Supporting Information

Anibamine and its Analogs; Potent Antiplasmodial Agents
from *Aniba citrifolia*

Yongle Du, Ana Lisa Valenciano, Yumin Dai, Yan Zhang, Yi Zheng, Feng Zhang, Jason Clement, Michael Goetz, David G. I. Kingston, and Maria B. Cassera

1H spectrum of anibamine (1).

1H, gHSQC, gHMBC and NOESY spectra for anibamine B (2).

1H, 13C, gHSQC, gHMBC and NOESY spectra for anibomarin A (3).

1H, gHSQC, gHMBC, NOESY spectra and circular dichroism spectra for anibignan I (5).

1H, gHSQC and gHMBC spectra for compounds 7-12.

Syntheses and characterization data of compounds 24, 26-30, 32-34, 36, and 38-40.
Compound 1 (1H NMR, CDCl\textsubscript{3})
Compound 2 (\(^1\)H NMR, CDCl\(_3\))
Compound 2 (gHSQC, CDCl₃)
Compound 2 (gHMBC, CDCl₃)
Compound 2 (NOESY, CDCl₃)
Compound 3 (\(^1\text{H NMR, CDCl}_3\))
Compound 3 (13C NMR, CDCl\textsubscript{3})
Compound 3 (gHSQC, CDCl₃)
Compound 3 (gHMBC, CDCl₃)
Compound 3 (NOESY, CDCl₃)
Compound 5 (1H NMR, CDCl$_3$)
Compound 5 (13C NMR, CDCl$_3$)
Compound 5 (gHSQC, CDCl₃)
Compound 5 (gHMBC, CDCl₃)
Compound 5 (NOESY, CDCl₃)
Compound 5 (ECD)
Compound 7 (\(^{1}\text{H} \text{NMR, CDCl}_3\))
Compound 7 (gHSQC, CDCl$_3$)
Compound 7 (gHMBC, CDCl₃)
Compound 8 (\(^1\)H NMR, CDCl\(_3\))
Compound 8 (gHSQC, CDCl₃)
Compound 8 (gHMBC, CDCl₃)
Compound 9 (¹H NMR, CDCl₃)
Compound 9 (gHSQC, CDCl₃)
Compound 9 (gHMBC, CDCl₃)
Compound 10 (\(^1\)H NMR, CDCl₃)
Compound 10 (gHSQC, CDCl₃)
Compound 10 (gHMBC, CDCl₃)
Compound 11 (^1^H NMR, CDCl₃)
Compound 11 (gHSQC, CDCl₃)
Compound 11 (gHMBC, CDCl₃)
Compound 12 (\(^1\)H NMR, CDCl\(_3\))
Compound 12 (gHSQC, CDCl₃)
Compound 12 (gHMBC, CDCl₃)
General synthetic methods

All reagents used for reaction were purchased from Sigma-Aldrich. Nuclear magnetic resonance (NMR) spectra was recorded as 1H (400 MHz) and 13C (100 MHz) at room temperature on a Varian Mercury NMR spectrometer (400 MHz). The Analtech Uniplate F254 plates were used for TLC analyses. Silica gel column (230-400 mesh, Merck) was applied for chromatographic purification. IR spectra were recorded with Nicolet iS10 instrument (Thermo Scientific). MS analysis was carried out with Applied Bio Systems 3200 Q trap with a turbo V source for TurbolonSpray. The procedures for the synthesis of all compounds followed those of previous publications.1-4

3,5-Di((E)-dec-1-en-1-yl)-2,4,6-trimethylpyridine (24)

Compound 24 was synthesized as shown above. The final product was purified by chromatography on silica gel to afford compound 24 as a colorless oil.

