The Influence of Redox-Innocent Donor Groups in Tetradentate Ligands Derived from o-Phenylenediamine: Electronic Structure Investigations with Nickel

Kyle D. Spielvogel,† Ezra J. Coughlin,§ Hayley Petras,† Javier A. Luna,† Austin Benson,† Courtney M. Donahue,† Amani Kibasa,† Kyoungoon Lee,† Ryan Salacinski,† Suzanne C. Bart,§ Scott K. Shaw,†† James J. Shepherd,†† Scott R. Daly††

†The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242-1294, United States
§H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States

Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabulate Crystallographic Data</td>
<td>S2 – S3</td>
</tr>
<tr>
<td>Molecular Structures from XRD</td>
<td>S4 – S7</td>
</tr>
<tr>
<td>UV-Vis Absorption Spectra</td>
<td>S8</td>
</tr>
<tr>
<td>S K-edge XAS Spectra</td>
<td>S19 – S14</td>
</tr>
<tr>
<td>NMR Spectra</td>
<td>S15 – S37</td>
</tr>
<tr>
<td>EPR Spectra</td>
<td>S38 – S53</td>
</tr>
<tr>
<td>Curie-Weiss Plot for 2[NTf2]2</td>
<td>S54</td>
</tr>
<tr>
<td>CV Data for 1 and 2 in DCM</td>
<td>S55 – S56</td>
</tr>
<tr>
<td>EPR Simulation Parameters</td>
<td>S57</td>
</tr>
<tr>
<td>DFT Bond Angles, Distances, and Plots</td>
<td>S58 – S60</td>
</tr>
</tbody>
</table>
Table S1. Crystallographic data for H₂(MeNNNNMe)-DAB (L1) and nickel complexes with L1.

<table>
<thead>
<tr>
<th></th>
<th>L1</th>
<th>I</th>
<th>I[BF₄]</th>
<th>I[OTf]₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₂₂H₂₆N₄</td>
<td>C₂₂H₂₄Ni</td>
<td>C₂₂H₂₄BF₃.₉₇N₄Ni</td>
<td>C₂₄H₂₄F₆NiO₆S₂</td>
</tr>
<tr>
<td>FW (g mol⁻¹)</td>
<td>346.47</td>
<td>403.16</td>
<td>484.40</td>
<td>701.30</td>
</tr>
<tr>
<td>crystal system</td>
<td>orthorhombic</td>
<td>monoclinic</td>
<td>triclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>Pbcn</td>
<td>P₂₁</td>
<td>P-1</td>
<td>P₂₁/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>18.7325(19)</td>
<td>7.0767(7)</td>
<td>7.9214(8)</td>
<td>15.1030(15)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>7.7806(8)</td>
<td>13.9073(14)</td>
<td>10.4548(10)</td>
<td>8.4769(8)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>26.999(3)</td>
<td>9.7777(10)</td>
<td>13.9247(14)</td>
<td>22.199(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>97.288(5)</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>90</td>
<td>104.656(5)</td>
<td>97.908(5)</td>
<td>103.766(5)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>110.984(5)</td>
<td>90</td>
</tr>
<tr>
<td>volume (Å³)</td>
<td>3935.1(7)</td>
<td>930.99(16)</td>
<td>1046.96(18)</td>
<td>2760.4(5)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ρ calc (g cm⁻³)</td>
<td>1.170</td>
<td>1.438</td>
<td>1.552</td>
<td>1.687</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>0.071</td>
<td>1.056</td>
<td>0.979</td>
<td>0.943</td>
</tr>
<tr>
<td>F (000)</td>
<td>1488.0</td>
<td>424.0</td>
<td>505.0</td>
<td>1432.0</td>
</tr>
<tr>
<td>θ range (deg)</td>
<td>2.647/26.335</td>
<td>1.00/25.35</td>
<td>1.00/26.37</td>
<td>2.582/24.20</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.0267</td>
<td>0.0429</td>
<td>0.0270</td>
<td>0.0722</td>
</tr>
<tr>
<td>data/restraints/parameters</td>
<td>4034/0/239</td>
<td>3381/1/256</td>
<td>4258/161/315</td>
<td>5666/0/392</td>
</tr>
<tr>
<td>GOF</td>
<td>1.081</td>
<td>1.037</td>
<td>1.040</td>
<td>1.019</td>
</tr>
<tr>
<td>R₁ [I > 2σ(I)]ᵃ</td>
<td>0.0498</td>
<td>0.0339</td>
<td>0.0510</td>
<td>0.0390</td>
</tr>
<tr>
<td>wR₂ (all data)ᵇ</td>
<td>0.1307</td>
<td>0.0644</td>
<td>0.1324</td>
<td>0.0754</td>
</tr>
<tr>
<td>Ext. Coeff.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Largest Peak/Hole (e·Å⁻³)</td>
<td>0.433/-0.510</td>
<td>0.273/-0.284</td>
<td>1.132/-0.852</td>
<td>0.649/-0.500</td>
</tr>
<tr>
<td>Temp (K)</td>
<td>190(2)</td>
<td>190(2)</td>
<td>190(2)</td>
<td>190(2)</td>
</tr>
</tbody>
</table>

