Supplementary information

Colloidal Stability of Imogolite Nanotube Dispersions: A Phase Diagram Study

Erwan Paineau,a,* Geoffrey Monet,a Véronique Peyre,b Claire Goldmann,a Stéphan Rouzière,a Pascale Launoisa

a Laboratoire de Physique des Solides, UMR CNRS 8502, Univ. Paris-Sud, Université Paris-Saclay, Bâtiment 510, 91405 Orsay, France.

b PHENIX, UMR CNRS 8234, Sorbonne Universités, UPMC Univ. Paris 06, 75005 Paris, France.

*E-mail: erwan-nicolas.paineau@u-psud.fr

Number of pages: 5
Number of figures: 4
Figure S1. Optical observations of aqueous suspensions of Ge-DWINTs prepared at different volume fractions ϕ and observed between crossed polarizers. (a) IS = 10^{-3} mol.L$^{-1}$; (b) IS = 10^{-4} mol.L$^{-1}$.
Figure S2. Optical observations of concentrated gel suspensions of Ge-DWINTs prepared at IS = 10^{-1} mol.L$^{-1}$.
Figure S3. Effect of volume fraction on the WAXS diagram of Ge-DWINTs suspensions prepared at IS = 10^{-4} mol.L^{-1}. (blue) isotropic liquid (ϕ = 0.26 %); (red) birefringent gel phase (ϕ = 0.99%). Dotted line corresponds to calculated WAXS diagram using eq. 3 (see main text for details) with $N_b = 1$ and $p = 1$.
Figure S4. WAXS diagram of Ge-DWINTs samples obtained at IS = 10^{-1} \text{ mol.L}^{-1} (\phi = 1.74\%, black curve) and comparison with calculations for different lattice parameters a. The dotted line corresponds to the calculated WAXS diagram of individual nanotubes DW_{1}^{sim} ($N_b = 1; p = 1$). (a) $N_b = 2$; (b) $N_b = 3$; (c) $N_b = 4$. All curves have been translated vertically for the sake of clarity. (d) Best fits obtained with $a = 4.5$ nm: DW_{1-3}^{sim} ($N_b = 1, p = 0.1; N_b = 2, p = 0.6; N_b = 3, p = 0.3$); DW_{1-4}^{sim} ($N_b = 1, p = 0.1; N_b = 2, p = 0.4; N_b = 3, p = 0.4; N_b = 4, p = 0.1$).