IR (diamond, cm-1) ν_{max} 2955, 2922, 2852, 1551, 1444, 1408, 1370, 1019, 972; 1H NMR (400 MHz, CDCl\textsubscript{3}): 6.28-6.24 (m, 2H), 5.66-5.59 (m, 2H), 2.45 (s, 6H), 2.26-2.19 (m, 7H), 1.50-1.44 (m, 4H), 1.38-1.29 (m, 21H), 0.90-0.87 (m, 6H); 13C NMR (100 MHz, CDCl\textsubscript{3}): δ. 152.67, 142.91, 137.06, 130.72, 126.16, 77.38, 77.25, 77.04, 76.72, 33.37, 31.90, 29.47, 29.34, 29.32, 29.21, 23.64, 22.69, 17.88, 14.11; MS m/z 398.3785 [M+ H$^+$] (calcd. for C\textsubscript{28}H\textsubscript{48}N+, 398.3781).

(E)-3-(dec-1-en-1-yl)-2,4,6-trimethylpyridine (26)

Compound 26 was synthesized as shown above. The final product was purified by chromatography on silica gel to afford compound 26 as a colorless oil.

IR (diamond, cm-1) ν_{max} 295, 2922, 2853, 1592, 1556, 1455, 1385, 1025, 971, 858, 721; 1H NMR (400 MHz, CDCl\textsubscript{3}): 6.084 (s, 1H), 6.28-6.24 (m, 1H), 5.72-5.64 (m, 1H), 2.48-2.44 (m, 6H), 2.26-2.20 (m, 5H), 1.51-1.44 (m, 2H), 1.38-1.29 (m, 10 H), 0.90-0.87 (m, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}): δ. 155.19, 154.68, 145.08, 137.08, 130.10, 125.41, 122.38, 33.45, 31.91, 29.47, 29.34, 29.32, 29.20, 24.01, 23.65, 22.69, 20.31, 14.11; MS m/z 260.2363 [M+ H$^+$] (calcd. for C\textsubscript{18}H\textsubscript{30}N+, 260.2372).
Compound 27 was synthesized as shown above. The final product was purified by chromatography on silica gel to afford compound 27 as a colorless oil.

IR (diamond, cm⁻¹) νmax 2955, 2922, 2853, 1550, 1455, 1119, 971, 722; ¹H NMR (400 MHz, CDCl₃): 6.31-6.24 (m, 2H), 5.67-5.57 (m, 2H), 3.41 (t, J = 6.72 Hz, 2H), 3.32 (s, 3H), 2.81-2.77 (m, 2H), 2.46 (s, 3H), 2.26-2.19 (m, 7H), 1.96-1.89 (m, 2H), 1.51-1.44 (m, 4H), 1.38-1.29 (m, 21H), 0.90-0.87 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ. 155.93, 152.98, 143.04, 137.02, 130.70, 130.58, 126.23, 125.83, 77.34, 77.02, 76.71, 72.66, 58.41, 33.38, 33.35, 32.4931.92, 31.90, 29.50, 29.47, 29.42, 29.34, 29.32, 29.28, 29.20, 23.74, 22.68, 18.07, 14.11; MS m/z 456.4209 [M+ H]⁺ (calcd. for C₃₁H₅₄NO⁺, 456.4200).

Compound 28 was synthesized as shown above. The final product was purified by chromatography on silica gel to afford compound 27 as a colorless oil.

IR (diamond, cm⁻¹) νmax 2955, 2922, 2853, 1553, 1441, 1378, 971, 722; ¹H NMR (400 MHz, CDCl₃): 6.29-6.22 (m, 2H), 5.81-5.74 (m, 1H), 5.68-5.61 (m, 1H), 2.48 (s, 3H), 2.39 (s, 3H), 2.27-2.21 (m, 2H), 2.12 (s, 3H), 1.82-1.76 (m, 2H), 1.52-1.45 (m, 2H), 1.39-1.19 (m, 23H), 0.90-0.84 (m, 6H); ¹³C NMR
(100 MHz, CDCl₃): δ 153.10, 152.70, 143.18, 137.01, 134.49, 130.36, 129.42, 126.06, 125.89, 33.40, 31.90, 31.86, 29.47, 29.40, 29.34, 29.32, 29.28, 29.22, 28.92, 28.68, 23.68, 23.15, 22.68, 22.65, 17.56, 14.11, 14.09; MS m/z 398.3788 [M+ H]+ (calcd. for C₂₈H₄₈N+, 398.3781).