ᵃ. R₁ = \sum |F_o| - |F_c| / \sum |F_o| for reflections with F_o² > 2σ(F_o²) ᵇ. wR₂ = \[\sum w(F_o² - F_c²)^2 / \sum (F_o²)^2\]¹/² for all reflections.
Table S2. Crystallographic data for nickel complexes with L2 and L3.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2[BF₄]</th>
<th>2[OTf]₂</th>
<th>2[NTf]₂</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₂₀H₁₈N₂NiS₂</td>
<td>C₂₀H₁₈BF₄N₂NiS₂</td>
<td>C₂₂H₁₈F₆N₂NiO₆S₄</td>
<td>C₂₄H₁₈F₁₂N₄NiO₈S₈</td>
<td>C₁₆H₁₈N₂NiS₂</td>
</tr>
<tr>
<td>FW (g mol⁻¹)</td>
<td>409.19</td>
<td>496.00</td>
<td>707.31</td>
<td>969.49</td>
<td>361.51</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
<td>triclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P₂₁/c</td>
<td>P₂₁</td>
<td>P-1</td>
<td>P-1</td>
<td>C₂/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>13.8871(14)</td>
<td>10.4580(10)</td>
<td>10.3785(10)</td>
<td>8.8763(9)</td>
<td>66.1373(7)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>14.2662(14)</td>
<td>13.5602(14)</td>
<td>11.4902(11)</td>
<td>13.7106(14)</td>
<td>13.88220(10)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>18.6878(19)</td>
<td>14.0974(14)</td>
<td>12.5723(13)</td>
<td>17.1392(18)</td>
<td>21.3168(2)</td>
</tr>
<tr>
<td>a (deg)</td>
<td>90</td>
<td>90</td>
<td>97.207(5)</td>
<td>80.137(5)</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>108.116(5)</td>
<td>104.440(5)</td>
<td>103.117(5)</td>
<td>76.538(5)</td>
<td>107.9248(6)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>107.820(5)</td>
<td>72.440(5)</td>
<td>90</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>3518.8(6)</td>
<td>1936.0(3)</td>
<td>1359.0(2)</td>
<td>1922.5(3)</td>
<td>18621.6(3)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>ρcalc (g cm⁻³)</td>
<td>1.545</td>
<td>1.702</td>
<td>1.729</td>
<td>1.675</td>
<td>1.546</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>1.345</td>
<td>1.266</td>
<td>1.105</td>
<td>0.937</td>
<td>4.252</td>
</tr>
<tr>
<td>F (000)</td>
<td>1696.0</td>
<td>1012.0</td>
<td>716.0</td>
<td>972.0</td>
<td>9024.0</td>
</tr>
<tr>
<td>θ range (deg)</td>
<td>2.93/20.155</td>
<td>1.00/26.02</td>
<td>2.325/26.41</td>
<td>2.453/26.37</td>
<td>3.8015/67.1599</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.1697</td>
<td>0.0351</td>
<td>0.0289</td>
<td>0.0302</td>
<td>1.047</td>
</tr>
<tr>
<td>data/restraints/parameters</td>
<td>6199/0/479</td>
<td>6674/49/551</td>
<td>5525/60/373</td>
<td>7834/0/498</td>
<td>14446/0/1148</td>
</tr>
<tr>
<td>GOF</td>
<td>1.005</td>
<td>1.033</td>
<td>1.041</td>
<td>1.024</td>
<td>1.070</td>
</tr>
<tr>
<td>R₁ [I > 2σ(I)]a</td>
<td>0.0528</td>
<td>0.0409</td>
<td>0.0442</td>
<td>0.0330</td>
<td>0.0705</td>
</tr>
<tr>
<td>wR₂ (all data)b</td>
<td>0.0797</td>
<td>0.0974</td>
<td>0.1091</td>
<td>0.0829</td>
<td>0.1936</td>
</tr>
<tr>
<td>Ext. Coeff.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Largest Peak/Hole (e · Å⁻³)</td>
<td>0.392/-0.417</td>
<td>0.764/-0.605</td>
<td>1.620/-1.321</td>
<td>0.352/-0.338</td>
<td>1.273/-0.646</td>
</tr>
<tr>
<td>Temp (K)</td>
<td>190(2)</td>
<td>190(2)</td>
<td>190(2)</td>
<td>190(2)</td>
<td>100(2)</td>
</tr>
</tbody>
</table>

