Arabinoxylan/Cellulose Nanocrystal Hydrogels with Tunable Mechanical Properties

Malika Talantikite*, Nadège Leray, Céline Moreau, Bernard Cathala
UR1268 Biopolymères Interactions Assemblages, INRA, Rue de la géraudière, 44316, Nantes, France
Corresponding author: malika.talantikite@inra.fr

Figures

Figure S1. POM images of gels formed with 10 g/L CNC and (a) 7.5 g/L, (b) 10 g/L and (c)12 g/L AX.

Figure S2. (a) Viscosity vs. concentration for CNC suspensions and AX solutions; (b) Viscosity measurements for solutions containing 10 g/L CNC in the presence of AX at different concentrations at 20°C.

Figure S3. (a) $G'$ and $G''$ variation as a function of % strain; and (b) variation of $G'$ and $G''$ as a function of time after breaking for 10 g/L CNC + 10 g/L AX at 20°C.

Figure S4. The effect of NaCl addition on the viscosity of a solution containing 10 g/L CNC + 5 g/L AX at 20°C, with photos of the resulting mixtures showing the salt effect.

Figure S5. POM images of solution containing 10 g/L CNC and 10 g/L AX (a, b) before the action of the enzyme, and (c, d) after the action of enzyme with and without the retardation plate.
**Supplementary Figures**

**Figure S1.** POM images of gels formed with 10 g/L CNC and (a) 7.5 g/L, (b) 10 g/L and (c) 12 g/L AX.

**Figure S2.** (a) Viscosity vs. concentration for CNC suspensions and AX solutions; (b) Viscosity measurements for solutions containing 10 g/L CNC in the presence of AX at different concentrations at 20°C.

**Figure S3.** (a) $G'$ and $G''$ variation as a function of % strain; and (b) variation of $G'$ and $G''$ as a function of time after breaking for 10 g/L CNC + 10 g/L AX at 20°C.
**Figure S4.** The effect of NaCl addition on the viscosity of a solution containing 10 g/L CNC + 5 g/L AX at 20°C, with photos of the resulting mixtures showing the salt effect.

**Figure S5.** POM images of solution containing 10 g/L CNC and 10 g/L AX (a, b) before the action of the enzyme, and (c, d) after the action of enzyme with and without the retardation plate.