Compound 29 was prepared by hydrogenation of 28 and was purified by chromatography on silica gel to afford 29 as a colorless oil.

IR (diamond, cm⁻¹) Vₘₐₓ 2915, 2850, 1566, 1467, 1417, 1371, 1019, 721; ¹H NMR (400 MHz, CDCl₃): 2.58-2.55 (m, 4H), 2.47 (s, 3H), 2.22 (s, 3H), 1.41-1.27 (m, 34H), 0.88 (t, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 152.34, 142.91, 132.28, 31.91, 30.14, 29.64, 29.62, 29.58, 29.47, 29.34, 29.28, 22.68, 22.57, 14.76, 14.11; MS m/z 402.4101 [M+ H]+ (calcd. for C₂₈H₅₂N+, 402.4094).

3-Decyl-2,4,6-trimethylpyridine (30)

![Chemical structure of 3-Decyl-2,4,6-trimethylpyridine](image)

Compound 30 was synthesized as shown above. The final product was purified by chromatography on silica gel to afford the product as a colorless oil.

IR (diamond, cm⁻¹) Vₘₐₓ 2922, 2853, 1747, 1597, 1456, 1163, 1082, 857, 721; ¹H NMR (400 MHz, CDCl₃): 6.77 (s, 1H), 2.58-2.56 (m, 2H), 2.50 (s, 3H), 2.43 (s, 3H), 2.25 (s, 3H), 1.46-1.23 (m, 18H), 0.88 (t, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 155.49, 154.09, 145.23, 131.71, 122.88, 31.91, 30.10, 29.63, 29.62, 29.48, 29.34, 29.14, 28.80, 23.83, 22.69, 22.36, 19.20, 14.11; MS m/z 262.2525 [M+ H]+ (calcd for C₁₈H₃₁N+, 262.2528).

3-((E)-dec-1-en-1-yl)-5-((Z)-dec-1-en-1-yl)-2-(3-methoxypropyl)-4,6-dimethylpyridine (32)

![Chemical structure of 3-((E)-dec-1-en-1-yl)-5-((Z)-dec-1-en-1-yl)-2-(3-methoxypropyl)-4,6-dimethylpyridine](image)
Compound 32 was synthesized as shown above. The final product was purified by chromatography on silica gel to afford the product as a colorless oil.

IR (diamond, cm\(^{-1}\)) \(\nu_{\text{max}}\) 2955, 2922, 2853, 1548, 1456, 1378, 1119, 970, 722; \(^1\)H NMR (400 MHz, CDCl\(_3\)): 6.32-6.21 (m, 2 H), 5.80-5.74 (m, 1 H), 5.66-5.59 (m, 1H), 3.42 (t, \(J = 6.72\) Hz, 2H), 3.33 (s, 3H), 2.83-2.79 (m, 2H), 2.38 (s, 3H), 2.26-2.21 (m, 2H), 2.11 (s, 1H), 1.98-1.91 (m, 2H), 1.82-1.76 (m, 2H), 1.52-1.47 (m, 2 H), 1.45-1.40 (m, 2H), 1.35-1.20 (m, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 156.31, 152.96, 143.31, 136.96, 134.42, 130.21, 129.42, 125.95, 125.72, 125.62, 58.38, 33.36, 32.46, 31.90, 31.84, 29.48, 29.46, 29.41, 29.38, 29.32, 29.30, 29.27, 29.25, 29.21, 29.19, 28.90, 28.68, 23.19, 22.67, 22.63, 17.72, 14.09, 14.06; MS \(m/z\) 456.4208 [M+ H]\(^+\) (calcd for C\(_{31}\)H\(_{53}\)NO\(_2\)*, 456.4200).