a. \(R₁ = \frac{\sum |F_o| - |F_c|}{|\sum F_o|} \) for reflections with \(F_o^2 > 2 \sigma(F_o^2) \)

b. \(wR₂ = \left[\frac{\sum w(F_o^2 - F_c^2)^2}{\sum (F_o^2)^2} \right]^{1/2} \) for all reflections.
Figure S1. Molecular structure of H$_2$(MeNNNNMe)-DAB (L1). Ellipsoids are drawn at 50% probability level.
Figure S2. Molecular structure of Ni(SNNS)-DAE (3). Hydrogen atoms are omitted from the figure and ellipsoids are drawn at the 50% probability level.
Figure S3. Molecular structure of 1[BF₄]. Hydrogen atoms are omitted from the figure and ellipsoids are drawn at the 50% probability level.
Figure S4. Molecular structure of $2[\text{NTf}_2]_2$. Hydrogen atoms omitted from the figure and ellipsoids are drawn at the 50% probability level.
Figure S5. UV-Vis spectrum of 1[NTf₂] (red) and 2[NTf₂] (black). Data were collected at: 50 μM (UV) and 250 μM (vis-NIR) solutions in DCM at 298 K.
Figure S6. Sulfur K-edge XAS spectrum of 2 (red) and 3 (blue).
Figure S7. Complete background subtracted and normalized S K-edge XAS spectrum of 3.
Figure S8. Complete background subtracted and normalized S K-edge XAS spectrum of 2.
Figure S9. Complete background subtracted and normalized S K-edge XAS spectrum of 2[BF₄].
Figure S10. Complete background subtracted and normalized S K-edge XAS spectrum of 2[NTf$_2$]$_2$.
Figure S11. Complete background subtracted and normalized S K-edge XAS spectrum of 2[OTf]$_2$.
NMR Data

Figure S12. 1H NMR spectrum of H$_2$(NNN) in CDCl$_3$. Residual NMR solvent is marked with an asterisk.
Figure S13. 13C NMR spectrum of $\text{H}_2(\text{NNNN})$ in CDCl$_3$. Spectrometer artifact is marked with †.
Figure S14. 1H NMR spectrum of N,N'-bis[2-(methylthio)phenyl]ethanediylidene. Residual water is marked with an asterisk.
Figure S15. 1H NMR spectrum of $\text{H}_2(\text{SNNS})$-DAE in CDCl$_3$. Residual NMR solvent is marked with an asterisk.
Figure S16. 13C NMR spectrum of H$_2$(SNNS)-DAE in CDCl$_3$. Spectrometer artifact is marked with ‡.
Figure S17. 1H NMR spectrum of 1 in THF-D$_8$. Residual NMR solvent is marked with an asterisk.
Figure S18. 13C NMR spectrum of 1 in THF-d_8.
Figure S19. 19F NMR spectrum of $1[BF_4]$ in CH$_2$Cl$_2$.
Figure S20. 11B NMR spectrum of $1[BF_4]$ in CH$_2$Cl$_2$.
Figure S21. 19F NMR spectrum of $1\text{[NTf}_2\text{]}$ in CH$_2$Cl$_2$.
Figure S22. 1H NMR spectrum of $1[\text{OTf}]_2$ in CD$_2$Cl$_2$.
Figure S23. 19F NMR spectrum of $1[OTf]_2$ in CD$_2$Cl$_2$.
Figure S24. 1H NMR spectrum of 2 in C$_6$D$_6$. Residual NMR solvent is marked with an asterisk.
Figure S25. 13C NMR spectrum of 2 in C₆D₆.
Figure S26. \(^{11}\)B NMR spectrum of 2[BF\(_4\)] in CH\(_2\)Cl\(_2\).
Figure S27. 19F NMR spectrum of 2|BF$_4$| in CH$_2$Cl$_2$.

