Supporting Information

Sensitive and Multiplexed SERS Nanotags for the Detection of Cytokines Secreted by Lymphoma

Dan Li,a,b Lianmei Jiang,a James A. Piper,c Ivan S. Maksymov,d,e Andrew D. Greentree,d Erkang Wang,b Yuling Wanga,*

a ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
b State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
c ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Physics and Astronomy, Macquarie University, Sydney, 2109, Australia
d ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, 3001, Australia
e Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, 3122, Australia

* Corresponding author.
Email: yuling.wang@mq.edu.au
Tel: +61-2-98506914
Table of Contents

Figure S1. The histograms of diameter distribution of the nanoparticles

Table S1. Mean diameters, PDIs and zeta potentials of the nanoparticles

Figure S2. SEM and EDS of SERS nanotags

Figure S3. UV-vis absorption spectra of the as-prepared nanoparticles

Figure S4. Raman intensity before and after silver coating

Figure S5. Stability study of the SERS nanotags
Results

Figure S1. The histograms of diameter distribution analyzed from TEM images of AuNPs (a), Au@DTNB@AgNPs (b), Au@MBA@AgNPs (c), and Au@TFMBA@AgNPs (d) using Nano Measure software based on more than 100 nanoparticles.

Table S1. Mean diameters, PDIs and zeta potentials of AuNPs, Au@DTNB@AgNPs, Au@MBA@AgNPs, Au@TFMBA@AgNPs analyzed by dynamic light scattering (DLS).

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>Size (nm)</th>
<th>PDI</th>
<th>Zeta potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuNPs</td>
<td>44.47±7.86</td>
<td>0.507±0.009</td>
<td>-46.17±0.82</td>
</tr>
<tr>
<td>Au@DTNB@AgNPs</td>
<td>54.76±5.99</td>
<td>0.246±0.004</td>
<td>-32.93±1.24</td>
</tr>
<tr>
<td>Au@MBA@AgNPs</td>
<td>55.81±7.70</td>
<td>0.278±0.002</td>
<td>-40.93±0.94</td>
</tr>
<tr>
<td>Au@TFMBA@AgNPs</td>
<td>60.42±7.11</td>
<td>0.302±0.006</td>
<td>-32.59±1.15</td>
</tr>
</tbody>
</table>
Figure S2. Images of typical SEM (a), elemental distribution of Au (b), Ag (c), Au + Ag (d), and EDS (e) of Au@DTNB@AgNPs (A), Au@MBA@AgNPs (B) and Au@TFMBA@AgNPs (C). The scale bar of each SEM image is 1 μm.

Figure S3. UV-vis spectra of the AuNPs (black lines), AuNPs@Ra NPs (red lines) and Au@Ra@AgNPs. (blue lines). The gold nanoparticles modified by Raman (Ra) molecules of DTNB (a), MBA (b) and TFMBA (c) before and after silver coating were shown separately.
Figure S4. Raman intensity of the Raman reporters: DTNB (a), MBA (b), TFMBA (c) in Au@Ra (black lines) and Au@Ra@AgNPs (colored lines).
Figure S5. Stability study. (A) Comparison of Raman spectra of SERS nanotags for fresh-prepared (black lines) and those being stored at 4 °C for 6 months (coloured lines), which indicates that there are no measurable differences between the two measurements. (B) Photograph images of Au@Ra@Ag dispersed into H₂O (a), 0.9 % NaCl (b), PBS (c), DMEM (d), and DMEM containing 10% FBS (e), showing no obvious aggregation observed. This further confirms the stability of Au@Ra@Ag is stable at different media.