H and 13C NMR of compound 3ia
1H and 13C NMR of compound 3ja
1H and 13C NMR of compound 3ka
1H and 13C NMR of compound 31a
1H and 13C NMR of compound 3ma
1H and 13C NMR of compound 3na
1H and 13C NMR of compound 30a
1H and 13C NMR of compound 3pa
1H and 13C NMR of compound 3ab
1H and 13C NMR of compound 3ac
1H and 13C NMR of compound 3ad
1H and 13C NMR of compound 3ae
1H and 13C NMR of compound 3af
1H and 13C NMR of compound 3ag
\(^1\)H and \(^13\)C NMR of compound 3ah
1H and 13C NMR of compound 3ai
1H and 13C NMR of compound 3aj
1H and 13C NMR of compound 3ak