50 0 -50 -100 -150 -200 [ppm]
Figure S28. 19F NMR spectrum of $2[\text{NTf}_2]$ in CH$_2$Cl$_2$.
Figure S29. 1H NMR spectrum of 2[OTf]$_2$ in CD$_2$Cl$_2$.
Figure S30. 19F NMR spectrum of 2[OTf]$_2$ in CH$_2$Cl$_2$.
Figure S31. 1H NMR spectrum of 2[NTf$_2$]$_2$ in CD$_2$Cl$_2$.
Figure S32. 19F NMR spectrum of $2\text{[NTf}_2\text{]}_2$ in THF.
Figure S33. 1H NMR spectrum of 3 in C$_6$D$_6$. Residual NMR solvent is marked with an asterisk.
Figure S34. 13C NMR spectrum of 3 in C$_6$D$_6$.
Figure S35. Variable temperature EPR experiment of $2\text{[BF}_4\text{]}$ (0.95 mM, 3:1 mixture of DCM:2-methyl THF) from 155 (grey) to 109 K (red) with spectra collected at 10 K increments. Frequency: 9.50 GHz. Power: 40 mW. Modulation: 10.0 G/100 kHz.
Figure S36. EPR spectrum of $\text{1[BF}_4\text{]}$ (0.77 mM, DCM) recorded at 298 K. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S37. EPR spectrum of $1\text{[BF}_4\text{]}$ (0.77 mM, DCM) with 3000 equiv. of pyridine recorded at 298 K. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S38. EPR spectrum of 1[NTf2] (0.92 mM, DCM) recorded at 298 K. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S39. EPR spectrum of $\mathbf{1[NTf_2]}$ (0.92 mM, DCM) recorded at 109 K. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S40. EPR spectrum of $\mathbf{1[NTf_2]}$ (0.92 mM, DCM) with 3000 equiv. of pyridine recorded at 298 K. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S41. EPR spectrum of 1[NTf₂] (0.92 mM, DCM) with 3000 equiv. of pyridine recorded at 109 K (black). Simulated spectrum in red. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S42. EPR spectrum of $2[\text{BF}_4]$ (0.91 mM, DCM) with 3000 equiv. of pyridine recorded at 298 K. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S43. EPR spectrum of $2\text{[NTf}_2]$ (0.83 mM, DCM) recorded at 298 K. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S44. EPR spectrum of $2\{\text{NTf}_2\}$ (0.83 mM, DCM) recorded at 109 K. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S45. EPR spectrum of 2|NTf₂| (0.83 mM, DCM) with 3000 equiv. of pyridine recorded at 298 K. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S46. EPR spectrum of 2[NTf₂] (0.83 mM, DCM) with 3000 equiv. of pyridine recorded at 109 K. Simulated spectrum in red. Frequency: 9.50 GHz. Power: 20 mW. Modulation: 10.0 G/100 kHz.
Figure S47. EPR spectrum of 1[OTf]$_2$ (unknown concentration, 3:1 mixture of DCM:2-methyl THF) recorded at 298 K. Frequency: 9.49 GHz. Power: 1 mW. Modulation: 5.0 G/100 kHz.
Figure S48. EPR spectrum of 2[OTf]$_2$ (unknown concentration, 3:1 mixture of DCM:2-methyl THF) recorded at 298 K. Frequency: 9.49 GHz. Power: 1 mW. Modulation: 5.0 G/100 kHz.
Figure S49. EPR spectrum of 2[OTf]_2 (unknown concentration, 3:1 mixture of DCM:2-methyl THF) recorded at 109 K. Simulated spectrum in red. Frequency: 9.50 GHz. Power: 1 mW. Modulation: 5.0 G/100 kHz.
Figure S50. EPR spectrum of 2[NTf$_2$]$_2$ (unknown concentration, 3:1 mixture of DCM:2-methyl THF) recorded at 298 K. Frequency: 9.49GHz. Power: 1 mW. Modulation: 5.0 G/100 kHz.
Figure S51. Curie-Weiss plot of VT Evans method experiment for $2[\text{NTf}_2]_2$ (4.9 µM in DCM with a DCM capillary insert). Collected using a DRX Bruker 400 MHz. Temp: -80 °C (193 K) to 30 °C (300 K).

