Supporting Information

for

Synthesis, structure and reactivity of an NHC silyl gold(I) complex

Maximilian Joost,† Nathalie Saffon-Merceron,‡ Abderrahmane Amgoune† and Didier Bourissou*,†

†CNRS, Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France. E–mail: dbouriss@chimie.ups–tlse.fr
‡Institut de Chimie de Toulouse (FR 2599), 118 route de Narbonne, 31062 Toulouse Cedex 9, France

Table of Contents

1. General comments…………………………………………………………………………………………..S2
2. Synthesis and analytical data of the new complexes…………………………………………………S3
3. NMR spectra…………………………………………………………………………………………..S4
4. Crystallographic data………………………………………………………………………………………..S7
5. References………………………………………………………………………………………………….S7
1. General comments

All reactions and manipulations were carried out under an atmosphere of dry argon using standard Schlenk techniques or in a glovebox under an inert atmosphere, unless otherwise stated. Dry, oxygen-free solvents were employed. Melting points were determined with a Stuart SMP40 apparatus and are uncorrected. Solution 1H, ^{13}C, and ^{29}Si NMR spectra were recorded on a Bruker Avance 300 spectrometer at 298 K. Chemical shifts (δ) are expressed with a positive sign, in parts per million. 1H and ^{13}C chemical shifts reported are referenced internally to residual protio (1H) or deuterio (^{13}C) solvent, while ^{29}Si chemical shifts are relative to SiMe$_4$ external references, respectively. The following abbreviations and their combinations are used: br, broad; s, singlet; d, doublet; t, triplet; q, quartet, m, multiplet. The 1H and ^{13}C resonance signals were attributed by means of 2D HSQC and HMBC experiments. Mass spectra were recorded on a Waters UPLC Xevo G2 Q TOF apparatus. [AuCl(IPr)] was obtained as a generous gift from Umicore (Brussels, Belgium). All other starting materials were purchased from Aldrich (Saint-Quentin Fallavier, France), ABCR (Karlsruhe, Germany) or AlfaAesar (Schiltigheim, France). Chlorodimethylphenylsilane was distilled prior to use.
2. Synthesis and analytical data of the new complexes

Complex 1, (IPr)Au(SiMePh). A solution of PhMeSiCl (137 mg, 135 µL, 0.81 mmol, 1 equiv) in tetrahydrofuran (2 mL) was added to finely cut, shiny lithium (167 mg, 24.15 mmol, 30 equiv) in tetrahydrofuran (2 mL) placed in a Schlenk flask. The reaction mixture was stirred overnight at room temperature. The resulting dark brown solution was cooled down to 0 °C and then quickly added by cannula transfer to a dispersion of (IPr)AuCl (500 mg, 0.81 mmol, 1 equiv) in tetrahydrofuran (15 mL) at 0 °C. The solution was stirred for 2 minutes at 0 °C and then warmed up to room temperature.

Volatiles were removed under vacuum. The yellowish residue was re-dissolved in dichloromethane (2 mL), filtered over oven-dried alumina using dichloromethane (10 mL) as the eluent. The solvent of the clear-yellow filtrate was removed in vacuo. The off-white residue was washed twice with pentane (2 mL) and dried under vacuum to give silyl gold complex 1 as a white powder. Yield: 440 mg (75%). Crystals suitable for X-ray diffraction were grown at ~30 °C by slow diffusion of pentane into a concentrated solution of 1 in a dichloromethane/toluene (1:2) mixture. Mp: decomposition without melting at around 170 °C; \(^1H \) NMR (300 MHz, CDCl₃): δ 7.62–7.46 (m, 2H, H₆), 7.36–6.97 (m, 9H, H₇), 6.29 (s, 2H, NCH₃CH₂N), 2.62 (sept, 3J\(^{HH} = 6.9\) Hz, 4H, CH₃CH₂N), 1.44 (d, 3J\(^{HH} = 6.9\) Hz, 12H, HCH₃CH₂N), 1.09 (d, 3J\(^{HH} = 6.9\) Hz, 12H, HCH₃CH₂N), 0.47 (s, 6H, HSiCH₂Ph); \(^{13}Si\)\(^{[H]} \) NMR (60 MHz, CDCl₃): δ 12.87 (s); \(^{13}C\)\(^{[H]} \) NMR (75 MHz, CDCl₃): δ 217.4 (s, C=O), 171.5 (s, C=O), 145.8 (s, C=O), 134.7 (s, C=O or C=O), 130.3 (s, C=O), 126.5 (s, C=O or C=O), 124.0 (s, C=O or C=O), 122.4 (s, C=O), 7.97 (m, 13H, H₆). HRMS (ESI+): calcd for [M+Na]⁺: C₃₈H₇₄N₆NaSiAu⁺: 743.3072. Found: 743.3083.

