Structural Properties of Small Single-Stranded Circular Nucleic Acids

Parth Chaturvedi, Lela Vuković*

Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968

*Authors to whom all correspondence should be addressed: lvukovic@utep.edu

Electronic Supporting Information (ESI)
Patch to create a covalent bond between 3’ and 5’ ends of nucleic acids:

PRES LKRI 0.0 ! Patch to join to nucleic acid segments (eg for IMAGES)
 ! eg: patch sega 10 segb 1
 ! sega should have std 3’ (gene sega ... last none)
 ! segb should have std 5’ (gene segb ... first none)
 ! USE AUTOgen ANGL DIHE after this patch,
 ! but before water-generation
BOND 1O3’ 2P
IC 1O3’ 2P 2O5’ 2C5’ 1.6001 101.45 -39.25 119.00 1.4401
IC 1O3’ 2O5’ *2P 2O1P 1.6001 101.45 -115.82 109.74 1.4802
IC 1O3’ 2O5’ *2P 2O2P 1.6001 101.45 115.90 109.80 1.4801
IC 1C4’ 1C3’ 1O3’ 2P 1.5284 111.92 159.13 119.05 1.6001
IC 1C3’ 1O3’ 2P 2O5’ 1.4212 119.05 -98.86 101.45 1.599

Table S1. Summary of simulation parameters used in MDFF simulations for different oligonucleotides.

<table>
<thead>
<tr>
<th></th>
<th>(GT)₃ & (GU)₃</th>
<th>(GT)₄ & (GU)₄</th>
<th>(GT)₆ & (GU)₆</th>
<th>(GT)₈ & (GU)₈</th>
<th>(GT)₂₄</th>
<th>(GU)₂₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (n) of dummy atoms</td>
<td>18</td>
<td>24</td>
<td>36</td>
<td>75</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>used to generate circular</td>
<td>n/3</td>
<td>n/3</td>
<td>n/3</td>
<td>n/5</td>
<td>n/5</td>
<td>n/5</td>
</tr>
<tr>
<td>potential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius (r) of circular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>potential for MDFF (Å)</td>
<td>n/3</td>
<td>n/3</td>
<td>n/3</td>
<td>n/5</td>
<td>n/5</td>
<td>n/5</td>
</tr>
<tr>
<td>$g_{scale}(\xi)$, scaling</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>factor for MDFF potential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docking by colores (Situs)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Force constant (kcal/molÅ²)</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Figure S1. Radial distribution functions (RDFs) of phosphorous atoms of circNAs calculated over 1 µs in MD simulations. RDFs are computed with a 10 ns time step. (GU), circRNAs have P-atoms that are more likely to be closer to each other than P-atoms of (GT), circDNAs, for all circRNAs examined.

Figure S2. Sodium ions (yellow) within 4 Å of (GT), circDNAs, as observed after 1 µs of MD simulations. The scale bars in panels (a-d) are 1 Å in length, and in panel (e) is 10 Å in length. Only the backbones of circDNAs are shown (atom color scheme: C-grey, O-red, P-orange).
Figure S3. Sodium ions (yellow) within 4 Å of (GU)$_n$ circRNAs, as observed after 1 μs of MD simulation. The scale bars in panels (a-d) are 1 Å in length, and in panel (e) is 10 Å in length. Only the backbones of circRNAs are shown (atom color scheme: C-grey, O-red, P-orange).

Figure S4. Conformations of circular (GT)$_8$ circDNA and (GU)$_8$ circRNAs at 1 μs showing base stacking as observed in MD simulations. The scale bars in panels are 1 Å in length.
Figure S5. Contact areas between nucleotide bases and aqueous solvent for circRNAs calculated over 1 µs in MD simulations. The areas are computed with a 10 ns time step. (GT)$_n$ circDNA bases are more water-exposed than (GU)$_n$ circRNA bases in circular nucleic acids.

Figure S6. Distribution of number of contacts between four (GT)$_6$ circDNA (left) and four (GU)$_6$ circRNAs (right) molecules, as observed in 1 µs simulations.
Figure S7. Contacts between pairs of circDNA-(GT)$_6$ molecules, as observed in 1 µs simulations of four circDNA-(GT)$_6$ molecules (at 7.9 mM concentration).
Figure S8. Contacts between pairs of circRNA-(GU)$_6$ molecules, as observed in 1 µs simulations of four circRNA-(GU)$_6$ molecules (at 7.9 mM concentration).

Figure S9. Number of contacts between four (GT)$_6$ circDNAs or four (GU)$_6$ circRNAs (at 7.9 mM concentration, left), and between three (GT)$_6$ circDNAs or three (GU)$_6$ circRNAs (at 5.9 mM concentration, right).
Figure S10. Distribution of phosphate angles for all P-atom triplets in the last 500 ns of trajectories of all circular DNA (blue) and RNA (red) molecules examined in Figure 2.

Figure S11. Distribution of phosphate angles for all P-atom triplets in the last 500 ns of trajectories of four circular (GT)$_6$ DNA (blue) and four circular (GU)$_6$ RNA (red) molecules, examined in simulations of multiple circular molecules (shown in Figure 5).