5-((E)-Dec-1-en-1-yl)-3-((Z)-dec-1-en-1-yl)-2-(3-methoxypropyl)-4,6-dimethylpyridine (33)

Compound 33 was synthesized as shown above. The final product was purified by chromatography on silica gel to afford the product as a colorless oil.

IR (diamond, cm\(^{-1}\)) \(\nu_{\text{max}}\) 2955, 2922, 2852, 1548, 1446, 1384, 1119, 971, 722; \(^1\)H NMR (400 MHz, CDCl\(_3\)): 6.29-6.25 (m, 2 H), 5.81-5.75 (m, 1 H), 5.69-5.62 (m, 1H), 3.45 (t, \(J = 6.72\) Hz, 2H), 3.32 (s, 3H), 2.72-2.70 (m, 2H), 2.48 (s, 3H), 2.27-2.21 (m, 2H), 2.12 (s, 1H), 1.94-1.87 (m, 2H), 1.81-1.76 (m, 2 H), 1.51-1.45 (m, 2 H), 1.39-1.20 (m, 23H), 0.90-0.84 (m, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 155.84, 1.53.28, 1.43.16, 136.96, 134.68, 130.43, 129.06, 126.12, 125.46, 72.71, 58.41, 33.40, 32.48, 31.88, 31.85, 29.45, 29.41, 29.35, 29.33, 29.30, 29.21, 28.89, 28.76, 23.73, 22.67, 22.64, 17.68, 14.09, 14.08; MS \(m/z\) 456.4210 [M+ H]\(^+\) (calcd for C\(_{31}\)H\(_{53}\)NO\(_2\)*, 456.4200).
Compound 34 was synthesized as shown above. The final product was purified by chromatography on silica gel to afford the product as a colorless oil.

IR (diamond, cm$^{-1}$) ν_{max} 2922, 2852, 1590, 1456, 1392, 1118, 970, 721; 1H NMR (400 MHz, CDCl$_3$): 6.82 (s, 1H), 6.28-6.24 (m, 1H), 5.73-5.566 (m, 1H), 3.42 (t, $J = 8$ Hz, 2H), 3.34 (s, 3H), 2.76-2.72 (m, 2H), 2.48 (s, 3H), 2.26-2.22 (m, 5H), 2.01-1.93 (m, 2H), 1.51-1.44 (m, 2H), 1.38-1.26 (m, 10H), 0.90-0.87 (m, 2H); 13C NMR (100 MHz, CDCl$_3$): δ 158.09, 155.32, 145.09, 137.11, 130.45, 125.43, 121.85, 72.24, 58.53, 34.40, 33.44, 31.90, 29.90, 29.46, 29.36, 29.31, 29.19, 23.64, 22.68, 20.41, 14.10; MS m/z 318.2781 [M+ H$^+$] (calcd for C$_{21}$H$_{36}$NO$^+$, 318.2797).

(E)-3-(Dec-1-en-1-yl)-2-(3-methoxypropyl)-4,6-dimethylpyridine (36) and 3-decyl-2-(3-methoxypropyl)-4,6-dimethylpyridine (38)
Compounds 36 and 38 were synthesized as shown above. The final products were purified by chromatography on silica gel to afford the products as colorless oils.

Compound 36: IR (diamond, cm$^{-1}$) ν_{max} 2922, 2852, 1591, 1454, 1117, 968, 857, 721; 1H NMR (400 MHz, CDCl$_3$): 6.81 (s, 1H), 6.31-6.27 (m, 1H), 5.70-5.5.62 (m, 1H), 3.41 (t, J = 8 Hz, 2H), 3.32 (s, 3H), 2.84-2.80 (m, 2H), 2.45 (s, 2H), 2.25-2.20 (m, 5H), 1.97-1.89 (m, 2H), 1.50-1.44 (m, 2H), 1.38-1.29 (m, 10H), 0.90-0.87 (m, 3H); 13C NMR (100 MHz, CDCl$_3$): δ. 158.44, 154.94, 145.32, 137.13, 129.99, 125.04, 122.40, 72.57, 58.39, 33.39, 32.46, 31.89, 29.48, 29.42, 29.33, 29.30, 29.24, 24.04, 22.67, 20.45, 14.09; MS m/z 318.2788 [M+ H]$^+$ (calcd for C$_{21}$H$_{36}$NO$^+$, 318.2791).

