Supplementary Information (SI)

A Method for Synthesis of Zeolitic Imidazolate Framework-Derived LiCoO₂/CNTs@AlF₃ with Enhanced Lithium Storage Capacity

Qiuxia Cheng,† Jianen Zhou,† Chunxian Ke,† Luzhu Qin,† Xiaoming Lin,*† Budigi Lokesh,† Gang Zhang,‡ and Yuepeng Cai*,†

† Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China

‡ State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China

E-mail: linxm@scnu.edu.cn (X-M Lin), caiyp@scnu.edu.cn (Y-P Cai)
Experimental Section

1. **Synthesis of ZIF-67**

Briefly, Co(NO$_3$)$_2$·6H$_2$O (2.4 g) and 2-methylimidazole (2.7 g) were dispersed in 30 mL of methanol by sonication. The reaction mixture was subsequently heated to 50°C for 5 min in a microwave oven. Then the resultant product was collected by centrifugation (6000 rpm, 3 min) and washed with methanol for three times. The purple powder was dried at 60°C overnight in vacuum to obtain ZIF-67 nanoparticles.

2. **Synthesis of LiCoO$_2$, LiCoO$_2$@AlF$_3$, LiCoO$_2$/CNTs and LiCoO$_2$/CNTs@AlF$_3$**

The as-prepared ZIF-67 and Li$_2$CO$_3$ (0.16g) were mixed and grounded in a mortar, then calcined at 800°C for 3h in air with a heating rate of 2°C min$^{-1}$ to get brown LiCoO$_2$ sample. Later, LiCoO$_2$ was immersed into 10 ml Al(NO$_3$)$_3$·9H$_2$O solution, and 10 ml NH$_4$F solution was added to it drop by drop. The molar ratio of Al and F is 1:3. After stirring at 80 °C for 5h, the mixture was collected by centrifugation (6000 rpm, 3 min) and dried in vacuum. After that, the powders were mixed with a certain amount of carbon nanotubes (CNTs) in an ethanol solution reacted at 50 °C for 800 mins under solvothermal method to obtain LiCoO$_2$/CNTs@AlF$_3$.

Similarly, to prepare LiCoO$_2$, LiCoO$_2$/CNTs and LiCoO$_2$@AlF$_3$, we repeated the above steps without CNTs addition or AlF$_3$ coating.

3. **Characterization**

PXRD patterns were measured on a Bruker D8 Advance diffractometer with a Cu target tube and a graphite monochromator. Raman spectra were obtained on a Renishaw inVia confocal Raman microscope equipped with an argon ion laser beam. Sorption isotherms were measured at 77 K with a Belsorp max gas sorption analyzer. The surface morphology and architecture were characterized using FESEM (TESCAN Maia 3, Czech) operating at 5 kV and TEM (FEI Talos F200X) at an acceleration voltage of 200 kV. In addition, XPS was recorded on an K-Alpha+ XPS spectrometer using Al Kα radiation.

4. **Electrochemical measurement**

To assess the electrochemical behavior of fabricated nanomaterials, the working electrode consisted of active materials, Super P and PVDF were mixed in a weight ratio of 8:1:1. Then, the obtained mixture was dispersed in N-methyl-2-pyrrolidone and stirred overnight. The slurry was subsequently coated onto a piece of aluminum foil and dried at 55 °C for 12 h then 100 °C for 8 h.
Electrochemical measurements were carried out using CR 2032 coin-type cells, using with a lithium foil as the counter electrode, a Celgard 2400 membrane as the separator, and 1 M LiPF₆ dissolved in ethylene carbonate and diethyl carbonate (1:1 ratio) as the electrolyte. After that, coin cells were assembled in an Ar-filled glove box. The galvanostatic charge/discharge tests were carried out at different current densities via a multichannel LAND CT2001 testing system (China) from 3 to 4.2 V (vs Li⁺/Li). Cyclic voltammetry curves were measured using a CHI660E electrochemical workstation with different scanning rate. EIS of the various electrodes was performed on the same workstation at 25 °C over a frequency range of 100 kHz to 0.01 Hz. Commercial lithium cobaltate for comparison is produced from Alfa Aesar.