\[
y = 0.3343x + 90.255
\]

\[
R^2 = 0.9852
\]
Figure S52. Cyclic voltammograms of 1 in DCM, \textit{left}- full window and \textit{right}- truncated window. WE: Glassy Carbon, RE: Pt wire, CE: Pt wire, Fc: reference, solvent: DCM, electrolyte: TBAPF₆. T: 298 K. Arrows signify scan start and direction.
Figure S53. Cyclic voltammograms of 2 in DCM, *left-* full window and *right-* truncated window. WE: Glassy Carbon, RE: Pt wire, CE: Pt wire, Fc: reference, solvent: DCM, electrolyte: TBAPF$_6$. T: 298 K. Arrows signify scan start and direction.
Table S3. Parameters for simulated EPR data selected by easyspin least squares fit for singly oxidized (S = ½) compounds. EPR data collected in DCM unless otherwise noted.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ni(III) region</th>
<th>Ligand radical region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A₁</td>
<td>A₂</td>
</tr>
<tr>
<td>1[BF₄]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-py[BF₄]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-py[NTf₂]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2[BF₄]* (2-MeTHF/DCM)</td>
<td>8.706</td>
<td>8.549</td>
</tr>
<tr>
<td>2[BF₄]</td>
<td></td>
<td>18.136</td>
</tr>
<tr>
<td>2-py[BF₄]</td>
<td></td>
<td>50.193</td>
</tr>
<tr>
<td>2-py[NTf₂]</td>
<td></td>
<td>15.052</td>
</tr>
</tbody>
</table>

A tensors are reported as MHz. LW broadenings are reported as mT. *Fluorine splitting was modeled as a separate S = ½ species with giso = 2.186 and A = 11.62, 8.45 and 777.41 MHz.

Table S4. Parameters for simulated EPR data selected by easyspin least squares fit for double oxidized (S = 1) compounds. EPR data collected in DCM.

<table>
<thead>
<tr>
<th>Compound</th>
<th>gₓₓ</th>
<th>gᵧᵧ</th>
<th>gzz</th>
<th>giso</th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>LW</th>
<th>LW</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[OTf₂]</td>
<td>2.037</td>
<td>2.012</td>
<td>2.000</td>
<td>2.016</td>
<td>0.012</td>
<td>14.997</td>
<td>37.401</td>
<td>0.777</td>
<td>0.355</td>
<td>8.193</td>
<td>5.647</td>
</tr>
<tr>
<td>2[OTf₂]</td>
<td>2.024</td>
<td>2.020</td>
<td>1.999</td>
<td>2.014</td>
<td>10.631</td>
<td>1.280</td>
<td>32.164</td>
<td>0.428</td>
<td>1.039</td>
<td>21.917</td>
<td>2.980</td>
</tr>
<tr>
<td>2[NTf₂]</td>
<td>2.025</td>
<td>2.019</td>
<td>1.995</td>
<td>2.013</td>
<td>13.437</td>
<td>0.010</td>
<td>20.867</td>
<td>1.018</td>
<td>0.166</td>
<td>21.699</td>
<td>2.693</td>
</tr>
</tbody>
</table>

A tensors are reported as MHz. LW broadenings are reported as mT. D and E parameters are reported as MHz.
Table S5. Bond distances (Å) and angles (deg) from DFT calculations.