Compound 38: IR (diamond, cm$^{-1}$) ν_{max} 2921, 2852, 1595, 1456, 1118, 857, 721; 1H NMR (400 MHz, CDCl$_3$): 6.76 (s, 1H), 3.44 (t, J = 8 Hz, 2H), 3.34 (s, 3H), 2.83-2.79 (m, 2H), 2.59-2.56 (m, 2H), 2.42 (s, 3H), 2.25 (s, 3H), 1.98-1.93 (m, 2H), 1.49-1.24 (m, 17H), 0.90-0.87 (m, 3H); 13C NMR (100 MHz, CDCl$_3$): δ. 158.61, 154.31, 145.45, 131.36, 132.85, 72.64, 72.46, 58.44, 31.89, 31.48, 30.10, 30.04, 30.01, 29.62, 29.60, 29.41, 29.32, 28.20, 23.90, 22.67, 19.30, 14.09; MS m/z 320.2943 [M+ H]$^+$ (calcd for C$_{21}$H$_{38}$NO$^+$, 320.2947).

3-Decyl-6-(3-methoxypropyl)-2,4-dimethylpyridine (39)

Compound 39 was synthesized as shown above. The final product was purified by chromatography on silica gel to afford the product as a colorless oil.

IR (diamond, cm$^{-1}$) ν_{max} 2922, 2852, 1746, 1595, 1456, 1118, 864, 721; 1H NMR (400 MHz, CDCl$_3$): 3.42 (t, J = 6.52 Hz, 2H), 3.34 (s, 3H), 2.74-2.70 (m, 2H), 2.58-2.54 (m, 4H), 2.51 (s, 3H), 2.26 (s, 1H), 2.00-1.93 (m, 2H), 1.47-1.24 (m, 18H), 0.88 (t, J = 6.68 Hz, 6H); 13C NMR (100 MHz, CDCl$_3$): δ. 157.44, 155.53, 145.32, 132.11, 122.31, 72.25, 58.50, 34.20, 31.88, 30.10, 29.88, 29.60, 29.44, 29.32, 29.06, 28.84, 22.66, 22.29, 19.28, 14.08; MS m/z 320.2957 [M+ H]$^+$ (calcd for C$_{21}$H$_{38}$NO$^+$, 320.2947).
3,5-Didecyl-2-(3-methoxypropyl)-4,6-dimethylpyridine (40)

Compound 40 was synthesized as shown above. The final product was purified by chromatography on silica gel to afford the product as a colorless oil.

IR (diamond, cm$^{-1}$) v_{max} 2921, 2852, 1563, 1456, 1118, 950, 721; 1H NMR (400 MHz, CDCl$_3$): 3.45 (t, $J = 6.48$ Hz, 2H), 3.35 (s, 3H), 2.79-2.75 (m, 2H), 2.60-2.54 (m, 4H), 2.47 (s, 3H), 2.22 (s, 1H), 2.00-1.93 (m, 2H), 1.42-1.28 (m, 34H), 0.88 (t, $J = 6.6$ Hz, 6H); 13C NMR (100 MHz, CDCl$_3$): δ 155.43, 152.58, 143.01, 132.17, 131.87, 72.57, 58.43, 31.90, 31.67, 30.88, 30.18, 30.16, 29.95, 29.64, 29.62, 29.45, 29.43, 29.33, 29.21, 28.95, 22.67, 22.61, 14.83, 14.09; MS m/z 460.4517 [M+ H]$^+$ (calcd for C$_{31}$H$_{58}$NO, 460.4512).

References