![Figure S1 TEM images of the ZIF-derived bare LiCoO₂.](image1)

Figure S1 TEM images of the ZIF-derived bare LiCoO₂.

![Figure S2 PXRD patterns of the simulated and as-prepared ZIF-67 analogues.](image2)

Figure S2 PXRD patterns of the simulated and as-prepared ZIF-67 analogues.
Figure S3 High-resolution XPS spectrum of C1s, Co 2p, Al 2p and F 1s.

Figure S4 Pore size distribution curve of LiCoO$_2$/CNTs@AlF$_3$ sample.
Figure S5 PXRD patterns of other fabricated lithium cobaltate samples.

Figure S6 Raman spectra of the compared samples.

Figure S7 (a) Discharge capacity and coulombic efficiency of LiCoO$_2$/CNTs@AlF$_3$ at the temperature of 50 °C at 0.5 C. (b) Rate capabilities of LiCoO$_2$/CNTs@AlF$_3$ and commercial LiCoO$_2$.
Table S1. Comparison of the electrochemical properties of LiCoO$_2$/CNTs@AlF$_3$ and other coated LiCoO$_2$ materials previously reported.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Voltage range (vs Li/Li$^+$)</th>
<th>Cycle number</th>
<th>Current density</th>
<th>Specific capacity (mAh g$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$ coated LiCoO$_2$</td>
<td>3.3 - 4.5 V</td>
<td>200</td>
<td>2.8 C</td>
<td>145</td>
<td>S1</td>
</tr>
<tr>
<td>TiO$_2$-coated LiCoO$_2$</td>
<td>3.0 - 4.5 V</td>
<td>100</td>
<td>1 C</td>
<td>160 (RT) 160 (50 °C)</td>
<td>S2</td>
</tr>
<tr>
<td>ZnO-coated LiCoO$_2$</td>
<td>3.0 - 4.5 V</td>
<td>200</td>
<td>0.2 C</td>
<td>155</td>
<td>S3</td>
</tr>
<tr>
<td>LiAlO$_2$/Al$_2$O$_3$-coated LiCoO$_2$</td>
<td>2.8 - 4.3 V</td>
<td>425</td>
<td>3 C</td>
<td>128</td>
<td>S4</td>
</tr>
<tr>
<td>Al-Ti-oxide coated LCO</td>
<td>3.0 - 4.5 V</td>
<td>100</td>
<td>1 C</td>
<td>180</td>
<td>S5</td>
</tr>
<tr>
<td>phosphate coated LCO</td>
<td>3.0 - 4.5 V</td>
<td>500</td>
<td>1 C</td>
<td>142 (RT) 130 (45 °C)</td>
<td>S6</td>
</tr>
<tr>
<td>LCO@BT</td>
<td>3.0 - 4.5 V</td>
<td>100</td>
<td>0.2 C</td>
<td>172</td>
<td>S7</td>
</tr>
<tr>
<td>MgF$_2$@LCO</td>
<td>3.0 - 4.4 V</td>
<td>160</td>
<td>1 C</td>
<td>142 (45 °C)</td>
<td>S8</td>
</tr>
<tr>
<td>LCO-TiO$_2$ (90)</td>
<td>3.0 - 4.3 V</td>
<td>100</td>
<td>0.5 C</td>
<td>64</td>
<td>S9</td>
</tr>
<tr>
<td>LiCoO$_2$/CNTs@AlF$_3$</td>
<td>3.0 - 4.2 V</td>
<td>500</td>
<td>1 C (174 mA g$^{-1}$)</td>
<td>120</td>
<td>This work</td>
</tr>
</tbody>
</table>

References