Complex 2, (IPr)AuCH=CCO(CH₃)(SiMePh). Methyl propiolate (125 µL, 0.98 mmol, 10 equiv) was added to silylgold complex 1 (100 mg, 0.14 mmol, 1 equiv) solubilized in a toluene/dichloromethane mixture (1:1, 4 mL) in a Schlenk tube. The Schlenk tube was sealed and heated for 12 hours at 100 °C. After complete conversion, the reaction mixture was cooled down to room temperature, filtered over a Celite pad and eluted with dichloromethane (10 mL). Volatiles were removed in vacuo. The off-white residue was triturated twice with pentane (2 x 3 mL) and then resolubilized in a minimum volume of dichloromethane. Pentane (3 mL) was added. The solution was stored for 3 days at ~80 °C to give complex 2 as a white crystalline solid. Yield: 71 mg (63 %). Crystals suitable for X-ray diffraction were grown from a saturated solution of 2 in a dichloromethane/benzene (1:3) mixture. Mp: 177–178 °C (decomposition); \(^1H \) NMR (300 MHz, CDCl₃): δ 9.20 (s, 1H, H₆=CH), 7.51–7.97 (m, 13H, H₆=CH & HNCH₃CH₂N), 3.34 (s, 3H, OCH₃), 2.54 (sept, 3J\(^{HH} = 6.9\) Hz, 4H, CH₃CH₂N), 1.23 (d, 3J\(^{HH} = 6.9\) Hz, 12H, HCH₃CH₂N), 1.14 (d, 3J\(^{HH} = 6.9\) Hz, 12H, HCH₃CH₂N), 0.01 (s, 6H, HSiMe₂); \(^{29}Si\)\(^{[H]} \) NMR (60 MHz, CDCl₃): δ –13.6 (s); \(^{13}C\)\(^{[H]} \) NMR (75 MHz, CDCl₃): δ 196.8 (s, C=O), 196.7 (s, C=O), 189.5 (s, C=O), 171.5 (s, C=O), 145.6 (s, C=O), 145.0 (s, C=O), 134.6 (s, C=O), 133.8 (s, C=O or C=O), 130.3 (s, C=O), 127.6 (s, C=O), 127.0 (s, C=O or C=O), 124.1 (C=O), 123.0 (s, C=O), 50.5 (s, OCH₃), 28.7 (s, C(CH₃)₃), 24.2 (s, C(CH₃)₃), 24.1 (s, C(CH₃)₃), –0.4 (s, SiMe₂); HRMS (ESI+): calcd for [M+H]⁺: C₃₉H₇₆N₆O₃Si⁺: 805.3474. Found: 805.3464.
3. NMR spectra

Figure S1. 1H NMR spectrum of 1.

Figure S2. J-modulated 13C{1H} NMR spectrum of 1.
Figure S3. 29Si\{1H\} NMR spectrum of 1.

Figure S4. 1H NMR spectrum of 2.
Figure S5. J-modulated $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 2.

Figure S6. $^{29}\text{Si}\{^1\text{H}\}$ NMR spectrum of 2. Silicon grease ($\delta = -21.9$ ppm) is present.
4. Crystallographic data

Crystallographic data were collected at 193(2) K on a Bruker-AXS Kappa APEX II Quazar diffractometer, with Mo Kα radiation (λ = 0.71073 Å) using an oil-coated shock-cooled crystal. Phi- and omega-scans were used. Space groups were determined on the basis of systematic absences and intensity statistics. Semi-empirical absorption correction was employed. The structures were solved using an intrinsic phasing method (SHELXT), and refined using the least-squares method on \(F^2 \). All non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms were refined isotropically at calculated positions using a riding model with their isotropic displacement parameters constrained to be equal to 1.5 times the equivalent isotropic displacement parameters of their pivot atoms for terminal sp\(^3\) carbon and 1.2 times for all other carbon atoms.

Complex 1: \(\text{Cs}_{36}\text{H}_{67}\text{N}_{2}\text{SiAu.C}_{37}\text{H}_{54} \), \(F_w = 812.93, 0.2 \times 0.1 \times 0.04 \text{ mm}, \) monoclinic, \(P 21/c, a = 10.3925(4), b = 20.4509(6), c = 18.9607(5) \text{ Å}, \) \(\beta = 96.549(2)^\circ, V = 4003.5(2) \text{ Å}^3, Z = 4, D_\alpha = 1.349 \text{ g/cm}^3, \mu = 3.733 \text{ mm}^{-1}. \) A total of 61457 reflections were measured, of which 9910 reflections were unique (\(R_{int} = 0.0842). \) A total of 477 parameters were refined with 255 restraints. \(R_1 [I > 2\sigma(I)]: 0.0376. \) \(wR_2 [\text{all refl.}]: 0.0724. \) Largest diff. peak and hole 2.482 and –1.006 e.Å\(^{-3}\).

Complex 2: \(\text{Cs}_{39}\text{H}_{51}\text{AuN}_{2}\text{O}_{2}\text{Si.}\frac{1}{2}\text{C}_{6}\text{H}_{6} \), \(F_w = 843.93, 0.1 \times 0.08 \times 0.04 \text{ mm}, \) triclinic, \(P \bar{1}, a = 11.3084(3), b = 12.4918(3), c = 16.5026(4) \text{ Å}, \) \(\alpha = 87.2970(10)^\circ, \beta = 80.3440(10)^\circ, \gamma = 64.2190(10)^\circ, V = 2068.54(9) \text{ Å}^3, Z = 2, D_\alpha = 1.355 \text{ g/cm}^3, \mu = 3.619 \text{ mm}^{-1}. \) A total of 30482 reflections were measured, of which 10045 reflections were unique (\(R_{int} = 0.0434). \) A total of 459 parameters were refined with 84 restraints. \(R_1 [I > 2\sigma(I)]: 0.0372. \) \(wR_2 [\text{all refl.}]: 0.0768. \) Largest diff. peak and hole 1.529 and –0.981 e.Å\(^{-3}\).

5. References