<table>
<thead>
<tr>
<th></th>
<th>1⁺</th>
<th>1[BF₄]</th>
<th>1[OTf]₂</th>
<th>2⁺</th>
<th>2[BF₄]</th>
<th>2[NTf₂]₂⁺</th>
<th>2[NTf₂]₂</th>
<th>2[OTf]₂</th>
<th>2-py[BF₄]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-N</td>
<td>1.84389</td>
<td>1.83671</td>
<td>1.99907</td>
<td>1.84637</td>
<td>1.85305</td>
<td>1.87107</td>
<td>1.94401</td>
<td>2.00917</td>
<td>1.91096</td>
</tr>
<tr>
<td></td>
<td>1.82977</td>
<td>1.83815</td>
<td>2.00809</td>
<td>1.84436</td>
<td>1.86178</td>
<td>1.87233</td>
<td>1.95353</td>
<td>2.02172</td>
<td>1.91559</td>
</tr>
<tr>
<td>Ni-X</td>
<td>1.98792</td>
<td>1.99161</td>
<td>2.26012</td>
<td>2.1563</td>
<td>2.20882</td>
<td>2.19380</td>
<td>2.43565</td>
<td>2.51174</td>
<td>2.3807</td>
</tr>
<tr>
<td></td>
<td>2.02433</td>
<td>2.03791</td>
<td>2.26163</td>
<td>2.14984</td>
<td>2.24366</td>
<td>2.18795</td>
<td>2.44664</td>
<td>2.53804</td>
<td>2.31736</td>
</tr>
<tr>
<td>Ni-O</td>
<td>-</td>
<td>-</td>
<td>2.04739</td>
<td>-</td>
<td>-</td>
<td>2.79365</td>
<td>2.22263</td>
<td>2.02505</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>2.07906</td>
<td>-</td>
<td>-</td>
<td>2.84788</td>
<td>2.17126</td>
<td>2.05442</td>
<td>-¹</td>
</tr>
<tr>
<td>C-C</td>
<td>1.43229</td>
<td>1.40742</td>
<td>1.50106</td>
<td>1.4135</td>
<td>1.45127</td>
<td>1.48384</td>
<td>1.43441</td>
<td>1.5001</td>
<td>1.45869</td>
</tr>
<tr>
<td>N-C</td>
<td>1.38155</td>
<td>1.36698</td>
<td>1.30754</td>
<td>1.40035</td>
<td>1.37273</td>
<td>1.32668</td>
<td>1.35704</td>
<td>1.39184</td>
<td>1.35374</td>
</tr>
<tr>
<td></td>
<td>1.39213</td>
<td>1.38884</td>
<td>1.38343</td>
<td>1.37626</td>
<td>1.39192</td>
<td>1.32161</td>
<td>1.38718</td>
<td>1.31334</td>
<td>1.39643</td>
</tr>
<tr>
<td></td>
<td>1.39133</td>
<td>1.36764</td>
<td>1.31257</td>
<td>1.40064</td>
<td>1.36023</td>
<td>1.41388</td>
<td>1.38289</td>
<td>1.31301</td>
<td>1.37159</td>
</tr>
<tr>
<td></td>
<td>1.38217</td>
<td>1.37863</td>
<td>1.38782</td>
<td>1.38505</td>
<td>1.39726</td>
<td>1.41385</td>
<td>1.36253</td>
<td>1.38859</td>
<td>1.38847</td>
</tr>
<tr>
<td>N-Ni-N</td>
<td>84.502</td>
<td>84.244</td>
<td>80.5559</td>
<td>86.247</td>
<td>85.947</td>
<td>84.126</td>
<td>82.325</td>
<td>81.099</td>
<td>84.102</td>
</tr>
<tr>
<td>X-Ni-X</td>
<td>105.409</td>
<td>106.665</td>
<td>120.074</td>
<td>96.95</td>
<td>102.114</td>
<td>97.445</td>
<td>109.058</td>
<td>114.43</td>
<td>104.015</td>
</tr>
</tbody>
</table>

¹Calculated with atom positions constrained to match those from XRD studies. All other structures optimized.
Figure S54. Spin density plot for calculated structure of 2[BF₄] with axially positioned BF₄⁻. Spin density isovalue is 0.002. Hydrogen atoms were omitted from the figure.
Figure S55. Optimized structure of $2[BF_4]$ that started with two pyridine ligands bound to Ni. The resulting Ni-pyridine distances are 2.183 and 4.553 Å. Hydrogen atoms were omitted from the figure.