Supporting Information

Enhanced Photoelectrocatalytic Reduction and Removal of Atrazine: Effect of Co-Catalyst and Cathode Potential

Haoying Wang†, Jie Li†, Huijie Shi*†, Siqi Xie†, Chaojie Zhang‡ and Guohua Zhao*†

†School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
‡State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China

Contents
Text S1-3
Figures S1-8
Text S1

The Mott-Schottky analysis is a rapid and economical technique to obtain information of the band structure of semiconductor materials. The charge carrier type of the semiconductor can be estimated from the slope of the Mott-Schottky plots. A positive slope demonstrates n-type carrier conduction and a negative slope demonstrates p-type carrier conduction, and Mott–Schottky equation can be used to determine the flat-band potential of the semiconductor. For both electrodes, n-type semiconductor behavior was confirmed from the 1/C_sc^2 vs E plots (M-S plots) (Figure S5B), and the Mott-Schottky relationship is written as:

\[
\frac{1}{C^2} = \frac{2}{N_D\varepsilon_0\varepsilon}(E_s - E_{FB} - \frac{kT}{e})
\]

Where, C is the interfacial capacitance, \(\varepsilon_0\) is the permittivity of vacuum (8.854\times10^{12} F\cdot m^{-1}), \(\varepsilon\) is the relative dielectric constant, \(N_D\) is the donor density, \(E_s\) is the electrode potential, \(E_{FB}\) is the flat band potential, \(e\) is the charge of single electron (1.6\times10^{-19} C), \(T\) is the temperature, and \(k\) is the boltzmann's constant.
Text S2

For calculation of the lifetime of the accumulated electrons on PdQDs@TiO$_2$NTs, open circuit potential delay (OCPD) curves were firstly collected (Figure 5A). As shown in the Figure, the original data were presented as V_{oc} (“Potential” in the Y-axis of Figure 5A) against Time (t). The lifetime of the photo-generated electrons was calculated according to the formula of $\tau = \frac{k_BT}{e} \cdot \left(\frac{dV_{oc}}{dt} \right)^{-1}$, where τ represented the potential-dependent lifetime of photo-generated electrons, k_B represented boltzmann's constant, T was the temperature, and e was the charge of single electron respectively.

Here, $\frac{dV_{oc}}{dt}$ could be obtained by differentiating V_{oc} against Time (t). Since that τ was potential-dependent, in Table 2 the potential was fixed as -0.6 V vs. SCE, and $\frac{dV_{oc}}{dt}$ was calculated to be 1.004×10^{-3}. Then, τ could be obtained by the above formula to be 25.6 s for PdQDs@TiO$_2$NTs detected in the solution without atrazine. Accordingly, other τ values could be calculated.
The surface charge transfer efficiency on PdQDs@TiO₂NTs and TiO₂NTs was determined by PEC tests according to the literatures⁵,⁶.

The transient photocurrent experiments were carried out with a 50 s off-on light cycles at a bias voltage of 0 V vs. SCE. \(J_P \) of TiO₂NTs and PdQDs@TiO₂NTs were tested in 0.1 mol·L⁻¹ Na₂SO₄ aqueous solution and \(J_P \) (H₂O₂) of TiO₂NTs and PdQDs@TiO₂NTs were recorded in 0.1 mol·L⁻¹ Na₂SO₄ aqueous solution containing 0.5 mol·L⁻¹ H₂O₂ as electron scavenger. Since that the electron scavenger H₂O₂ could increase the surface charge transfer efficiency to almost 100%, the surface charge transfer efficiency (\(\eta \)) of TiO₂NTs and PdQDs@TiO₂NTs could be calculated according to the formula: \(\eta = \frac{J_P}{J_P(H_2O_2)} \).
Figure S1. Particle size distribution of PdQDs on the surface of PdQDs@TiO$_2$NTs.
Figure S2

Figure S2. TEM and HR-TEM images of PdQDs@TiO$_2$NTs.
Figure S3

The EDS image of elements distribution and element content on the PdQDs@TiO2NTs electrode surface.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Weight percentage/%</th>
<th>atomic percent /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>42.89</td>
<td>69.69</td>
</tr>
<tr>
<td>Ti K</td>
<td>54.81</td>
<td>29.75</td>
</tr>
<tr>
<td>Pd L</td>
<td>2.29</td>
<td>0.56</td>
</tr>
<tr>
<td>Total elements</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
Figure S4

(A) UV-vis diffuse reflectance spectra (DRS) of TiO$_2$NTs and PdQDs@TiO$_2$NTs; (B) the corresponding Tauc plots.

Figure S4. (A) UV-vis diffuse reflectance spectra (DRS) of TiO$_2$NTs and PdQDs@TiO$_2$NTs; (B) the corresponding Tauc plots.
Figure S5

Figure S5. (A) Nyquist curve of TiO₂NTs and PdQDs@TiO₂NTs electrodes before and after radiation; (B) Mott-schottky curve of TiO₂NTs and PdQDs@TiO₂NTs electrode; (C) Open circuit potential decay curve of PdQDs@TiO₂NTs and TiO₂NTs electrodes (D) the potential dependent lifetime plots for PdQDs@TiO₂ NTs and TiO₂NTs electrodes
Figure S6. The activation energy determination of PEC reduction of atrazine on PdQDs@TiO$_2$ NTs: (A) the Arrhenius plots of $\ln i$ vs. $10^3/RT$; (B) activation energy under different potential.
Figure S7. The evolution of the intermediates in atrazine PEC reduction on PdQDs@TiO$_2$NTs under the potential of -0.9 V (A), -1.3 V (B) and -1.5 V (C); (D) the chemical structures of atrazine and the major intermediates.
Figure S8

![Figure S8](image)

<table>
<thead>
<tr>
<th>Elements</th>
<th>Weight percentage/%</th>
<th>Atomic percent /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>44.32</td>
<td>72.23</td>
</tr>
<tr>
<td>Ti K</td>
<td>53.57</td>
<td>29.29</td>
</tr>
<tr>
<td>Pd L</td>
<td>2.20</td>
<td>0.48</td>
</tr>
<tr>
<td>Total elements</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Figure S8. The EDS image of elements distribution and element content on the surface of PdQDs@TiO₂NTs after usage in PEC reduction.
References